summary refs log tree commit diff stats
path: root/lib/pure/stats.nim
diff options
context:
space:
mode:
Diffstat (limited to 'lib/pure/stats.nim')
-rw-r--r--lib/pure/stats.nim348
1 files changed, 348 insertions, 0 deletions
diff --git a/lib/pure/stats.nim b/lib/pure/stats.nim
new file mode 100644
index 000000000..ec4cd182b
--- /dev/null
+++ b/lib/pure/stats.nim
@@ -0,0 +1,348 @@
+#
+#
+#            Nim's Runtime Library
+#        (c) Copyright 2015 Andreas Rumpf
+#
+#    See the file "copying.txt", included in this
+#    distribution, for details about the copyright.
+#
+## Statistical analysis framework for performing
+## basic statistical analysis of data.
+## The data is analysed in a single pass, when a data value
+## is pushed to the ``RunningStat`` or ``RunningRegress`` objects
+##
+## ``RunningStat`` calculates for a single data set
+## - n (data count)
+## - min  (smallest value)
+## - max  (largest value)
+## - sum
+## - mean
+## - variance
+## - varianceS (sample var)
+## - standardDeviation
+## - standardDeviationS  (sample stddev)
+## - skewness (the third statistical moment)
+## - kurtosis (the fourth statistical moment)
+##
+## ``RunningRegress`` calculates for two sets of data
+## - n
+## - slope
+## - intercept
+## - correlation
+##
+## Procs have been provided to calculate statistics on arrays and sequences.
+##
+## However, if more than a single statistical calculation is required, it is more
+## efficient to push the data once to the RunningStat object, and
+## call the numerous statistical procs for the RunningStat object.
+##
+## .. code-block:: Nim
+##
+##  var rs: RunningStat
+##  rs.push(MySeqOfData)
+##  rs.mean()
+##  rs.variance()
+##  rs.skewness()
+##  rs.kurtosis()
+
+from math import FloatClass, sqrt, pow, round
+
+{.push debugger:off .} # the user does not want to trace a part
+                       # of the standard library!
+{.push checks:off, line_dir:off, stack_trace:off.}
+
+type
+  RunningStat* = object             ## an accumulator for statistical data
+    n*: int                         ## number of pushed data
+    min*, max*, sum*: float         ## self-explaining
+    mom1, mom2, mom3, mom4: float   ## statistical moments, mom1 is mean
+
+
+  RunningRegress* = object  ## an accumulator for regression calculations
+    n*: int                 ## number of pushed data
+    x_stats*: RunningStat   ## stats for first set of data
+    y_stats*: RunningStat   ## stats for second set of data
+    s_xy: float             ## accumulated data for combined xy
+
+{.deprecated: [TFloatClass: FloatClass, TRunningStat: RunningStat].}
+
+# ----------- RunningStat --------------------------
+proc clear*(s: var RunningStat) =
+  ## reset `s`
+  s.n = 0
+  s.min = toBiggestFloat(int.high)
+  s.max = 0.0
+  s.sum = 0.0
+  s.mom1 = 0.0
+  s.mom2 = 0.0
+  s.mom3 = 0.0
+  s.mom4 = 0.0
+
+proc push*(s: var RunningStat, x: float) =
+  ## pushes a value `x` for processing
+  if s.n == 0: s.min = x
+  inc(s.n)
+  # See Knuth TAOCP vol 2, 3rd edition, page 232
+  if s.min > x: s.min = x
+  if s.max < x: s.max = x
+  s.sum += x
+  let n = toFloat(s.n)
+  let delta = x - s.mom1
+  let delta_n = delta / toFloat(s.n)
+  let delta_n2 = delta_n * delta_n
+  let term1 = delta * delta_n * toFloat(s.n - 1)
+  s.mom4 += term1 * delta_n2 * (n*n - 3*n + 3) +
+              6*delta_n2*s.mom2 - 4*delta_n*s.mom3
+  s.mom3 += term1 * delta_n * (n - 2) - 3*delta_n*s.mom2
+  s.mom2 += term1
+  s.mom1 += delta_n
+
+proc push*(s: var RunningStat, x: int) =
+  ## pushes a value `x` for processing.
+  ##
+  ## `x` is simply converted to ``float``
+  ## and the other push operation is called.
+  s.push(toFloat(x))
+
+proc push*(s: var RunningStat, x: openarray[float|int]) =
+  ## pushes all values of `x` for processing.
+  ##
+  ## Int values of `x` are simply converted to ``float`` and
+  ## the other push operation is called.
+  for val in x:
+    s.push(val)
+
+proc mean*(s: RunningStat): float =
+  ## computes the current mean of `s`
+  result = s.mom1
+
+proc variance*(s: RunningStat): float =
+  ## computes the current population variance of `s`
+  result = s.mom2 / toFloat(s.n)
+
+proc varianceS*(s: RunningStat): float =
+  ## computes the current sample variance of `s`
+  if s.n > 1: result = s.mom2 / toFloat(s.n - 1)
+
+proc standardDeviation*(s: RunningStat): float =
+  ## computes the current population standard deviation of `s`
+  result = sqrt(variance(s))
+
+proc standardDeviationS*(s: RunningStat): float =
+  ## computes the current sample standard deviation of `s`
+  result = sqrt(varianceS(s))
+
+proc skewness*(s: RunningStat): float =
+  ## computes the current population skewness of `s`
+  result = sqrt(toFloat(s.n)) * s.mom3 / pow(s.mom2, 1.5)
+
+proc skewnessS*(s: RunningStat): float =
+  ## computes the current sample skewness of `s`
+  let s2 = skewness(s)
+  result = sqrt(toFloat(s.n*(s.n-1)))*s2 / toFloat(s.n-2)
+
+proc kurtosis*(s: RunningStat): float =
+  ## computes the current population kurtosis of `s`
+  result = toFloat(s.n) * s.mom4 / (s.mom2 * s.mom2) - 3.0
+
+proc kurtosisS*(s: RunningStat): float =
+  ## computes the current sample kurtosis of `s`
+  result = toFloat(s.n-1) / toFloat((s.n-2)*(s.n-3)) *
+              (toFloat(s.n+1)*kurtosis(s) + 6)
+
+proc `+`*(a, b: RunningStat): RunningStat =
+  ## combine two RunningStats.
+  ##
+  ## Useful if performing parallel analysis of data series
+  ## and need to re-combine parallel result sets
+  result.clear()
+  result.n = a.n + b.n
+
+  let delta = b.mom1 - a.mom1
+  let delta2 = delta*delta
+  let delta3 = delta*delta2
+  let delta4 = delta2*delta2
+  let n = toFloat(result.n)
+
+  result.mom1 = (a.n.float*a.mom1 + b.n.float*b.mom1) / n
+  result.mom2 = a.mom2 + b.mom2 + delta2 * a.n.float * b.n.float / n
+  result.mom3 = a.mom3 + b.mom3 +
+                delta3 * a.n.float * b.n.float * (a.n.float - b.n.float)/(n*n);
+  result.mom3 += 3.0*delta * (a.n.float*b.mom2 - b.n.float*a.mom2) / n
+  result.mom4 = a.mom4 + b.mom4 +
+            delta4*a.n.float*b.n.float * toFloat(a.n*a.n - a.n*b.n + b.n*b.n) /
+                (n*n*n)
+  result.mom4 += 6.0*delta2 * (a.n.float*a.n.float*b.mom2 + b.n.float*b.n.float*a.mom2) /
+                (n*n) +
+                4.0*delta*(a.n.float*b.mom3 - b.n.float*a.mom3) / n
+  result.max = max(a.max, b.max)
+  result.min = max(a.min, b.min)
+
+proc `+=`*(a: var RunningStat, b: RunningStat) {.inline.} =
+  ## add a second RunningStats `b` to `a`
+  a = a + b
+# ---------------------- standalone array/seq stats ---------------------
+proc mean*[T](x: openArray[T]): float =
+  ## computes the mean of `x`
+  var rs: RunningStat
+  rs.push(x)
+  result = rs.mean()
+
+proc variance*[T](x: openArray[T]): float =
+  ## computes the population variance of `x`
+  var rs: RunningStat
+  rs.push(x)
+  result = rs.variance()
+
+proc varianceS*[T](x: openArray[T]): float =
+  ## computes the sample variance of `x`
+  var rs: RunningStat
+  rs.push(x)
+  result = rs.varianceS()
+
+proc standardDeviation*[T](x: openArray[T]): float =
+  ## computes the population standardDeviation of `x`
+  var rs: RunningStat
+  rs.push(x)
+  result = rs.standardDeviation()
+
+proc standardDeviationS*[T](x: openArray[T]): float =
+  ## computes the sanple standardDeviation of `x`
+  var rs: RunningStat
+  rs.push(x)
+  result = rs.standardDeviationS()
+
+proc skewness*[T](x: openArray[T]): float =
+  ## computes the population skewness of `x`
+  var rs: RunningStat
+  rs.push(x)
+  result = rs.skewness()
+
+proc skewnessS*[T](x: openArray[T]): float =
+  ## computes the sample skewness of `x`
+  var rs: RunningStat
+  rs.push(x)
+  result = rs.skewnessS()
+
+proc kurtosis*[T](x: openArray[T]): float =
+  ## computes the population kurtosis of `x`
+  var rs: RunningStat
+  rs.push(x)
+  result = rs.kurtosis()
+
+proc kurtosisS*[T](x: openArray[T]): float =
+  ## computes the sample kurtosis of `x`
+  var rs: RunningStat
+  rs.push(x)
+  result = rs.kurtosisS()
+
+# ---------------------- Running Regression -----------------------------
+
+proc clear*(r: var RunningRegress) =
+  ## reset `r`
+  r.x_stats.clear()
+  r.y_stats.clear()
+  r.s_xy = 0.0
+  r.n = 0
+
+proc push*(r: var RunningRegress, x, y: float) =
+  ## pushes two values `x` and `y` for processing
+  r.s_xy += (r.x_stats.mean() - x)*(r.y_stats.mean() - y)*
+                toFloat(r.n) / toFloat(r.n + 1)
+  r.x_stats.push(x)
+  r.y_stats.push(y)
+  inc(r.n)
+
+proc push*(r: var RunningRegress, x, y: int) {.inline.} =
+  ## pushes two values `x` and `y` for processing.
+  ##
+  ## `x` and `y` are converted to ``float``
+  ## and the other push operation is called.
+  r.push(toFloat(x), toFloat(y))
+
+proc push*(r: var RunningRegress, x, y: openarray[float|int]) =
+  ## pushes two sets of values `x` and `y` for processing.
+  assert(x.len == y.len)
+  for i in 0..<x.len:
+    r.push(x[i], y[i])
+
+proc slope*(r: RunningRegress): float =
+  ## computes the current slope of `r`
+  let s_xx = r.x_stats.varianceS()*toFloat(r.n - 1)
+  result = r.s_xy / s_xx
+
+proc intercept*(r: RunningRegress): float =
+  ## computes the current intercept of `r`
+  result = r.y_stats.mean() - r.slope()*r.x_stats.mean()
+
+proc correlation*(r: RunningRegress): float =
+  ## computes the current correlation of the two data
+  ## sets pushed into `r`
+  let t = r.x_stats.standardDeviation() * r.y_stats.standardDeviation()
+  result = r.s_xy / ( toFloat(r.n) * t )
+
+proc `+`*(a, b: RunningRegress):  RunningRegress =
+  ## combine two `RunningRegress` objects.
+  ##
+  ## Useful if performing parallel analysis of data series
+  ## and need to re-combine parallel result sets
+  result.clear()
+  result.x_stats = a.x_stats + b.x_stats
+  result.y_stats = a.y_stats + b.y_stats
+  result.n = a.n + b.n
+
+  let delta_x = b.x_stats.mean() - a.x_stats.mean()
+  let delta_y = b.y_stats.mean() - a.y_stats.mean()
+  result.s_xy = a.s_xy + b.s_xy +
+      toFloat(a.n*b.n)*delta_x*delta_y/toFloat(result.n)
+
+proc `+=`*(a: var RunningRegress, b: RunningRegress) =
+  ## add RunningRegress `b` to `a`
+  a = a + b
+
+{.pop.}
+{.pop.}
+
+when isMainModule:
+  proc clean(x: float): float =
+    result = round(1.0e8*x).float * 1.0e-8
+
+  var rs: RunningStat
+  rs.push(@[1.0, 2.0, 1.0, 4.0, 1.0, 4.0, 1.0, 2.0])
+  doAssert(rs.n == 8)
+  doAssert(clean(rs.mean) == 2.0)
+  doAssert(clean(rs.variance()) == 1.5)
+  doAssert(clean(rs.varianceS()) == 1.71428571)
+  doAssert(clean(rs.skewness()) == 0.81649658)
+  doAssert(clean(rs.skewnessS()) == 1.01835015)
+  doAssert(clean(rs.kurtosis()) == -1.0)
+  doAssert(clean(rs.kurtosisS()) == -0.7000000000000001)
+
+  var rs1, rs2: RunningStat
+  rs1.push(@[1.0, 2.0, 1.0, 4.0])
+  rs2.push(@[1.0, 4.0, 1.0, 2.0])
+  let rs3 = rs1 + rs2
+  doAssert(clean(rs3.mom2) == clean(rs.mom2))
+  doAssert(clean(rs3.mom3) == clean(rs.mom3))
+  doAssert(clean(rs3.mom4) == clean(rs.mom4))
+  rs1 += rs2
+  doAssert(clean(rs1.mom2) == clean(rs.mom2))
+  doAssert(clean(rs1.mom3) == clean(rs.mom3))
+  doAssert(clean(rs1.mom4) == clean(rs.mom4))
+  rs1.clear()
+  rs1.push(@[1.0, 2.2, 1.4, 4.9])
+  doAssert(rs1.sum == 9.5)
+  doAssert(rs1.mean() == 2.375)
+
+  var rr: RunningRegress
+  rr.push(@[0.0,1.0,2.8,3.0,4.0], @[0.0,1.0,2.3,3.0,4.0])
+  doAssert(rr.slope() == 0.9695585996955861)
+  doAssert(rr.intercept() == -0.03424657534246611)
+  doAssert(rr.correlation() == 0.9905100362239381)
+  var rr1, rr2: RunningRegress
+  rr1.push(@[0.0,1.0], @[0.0,1.0])
+  rr2.push(@[2.8,3.0,4.0], @[2.3,3.0,4.0])
+  let rr3 = rr1 + rr2
+  doAssert(rr3.correlation() == rr.correlation())
+  doAssert(clean(rr3.slope()) == clean(rr.slope()))
+  doAssert(clean(rr3.intercept()) == clean(rr.intercept()))