summary refs log tree commit diff stats
path: root/lib/pure
diff options
context:
space:
mode:
Diffstat (limited to 'lib/pure')
-rw-r--r--lib/pure/collections/queues.nim217
1 files changed, 184 insertions, 33 deletions
diff --git a/lib/pure/collections/queues.nim b/lib/pure/collections/queues.nim
index b9bf33bff..911816518 100644
--- a/lib/pure/collections/queues.nim
+++ b/lib/pure/collections/queues.nim
@@ -8,56 +8,142 @@
 #
 
 ## Implementation of a `queue`:idx:. The underlying implementation uses a ``seq``.
+##
+## None of the procs that get an individual value from the queue can be used
+## on an empty queue.
+## If compiled with `boundChecks` option, those procs will raise an `IndexError`
+## on such access. This should not be relied upon, as `-d:release` will
+## disable those checks and may return garbage or crash the program.
+##
+## As such, a check to see if the queue is empty is needed before any
+## access, unless your program logic guarantees it indirectly.
+##
+## .. code-block:: Nim
+##   proc foo(a, b: Positive) =  # assume random positive values for `a` and `b`
+##     var q = initQueue[int]()  # initializes the object
+##     for i in 1 ..< a: q.add i  # populates the queue
+##
+##     if b < q.len:  # checking before indexed access
+##       echo "The element at index position ", b, " is ", q[b]
+##
+##     # The following two lines don't need any checking on access due to the
+##     # logic of the program, but that would not be the case if `a` could be 0.
+##     assert q.front == 1
+##     assert q.back == a
+##
+##     while q.len > 0:  # checking if the queue is empty
+##       echo q.pop()
+##
 ## Note: For inter thread communication use
 ## a `Channel <channels.html>`_ instead.
 
 import math
 
 type
-  Queue*[T] = object ## a queue
+  Queue*[T] = object ## A queue.
     data: seq[T]
     rd, wr, count, mask: int
 
 {.deprecated: [TQueue: Queue].}
 
-proc initQueue*[T](initialSize=4): Queue[T] =
-  ## creates a new queue. `initialSize` needs to be a power of 2.
+proc initQueue*[T](initialSize: int = 4): Queue[T] =
+  ## Create a new queue.
+  ## Optionally, the initial capacity can be reserved via `initialSize` as a
+  ## performance optimization. The length of a newly created queue will still
+  ## be 0.
+  ##
+  ## `initialSize` needs to be a power of two. If you need to accept runtime
+  ## values for this you could use the ``nextPowerOfTwo`` proc from the
+  ## `math <math.html>`_ module.
   assert isPowerOfTwo(initialSize)
   result.mask = initialSize-1
   newSeq(result.data, initialSize)
 
-proc len*[T](q: Queue[T]): int =
-  ## returns the number of elements of `q`.
+proc len*[T](q: Queue[T]): int {.inline.}=
+  ## Return the number of elements of `q`.
   result = q.count
 
+template emptyCheck(q) =
+  # Bounds check for the regular queue access.
+  when compileOption("boundChecks"):
+    if unlikely(q.count < 1):
+      raise newException(IndexError, "Empty queue.")
+
+template xBoundsCheck(q, i) =
+  # Bounds check for the array like accesses.
+  when compileOption("boundChecks"):  # d:release should disable this.
+    if unlikely(i >= q.count):  # x < q.low is taken care by the Natural parameter
+      raise newException(IndexError,
+                         "Out of bounds: " & $i & " > " & $(q.count - 1))
+
+proc front*[T](q: Queue[T]): T {.inline.}=
+  ## Return the oldest element of `q`. Equivalent to `q.pop()` but does not
+  ## remove it from the queue.
+  emptyCheck(q)
+  result = q.data[q.rd]
+
+proc back*[T](q: Queue[T]): T {.inline.} =
+  ## Return the newest element of `q` but does not remove it from the queue.
+  emptyCheck(q)
+  result = q.data[q.wr - 1 and q.mask]
+
+proc `[]`*[T](q: Queue[T], i: Natural) : T {.inline.} =
+  ## Access the i-th element of `q` by order of insertion.
+  ## q[0] is the oldest (the next one q.pop() will extract),
+  ## q[^1] is the newest (last one added to the queue).
+  xBoundsCheck(q, i)
+  return q.data[q.rd + i and q.mask]
+
+proc `[]`*[T](q: var Queue[T], i: Natural): var T {.inline.} =
+  ## Access the i-th element of `q` and returns a mutable
+  ## reference to it.
+  xBoundsCheck(q, i)
+  return q.data[q.rd + i and q.mask]
+
+proc `[]=`* [T] (q: var Queue[T], i: Natural, val : T) {.inline.} =
+  ## Change the i-th element of `q`.
+  xBoundsCheck(q, i)
+  q.data[q.rd + i and q.mask] = val
+
 iterator items*[T](q: Queue[T]): T =
-  ## yields every element of `q`.
+  ## Yield every element of `q`.
   var i = q.rd
-  var c = q.count
-  while c > 0:
-    dec c
+  for c in 0 ..< q.count:
     yield q.data[i]
     i = (i + 1) and q.mask
 
 iterator mitems*[T](q: var Queue[T]): var T =
-  ## yields every element of `q`.
+  ## Yield every element of `q`.
   var i = q.rd
-  var c = q.count
-  while c > 0:
-    dec c
+  for c in 0 ..< q.count:
     yield q.data[i]
     i = (i + 1) and q.mask
 
+iterator pairs*[T](q: Queue[T]): tuple[key: int, val: T] =
+  ## Yield every (position, value) of `q`.
+  var i = q.rd
+  for c in 0 ..< q.count:
+    yield (c, q.data[i])
+    i = (i + 1) and q.mask
+
+proc contains*[T](q: Queue[T], item: T): bool {.inline.} =
+  ## Return true if `item` is in `q` or false if not found. Usually used
+  ## via the ``in`` operator. It is the equivalent of ``q.find(item) >= 0``.
+  ##
+  ## .. code-block:: Nim
+  ##   if x in q:
+  ##     assert q.contains x
+  for e in q:
+    if e == item: return true
+  return false
+
 proc add*[T](q: var Queue[T], item: T) =
-  ## adds an `item` to the end of the queue `q`.
+  ## Add an `item` to the end of the queue `q`.
   var cap = q.mask+1
-  if q.count >= cap:
-    var n: seq[T]
-    newSeq(n, cap*2)
-    var i = 0
-    for x in items(q):
+  if unlikely(q.count >= cap):
+    var n = newSeq[T](cap*2)
+    for i, x in q:  # don't use copyMem because the GC and because it's slower.
       shallowCopy(n[i], x)
-      inc i
     shallowCopy(q.data, n)
     q.mask = cap*2 - 1
     q.wr = q.count
@@ -66,37 +152,102 @@ proc add*[T](q: var Queue[T], item: T) =
   q.data[q.wr] = item
   q.wr = (q.wr + 1) and q.mask
 
-proc enqueue*[T](q: var Queue[T], item: T) =
-  ## alias for the ``add`` operation.
-  add(q, item)
-
-proc dequeue*[T](q: var Queue[T]): T =
-  ## removes and returns the first element of the queue `q`.
-  assert q.count > 0
+proc pop*[T](q: var Queue[T]): T {.inline, discardable.} =
+  ## Remove and returns the first (oldest) element of the queue `q`.
+  emptyCheck(q)
   dec q.count
   result = q.data[q.rd]
   q.rd = (q.rd + 1) and q.mask
 
+proc enqueue*[T](q: var Queue[T], item: T) =
+  ## Alias for the ``add`` operation.
+  q.add(item)
+
+proc dequeue*[T](q: var Queue[T]): T =
+  ## Alias for the ``pop`` operation.
+  q.pop()
+
 proc `$`*[T](q: Queue[T]): string =
-  ## turns a queue into its string representation.
+  ## Turn a queue into its string representation.
   result = "["
-  for x in items(q):
+  for x in items(q):  # Don't remove the items here for reasons that don't fit in this margin.
     if result.len > 1: result.add(", ")
     result.add($x)
   result.add("]")
 
 when isMainModule:
-  var q = initQueue[int]()
+  var q = initQueue[int](1)
   q.add(123)
   q.add(9)
-  q.add(4)
-  var first = q.dequeue
+  q.enqueue(4)
+  var first = q.dequeue()
   q.add(56)
   q.add(6)
-  var second = q.dequeue
+  var second = q.pop()
   q.add(789)
 
   assert first == 123
   assert second == 9
   assert($q == "[4, 56, 6, 789]")
 
+  assert q[0] == q.front and q.front == 4
+  assert q[^1] == q.back and q.back == 789
+  q[0] = 42
+  q[^1] = 7
+
+  assert 6 in q and 789 notin q
+  assert q.find(6) >= 0
+  assert q.find(789) < 0
+
+  for i in -2 .. 10:
+    if i in q:
+      assert q.contains(i) and q.find(i) >= 0
+    else:
+      assert(not q.contains(i) and q.find(i) < 0)
+
+  when compileOption("boundChecks"):
+    try:
+      echo q[99]
+      assert false
+    except IndexError:
+      discard
+
+    try:
+      assert q.len == 4
+      for i in 0 ..< 5: q.pop()
+      assert false
+    except IndexError:
+      discard
+
+  # grabs some types of resize error.
+  q = initQueue[int]()
+  for i in 1 .. 4: q.add i
+  q.pop()
+  q.pop()
+  for i in 5 .. 8: q.add i
+  assert $q == "[3, 4, 5, 6, 7, 8]"
+
+  # Similar to proc from the documentation example
+  proc foo(a, b: Positive) = # assume random positive values for `a` and `b`.
+    var q = initQueue[int]()
+    assert q.len == 0
+    for i in 1 .. a: q.add i
+
+    if b < q.len: # checking before indexed access.
+      assert q[b] == b + 1
+
+    # The following two lines don't need any checking on access due to the logic
+    # of the program, but that would not be the case if `a` could be 0.
+    assert q.front == 1
+    assert q.back == a
+
+    while q.len > 0: # checking if the queue is empty
+      assert q.pop() > 0
+
+  #foo(0,0)
+  foo(8,5)
+  foo(10,9)
+  foo(1,1)
+  foo(2,1)
+  foo(1,5)
+  foo(3,2)