summary refs log tree commit diff stats
path: root/lib/pure/times.nim
diff options
context:
space:
mode:
Diffstat (limited to 'lib/pure/times.nim')
0 files changed, 0 insertions, 0 deletions
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
d='n268' href='#n268'>268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
#
#
#            Nim's Runtime Library
#        (c) Copyright 2012 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## This module implements some common generic algorithms.

type
  SortOrder* = enum   ## sort order
    Descending, Ascending

{.deprecated: [TSortOrder: SortOrder].}


proc `*`*(x: int, order: SortOrder): int {.inline.} =
  ## flips `x` if ``order == Descending``;
  ## if ``order == Ascending`` then `x` is returned.
  ## `x` is supposed to be the result of a comparator, ie ``< 0`` for
  ## *less than*, ``== 0`` for *equal*, ``> 0`` for *greater than*.
  var y = order.ord - 1
  result = (x xor y) - y

proc reverse*[T](a: var openArray[T], first, last: Natural) =
  ## reverses the array ``a[first..last]``.
  var x = first
  var y = last
  while x < y:
    swap(a[x], a[y])
    dec(y)
    inc(x)

proc reverse*[T](a: var openArray[T]) =
  ## reverses the array `a`.
  reverse(a, 0, a.high)

proc reversed*[T](a: openArray[T], first, last: Natural): seq[T] =
  ## returns the reverse of the array `a[first..last]`.
  result = newSeq[T](last - first + 1)
  var x = first.int
  var y = last.int
  while x <= last:
    result[x] = a[y]
    dec(y)
    inc(x)

proc reversed*[T](a: openArray[T]): seq[T] =
  ## returns the reverse of the array `a`.
  reversed(a, 0, a.high)

proc binarySearch*[T](a: openArray[T], key: T): int =
  ## binary search for `key` in `a`. Returns -1 if not found.
  var b = len(a)
  while result < b:
    var mid = (result + b) div 2
    if a[mid] < key: result = mid + 1
    else: b = mid
  if result >= len(a) or a[result] != key: result = -1

proc smartBinarySearch*[T](a: openArray[T], key: T): int =
  ## ``a.len`` must be a power of 2 for this to work.
  var step = a.len div 2
  while step > 0:
    if a[result or step] <= key:
      result = result or step
    step = step shr 1
  if a[result] != key: result = -1

const
  onlySafeCode = true

proc lowerBound*[T](a: openArray[T], key: T, cmp: proc(x,y: T): int {.closure.}): int =
  ## same as binarySearch except that if key is not in `a` then this
  ## returns the location where `key` would be if it were. In other
  ## words if you have a sorted sequence and you call
  ## insert(thing, elm, lowerBound(thing, elm))
  ## the sequence will still be sorted.
  ##
  ## `cmp` is the comparator function to use, the expected return values are
  ## the same as that of system.cmp.
  ##
  ## example::
  ##
  ##   var arr = @[1,2,3,5,6,7,8,9]
  ##   arr.insert(4, arr.lowerBound(4))
  ## `after running the above arr is `[1,2,3,4,5,6,7,8,9]`
  result = a.low
  var pos = result
  var count, step: int
  count = a.high - a.low + 1
  while count != 0:
    pos = result
    step = count div 2
    pos += step
    if cmp(a[pos], key) < 0:
      pos.inc
      result = pos
      count -= step + 1
    else:
      count = step

proc lowerBound*[T](a: openArray[T], key: T): int = lowerBound(a, key, cmp[T])
proc merge[T](a, b: var openArray[T], lo, m, hi: int,
              cmp: proc (x, y: T): int {.closure.}, order: SortOrder) =
  template `<-` (a, b: expr) =
    when false:
      a = b
    elif onlySafeCode:
      shallowCopy(a, b)
    else:
      copyMem(addr(a), addr(b), sizeof(T))
  # optimization: If max(left) <= min(right) there is nothing to do!
  # 1 2 3 4  ## 5 6 7 8
  # -> O(n) for sorted arrays.
  # On random data this safes up to 40% of merge calls
  if cmp(a[m], a[m+1]) * order <= 0: return
  var j = lo
  # copy a[j..m] into b:
  assert j <= m
  when onlySafeCode:
    var bb = 0
    while j <= m:
      b[bb] <- a[j]
      inc(bb)
      inc(j)
  else:
    copyMem(addr(b[0]), addr(a[j]), sizeof(T)*(m-j+1))
    j = m+1
  var i = 0
  var k = lo
  # copy proper element back:
  while k < j and j <= hi:
    if cmp(b[i], a[j]) * order <= 0:
      a[k] <- b[i]
      inc(i)
    else:
      a[k] <- a[j]
      inc(j)
    inc(k)
  # copy rest of b:
  when onlySafeCode:
    while k < j:
      a[k] <- b[i]
      inc(k)
      inc(i)
  else:
    if k < j: copyMem(addr(a[k]), addr(b[i]), sizeof(T)*(j-k))

proc sort*[T](a: var openArray[T],
              cmp: proc (x, y: T): int {.closure.},
              order = SortOrder.Ascending) =
  ## Default Nim sort. The sorting is guaranteed to be stable and
  ## the worst case is guaranteed to be O(n log n).
  ## The current implementation uses an iterative
  ## mergesort to achieve this. It uses a temporary sequence of
  ## length ``a.len div 2``. Currently Nim does not support a
  ## sensible default argument for ``cmp``, so you have to provide one
  ## of your own. However, the ``system.cmp`` procs can be used:
  ##
  ## .. code-block:: nim
  ##
  ##    sort(myIntArray, system.cmp[int])
  ##
  ##    # do not use cmp[string] here as we want to use the specialized
  ##    # overload:
  ##    sort(myStrArray, system.cmp)
  ##
  ## You can inline adhoc comparison procs with the `do notation
  ## <manual.html#do-notation>`_. Example:
  ##
  ## .. code-block:: nim
  ##
  ##   people.sort do (x, y: Person) -> int:
  ##     result = cmp(x.surname, y.surname)
  ##     if result == 0:
  ##       result = cmp(x.name, y.name)
  var n = a.len
  var b: seq[T]
  newSeq(b, n div 2)
  var s = 1
  while s < n:
    var m = n-1-s
    while m >= 0:
      merge(a, b, max(m-s+1, 0), m, m+s, cmp, order)
      dec(m, s*2)
    s = s*2

proc sorted*[T](a: openArray[T], cmp: proc(x, y: T): int {.closure.},
                order = SortOrder.Ascending): seq[T] =
  ## returns `a` sorted by `cmp` in the specified `order`.
  result = newSeq[T](a.len)
  for i in 0 .. a.high:
    result[i] = a[i]
  sort(result, cmp, order)

template sortedByIt*(seq1, op: expr): expr =
  ## Convenience template around the ``sorted`` proc to reduce typing.
  ##
  ## The template injects the ``it`` variable which you can use directly in an
  ## expression. Example:
  ##
  ## .. code-block:: nim
  ##
  ##   type Person = tuple[name: string, age: int]
  ##   var
  ##     p1: Person = (name: "p1", age: 60)
  ##     p2: Person = (name: "p2", age: 20)
  ##     p3: Person = (name: "p3", age: 30)
  ##     p4: Person = (name: "p4", age: 30)
  ##     people = @[p1,p2,p4,p3]
  ##
  ##   echo people.sortedByIt(it.name)
  ##
  ## Because the underlying ``cmp()`` is defined for tuples you can do
  ## a nested sort like in the following example:
  ##
  ## .. code-block:: nim
  ##
  ##   echo people.sortedByIt((it.age, it.name))
  ##
  var result {.gensym.} = sorted(seq1, proc(x, y: type(seq1[0])): int =
    var it {.inject.} = x
    let a = op
    it = y
    let b = op
    result = cmp(a, b))
  result

proc product*[T](x: openArray[seq[T]]): seq[seq[T]] =
  ## produces the Cartesian product of the array. Warning: complexity
  ## may explode.
  result = @[]
  if x.len == 0:
    return
  if x.len == 1:
    result = @x
    return
  var
    indexes = newSeq[int](x.len)
    initial = newSeq[int](x.len)
    index = 0
  # replace with newSeq as soon as #853 is fixed
  var next: seq[T] = @[]
  next.setLen(x.len)
  for i in 0..(x.len-1):
    if len(x[i]) == 0: return
    initial[i] = len(x[i])-1
  indexes = initial
  while true:
    while indexes[index] == -1:
      indexes[index] = initial[index]
      index += 1
      if index == x.len: return
      indexes[index] -= 1
    for ni, i in indexes:
      next[ni] = x[ni][i]
    var res: seq[T]
    shallowCopy(res, next)
    result.add(res)
    index = 0
    indexes[index] -= 1

proc nextPermutation*[T](x: var openarray[T]): bool {.discardable.} =
  ## Calculates the next lexicographic permutation, directly modifying ``x``.
  ## The result is whether a permutation happened, otherwise we have reached
  ## the last-ordered permutation.
  ##
  ## .. code-block:: nim
  ##
  ##     var v = @[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
  ##     v.nextPermutation()
  ##     echo v
  if x.len < 2:
    return false

  var i = x.high
  while i > 0 and x[i-1] >= x[i]:
    dec i

  if i == 0:
    return false

  var j = x.high
  while j >= i and x[j] <= x[i-1]:
    dec j

  swap x[j], x[i-1]
  x.reverse(i, x.high)

  result = true

proc prevPermutation*[T](x: var openarray[T]): bool {.discardable.} =
  ## Calculates the previous lexicographic permutation, directly modifying
  ## ``x``.  The result is whether a permutation happened, otherwise we have
  ## reached the first-ordered permutation.
  ##
  ## .. code-block:: nim
  ##
  ##     var v = @[0, 1, 2, 3, 4, 5, 6, 7, 9, 8]
  ##     v.prevPermutation()
  ##     echo v
  if x.len < 2:
    return false

  var i = x.high
  while i > 0 and x[i-1] <= x[i]:
    dec i

  if i == 0:
    return false

  x.reverse(i, x.high)

  var j = x.high
  while j >= i and x[j-1] < x[i-1]:
    dec j

  swap x[i-1], x[j]

  result = true