summary refs log tree commit diff stats
path: root/lib/pure/rationals.nim
diff options
context:
space:
mode:
Diffstat (limited to 'lib/pure/rationals.nim')
-rw-r--r--lib/pure/rationals.nim289
1 files changed, 289 insertions, 0 deletions
diff --git a/lib/pure/rationals.nim b/lib/pure/rationals.nim
new file mode 100644
index 000000000..3b68a2381
--- /dev/null
+++ b/lib/pure/rationals.nim
@@ -0,0 +1,289 @@
+#
+#
+#            Nim's Runtime Library
+#        (c) Copyright 2015 Dennis Felsing
+#
+#    See the file "copying.txt", included in this
+#    distribution, for details about the copyright.
+#
+
+
+## This module implements rational numbers, consisting of a numerator `num` and
+## a denominator `den`, both of type int. The denominator can not be 0.
+
+import math
+import hashes
+
+type Rational*[T] = object
+  ## a rational number, consisting of a numerator and denominator
+  num*, den*: T
+
+proc initRational*[T](num, den: T): Rational[T] =
+  ## Create a new rational number.
+  result.num = num
+  result.den = den
+
+proc `//`*[T](num, den: T): Rational[T] = initRational[T](num, den)
+  ## A friendlier version of `initRational`. Example usage:
+  ##
+  ## .. code-block:: nim
+  ##   var x = 1//3 + 1//5
+
+proc `$`*[T](x: Rational[T]): string =
+  ## Turn a rational number into a string.
+  result = $x.num & "/" & $x.den
+
+proc toRational*[T](x: T): Rational[T] =
+  ## Convert some integer `x` to a rational number.
+  result.num = x
+  result.den = 1
+
+proc toFloat*[T](x: Rational[T]): float =
+  ## Convert a rational number `x` to a float.
+  x.num / x.den
+
+proc toInt*[T](x: Rational[T]): int =
+  ## Convert a rational number `x` to an int. Conversion rounds towards 0 if
+  ## `x` does not contain an integer value.
+  x.num div x.den
+
+proc reduce*[T](x: var Rational[T]) =
+  ## Reduce rational `x`.
+  let common = gcd(x.num, x.den)
+  if x.den > 0:
+    x.num = x.num div common
+    x.den = x.den div common
+  elif x.den < 0:
+    x.num = -x.num div common
+    x.den = -x.den div common
+  else:
+    raise newException(DivByZeroError, "division by zero")
+
+proc `+` *[T](x, y: Rational[T]): Rational[T] =
+  ## Add two rational numbers.
+  let common = lcm(x.den, y.den)
+  result.num = common div x.den * x.num + common div y.den * y.num
+  result.den = common
+  reduce(result)
+
+proc `+` *[T](x: Rational[T], y: T): Rational[T] =
+  ## Add rational `x` to int `y`.
+  result.num = x.num + y * x.den
+  result.den = x.den
+
+proc `+` *[T](x: T, y: Rational[T]): Rational[T] =
+  ## Add int `x` to rational `y`.
+  result.num = x * y.den + y.num
+  result.den = y.den
+
+proc `+=` *[T](x: var Rational[T], y: Rational[T]) =
+  ## Add rational `y` to rational `x`.
+  let common = lcm(x.den, y.den)
+  x.num = common div x.den * x.num + common div y.den * y.num
+  x.den = common
+  reduce(x)
+
+proc `+=` *[T](x: var Rational[T], y: T) =
+  ## Add int `y` to rational `x`.
+  x.num += y * x.den
+
+proc `-` *[T](x: Rational[T]): Rational[T] =
+  ## Unary minus for rational numbers.
+  result.num = -x.num
+  result.den = x.den
+
+proc `-` *[T](x, y: Rational[T]): Rational[T] =
+  ## Subtract two rational numbers.
+  let common = lcm(x.den, y.den)
+  result.num = common div x.den * x.num - common div y.den * y.num
+  result.den = common
+  reduce(result)
+
+proc `-` *[T](x: Rational[T], y: T): Rational[T] =
+  ## Subtract int `y` from rational `x`.
+  result.num = x.num - y * x.den
+  result.den = x.den
+
+proc `-` *[T](x: T, y: Rational[T]): Rational[T] =
+  ## Subtract rational `y` from int `x`.
+  result.num = - x * y.den + y.num
+  result.den = y.den
+
+proc `-=` *[T](x: var Rational[T], y: Rational[T]) =
+  ## Subtract rational `y` from rational `x`.
+  let common = lcm(x.den, y.den)
+  x.num = common div x.den * x.num - common div y.den * y.num
+  x.den = common
+  reduce(x)
+
+proc `-=` *[T](x: var Rational[T], y: T) =
+  ## Subtract int `y` from rational `x`.
+  x.num -= y * x.den
+
+proc `*` *[T](x, y: Rational[T]): Rational[T] =
+  ## Multiply two rational numbers.
+  result.num = x.num * y.num
+  result.den = x.den * y.den
+  reduce(result)
+
+proc `*` *[T](x: Rational[T], y: T): Rational[T] =
+  ## Multiply rational `x` with int `y`.
+  result.num = x.num * y
+  result.den = x.den
+  reduce(result)
+
+proc `*` *[T](x: T, y: Rational[T]): Rational[T] =
+  ## Multiply int `x` with rational `y`.
+  result.num = x * y.num
+  result.den = y.den
+  reduce(result)
+
+proc `*=` *[T](x: var Rational[T], y: Rational[T]) =
+  ## Multiply rationals `y` to `x`.
+  x.num *= y.num
+  x.den *= y.den
+  reduce(x)
+
+proc `*=` *[T](x: var Rational[T], y: T) =
+  ## Multiply int `y` to rational `x`.
+  x.num *= y
+  reduce(x)
+
+proc reciprocal*[T](x: Rational[T]): Rational[T] =
+  ## Calculate the reciprocal of `x`. (1/x)
+  if x.num > 0:
+    result.num = x.den
+    result.den = x.num
+  elif x.num < 0:
+    result.num = -x.den
+    result.den = -x.num
+  else:
+    raise newException(DivByZeroError, "division by zero")
+
+proc `/`*[T](x, y: Rational[T]): Rational[T] =
+  ## Divide rationals `x` by `y`.
+  result.num = x.num * y.den
+  result.den = x.den * y.num
+  reduce(result)
+
+proc `/`*[T](x: Rational[T], y: T): Rational[T] =
+  ## Divide rational `x` by int `y`.
+  result.num = x.num
+  result.den = x.den * y
+  reduce(result)
+
+proc `/`*[T](x: T, y: Rational[T]): Rational[T] =
+  ## Divide int `x` by Rational `y`.
+  result.num = x * y.den
+  result.den = y.num
+  reduce(result)
+
+proc `/=`*[T](x: var Rational[T], y: Rational[T]) =
+  ## Divide rationals `x` by `y` in place.
+  x.num *= y.den
+  x.den *= y.num
+  reduce(x)
+
+proc `/=`*[T](x: var Rational[T], y: T) =
+  ## Divide rational `x` by int `y` in place.
+  x.den *= y
+  reduce(x)
+
+proc cmp*(x, y: Rational): int {.procvar.} =
+  ## Compares two rationals.
+  (x - y).num
+
+proc `<` *(x, y: Rational): bool =
+  (x - y).num < 0
+
+proc `<=` *(x, y: Rational): bool =
+  (x - y).num <= 0
+
+proc `==` *(x, y: Rational): bool =
+  (x - y).num == 0
+
+proc abs*[T](x: Rational[T]): Rational[T] =
+  result.num = abs x.num
+  result.den = abs x.den
+
+proc hash*[T](x: Rational[T]): THash =
+  ## Computes hash for rational `x`
+  # reduce first so that hash(x) == hash(y) for x == y
+  var copy = x
+  reduce(copy)
+
+  var h: THash = 0
+  h = h !& hash(copy.num)
+  h = h !& hash(copy.den)
+  result = !$h
+  
+when isMainModule:
+  var
+    z = Rational[int](num: 0, den: 1)
+    o = initRational(num=1, den=1)
+    a = initRational(1, 2)
+    b = -1 // -2
+    m1 = -1 // 1
+    tt = 10 // 2
+
+  assert( a     == a )
+  assert( (a-a) == z )
+  assert( (a+b) == o )
+  assert( (a/b) == o )
+  assert( (a*b) == 1 // 4 )
+  assert( (3/a) == 6 // 1 )
+  assert( (a/3) == 1 // 6 )
+  assert( a*b   == 1 // 4 )
+  assert( tt*z  == z )
+  assert( 10*a  == tt )
+  assert( a*10  == tt )
+  assert( tt/10 == a  )
+  assert( a-m1  == 3 // 2 )
+  assert( a+m1  == -1 // 2 )
+  assert( m1+tt == 16 // 4 )
+  assert( m1-tt == 6 // -1 )
+
+  assert( z < o )
+  assert( z <= o )
+  assert( z == z )
+  assert( cmp(z, o) < 0 )
+  assert( cmp(o, z) > 0 )
+
+  assert( o == o )
+  assert( o >= o )
+  assert( not(o > o) )
+  assert( cmp(o, o) == 0 )
+  assert( cmp(z, z) == 0 )
+  assert( hash(o) == hash(o) )
+
+  assert( a == b )
+  assert( a >= b )
+  assert( not(b > a) )
+  assert( cmp(a, b) == 0 )
+  assert( hash(a) == hash(b) )
+
+  var x = 1//3
+
+  x *= 5//1
+  assert( x == 5//3 )
+  x += 2 // 9
+  assert( x == 17//9 )
+  x -= 9//18
+  assert( x == 25//18 )
+  x /= 1//2
+  assert( x == 50//18 )
+
+  var y = 1//3
+
+  y *= 4
+  assert( y == 4//3 )
+  y += 5
+  assert( y == 19//3 )
+  y -= 2
+  assert( y == 13//3 )
+  y /= 9
+  assert( y == 13//27 )
+
+  assert toRational(5) == 5//1
+  assert abs(toFloat(y) - 0.4814814814814815) < 1.0e-7
+  assert toInt(z) == 0