diff options
Diffstat (limited to 'lib/std/channels.nim')
-rw-r--r-- | lib/std/channels.nim | 498 |
1 files changed, 0 insertions, 498 deletions
diff --git a/lib/std/channels.nim b/lib/std/channels.nim deleted file mode 100644 index 3bbc8a6b6..000000000 --- a/lib/std/channels.nim +++ /dev/null @@ -1,498 +0,0 @@ -# -# -# The Nim Compiler -# (c) Copyright 2021 Andreas Prell, Mamy André-Ratsimbazafy & Nim Contributors -# -# See the file "copying.txt", included in this -# distribution, for details about the copyright. -# - - -# Based on https://github.com/mratsim/weave/blob/5696d94e6358711e840f8c0b7c684fcc5cbd4472/unused/channels/channels_legacy.nim -# Those are translations of @aprell (Andreas Prell) original channels from C to Nim -# (https://github.com/aprell/tasking-2.0/blob/master/src/channel_shm/channel.c) -# And in turn they are an implementation of Michael & Scott lock-based queues -# (note the paper has 2 channels: lock-free and lock-based) with additional caching: -# Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue Algorithms -# Maged M. Michael, Michael L. Scott, 1996 -# https://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf - -## This module only works with `--gc:arc` or `--gc:orc`. -## -## .. warning:: This module is experimental and its interface may change. -## -## The following is a simple example of two different ways to use channels: -## blocking and non-blocking. -## - -runnableExamples("--threads:on --gc:orc"): - import std/os - - # In this example a channel is declared at module scope. - # Channels are generic, and they include support for passing objects between - # threads. - # Note that isolated data passed through channels is moved around. - var chan = newChannel[string]() - - # This proc will be run in another thread using the threads module. - proc firstWorker() = - chan.send("Hello World!") - - # This is another proc to run in a background thread. This proc takes a while - # to send the message since it sleeps for 2 seconds (or 2000 milliseconds). - proc secondWorker() = - sleep(2000) - chan.send("Another message") - - # Launch the worker. - var worker1: Thread[void] - createThread(worker1, firstWorker) - - # Block until the message arrives, then print it out. - let dest = chan.recv() - assert dest == "Hello World!" - - # Wait for the thread to exit before moving on to the next example. - worker1.joinThread() - - # Launch the other worker. - var worker2: Thread[void] - createThread(worker2, secondWorker) - # This time, use a non-blocking approach with tryRecv. - # Since the main thread is not blocked, it could be used to perform other - # useful work while it waits for data to arrive on the channel. - var messages: seq[string] - while true: - var msg = "" - if chan.tryRecv(msg): - messages.add msg # "Another message" - break - - messages.add "Pretend I'm doing useful work..." - # For this example, sleep in order not to flood stdout with the above - # message. - sleep(400) - - # Wait for the second thread to exit before cleaning up the channel. - worker2.joinThread() - - # Clean up the channel. - assert chan.close() - - assert messages[^1] == "Another message" - assert messages.len >= 2 - - -when not defined(gcArc) and not defined(gcOrc) and not defined(nimdoc): - {.error: "This channel implementation requires --gc:arc or --gc:orc".} - -import std/[locks, atomics, isolation] -import system/ansi_c - -# Channel (Shared memory channels) -# ---------------------------------------------------------------------------------- - -const - cacheLineSize {.intdefine.} = 64 # TODO: some Samsung phone have 128 cache-line - nimChannelCacheSize* {.intdefine.} = 100 - -type - ChannelRaw = ptr ChannelObj - ChannelObj = object - headLock, tailLock: Lock - notFullCond, notEmptyCond: Cond - closed: Atomic[bool] - size: int - itemsize: int # up to itemsize bytes can be exchanged over this channel - head {.align: cacheLineSize.} : int # Items are taken from head and new items are inserted at tail - tail: int - buffer: ptr UncheckedArray[byte] - atomicCounter: Atomic[int] - - ChannelCache = ptr ChannelCacheObj - ChannelCacheObj = object - next: ChannelCache - chanSize: int - chanN: int - numCached: int - cache: array[nimChannelCacheSize, ChannelRaw] - -# ---------------------------------------------------------------------------------- - -proc numItems(chan: ChannelRaw): int {.inline.} = - result = chan.tail - chan.head - if result < 0: - inc(result, 2 * chan.size) - - assert result <= chan.size - -template isFull(chan: ChannelRaw): bool = - abs(chan.tail - chan.head) == chan.size - -template isEmpty(chan: ChannelRaw): bool = - chan.head == chan.tail - -# Unbuffered / synchronous channels -# ---------------------------------------------------------------------------------- - -template numItemsUnbuf(chan: ChannelRaw): int = - chan.head - -template isFullUnbuf(chan: ChannelRaw): bool = - chan.head == 1 - -template isEmptyUnbuf(chan: ChannelRaw): bool = - chan.head == 0 - -# ChannelRaw kinds -# ---------------------------------------------------------------------------------- - -func isUnbuffered(chan: ChannelRaw): bool = - chan.size - 1 == 0 - -# ChannelRaw status and properties -# ---------------------------------------------------------------------------------- - -proc isClosed(chan: ChannelRaw): bool {.inline.} = load(chan.closed, moRelaxed) - -proc peek(chan: ChannelRaw): int {.inline.} = - (if chan.isUnbuffered: numItemsUnbuf(chan) else: numItems(chan)) - -# Per-thread channel cache -# ---------------------------------------------------------------------------------- - -var channelCache {.threadvar.}: ChannelCache -var channelCacheLen {.threadvar.}: int - -proc allocChannelCache(size, n: int): bool = - ## Allocate a free list for storing channels of a given type - var p = channelCache - - # Avoid multiple free lists for the exact same type of channel - while not p.isNil: - if size == p.chanSize and n == p.chanN: - return false - p = p.next - - p = cast[ptr ChannelCacheObj](c_malloc(csize_t sizeof(ChannelCacheObj))) - if p.isNil: - raise newException(OutOfMemDefect, "Could not allocate memory") - - p.chanSize = size - p.chanN = n - p.numCached = 0 - - p.next = channelCache - channelCache = p - inc channelCacheLen - result = true - -proc freeChannelCache*() = - ## Frees the entire channel cache, including all channels - var p = channelCache - var q: ChannelCache - - while not p.isNil: - q = p.next - for i in 0 ..< p.numCached: - let chan = p.cache[i] - if not chan.buffer.isNil: - c_free(chan.buffer) - deinitLock(chan.headLock) - deinitLock(chan.tailLock) - deinitCond(chan.notFullCond) - deinitCond(chan.notEmptyCond) - c_free(chan) - c_free(p) - dec channelCacheLen - p = q - - assert(channelCacheLen == 0) - channelCache = nil - -# Channels memory ops -# ---------------------------------------------------------------------------------- - -proc allocChannel(size, n: int): ChannelRaw = - when nimChannelCacheSize > 0: - var p = channelCache - - while not p.isNil: - if size == p.chanSize and n == p.chanN: - # Check if free list contains channel - if p.numCached > 0: - dec p.numCached - result = p.cache[p.numCached] - assert(result.isEmpty) - return - else: - # All the other lists in cache won't match - break - p = p.next - - result = cast[ChannelRaw](c_malloc(csize_t sizeof(ChannelObj))) - if result.isNil: - raise newException(OutOfMemDefect, "Could not allocate memory") - - # To buffer n items, we allocate for n - result.buffer = cast[ptr UncheckedArray[byte]](c_malloc(csize_t n*size)) - if result.buffer.isNil: - raise newException(OutOfMemDefect, "Could not allocate memory") - - initLock(result.headLock) - initLock(result.tailLock) - initCond(result.notFullCond) - initCond(result.notEmptyCond) - - result.closed.store(false, moRelaxed) # We don't need atomic here, how to? - result.size = n - result.itemsize = size - result.head = 0 - result.tail = 0 - result.atomicCounter.store(0, moRelaxed) - - when nimChannelCacheSize > 0: - # Allocate a cache as well if one of the proper size doesn't exist - discard allocChannelCache(size, n) - -proc freeChannel(chan: ChannelRaw) = - if chan.isNil: - return - - when nimChannelCacheSize > 0: - var p = channelCache - while not p.isNil: - if chan.itemsize == p.chanSize and - chan.size == p.chanN: - if p.numCached < nimChannelCacheSize: - # If space left in cache, cache it - p.cache[p.numCached] = chan - inc p.numCached - return - else: - # All the other lists in cache won't match - break - p = p.next - - if not chan.buffer.isNil: - c_free(chan.buffer) - - deinitLock(chan.headLock) - deinitLock(chan.tailLock) - deinitCond(chan.notFullCond) - deinitCond(chan.notEmptyCond) - - c_free(chan) - -# MPMC Channels (Multi-Producer Multi-Consumer) -# ---------------------------------------------------------------------------------- - -proc sendUnbufferedMpmc(chan: ChannelRaw, data: sink pointer, size: int, nonBlocking: bool): bool = - if nonBlocking and chan.isFullUnbuf: - return false - - acquire(chan.headLock) - - if nonBlocking and chan.isFullUnbuf: - # Another thread was faster - release(chan.headLock) - return false - - while chan.isFullUnbuf: - wait(chan.notFullcond, chan.headLock) - - assert chan.isEmptyUnbuf - assert size <= chan.itemsize - copyMem(chan.buffer, data, size) - - chan.head = 1 - - release(chan.headLock) - signal(chan.notEmptyCond) - result = true - -proc sendMpmc(chan: ChannelRaw, data: sink pointer, size: int, nonBlocking: bool): bool = - assert not chan.isNil - assert not data.isNil - - if isUnbuffered(chan): - return sendUnbufferedMpmc(chan, data, size, nonBlocking) - - if nonBlocking and chan.isFull: - return false - - acquire(chan.tailLock) - - if nonBlocking and chan.isFull: - # Another thread was faster - release(chan.tailLock) - return false - - while chan.isFull: - wait(chan.notFullcond, chan.tailLock) - - assert not chan.isFull - assert size <= chan.itemsize - - let writeIdx = if chan.tail < chan.size: chan.tail - else: chan.tail - chan.size - - copyMem(chan.buffer[writeIdx * chan.itemsize].addr, data, size) - - inc chan.tail - if chan.tail == 2 * chan.size: - chan.tail = 0 - - release(chan.tailLock) - signal(chan.notEmptyCond) - result = true - -proc recvUnbufferedMpmc(chan: ChannelRaw, data: pointer, size: int, nonBlocking: bool): bool = - if nonBlocking and chan.isEmptyUnbuf: - return false - - acquire(chan.headLock) - - if nonBlocking and chan.isEmptyUnbuf: - # Another thread was faster - release(chan.headLock) - return false - - while chan.isEmptyUnbuf: - wait(chan.notEmptyCond, chan.headLock) - - assert chan.isFullUnbuf - assert size <= chan.itemsize - - copyMem(data, chan.buffer, size) - - chan.head = 0 - - release(chan.headLock) - signal(chan.notFullCond) - result = true - -proc recvMpmc(chan: ChannelRaw, data: pointer, size: int, nonBlocking: bool): bool = - assert not chan.isNil - assert not data.isNil - - if isUnbuffered(chan): - return recvUnbufferedMpmc(chan, data, size, nonBlocking) - - if nonBlocking and chan.isEmpty: - return false - - acquire(chan.headLock) - - if nonBlocking and chan.isEmpty: - # Another thread took the last data - release(chan.headLock) - return false - - while chan.isEmpty: - wait(chan.notEmptyCond, chan.headLock) - - assert not chan.isEmpty - assert size <= chan.itemsize - - let readIdx = if chan.head < chan.size: chan.head - else: chan.head - chan.size - - copyMem(data, chan.buffer[readIdx * chan.itemsize].addr, size) - - inc chan.head - if chan.head == 2 * chan.size: - chan.head = 0 - - release(chan.headLock) - signal(chan.notFullCond) - result = true - -proc channelCloseMpmc(chan: ChannelRaw): bool = - # Unsynchronized - - if chan.isClosed: - # ChannelRaw already closed - return false - - store(chan.closed, true, moRelaxed) - result = true - -proc channelOpenMpmc(chan: ChannelRaw): bool = - # Unsynchronized - - if not chan.isClosed: - # ChannelRaw already open - return false - - store(chan.closed, false, moRelaxed) - result = true - -# Public API -# ---------------------------------------------------------------------------------- - -type - Channel*[T] = object ## Typed channels - d: ChannelRaw - -proc `=destroy`*[T](c: var Channel[T]) = - if c.d != nil: - if load(c.d.atomicCounter, moAcquire) == 0: - if c.d.buffer != nil: - freeChannel(c.d) - else: - atomicDec(c.d.atomicCounter) - -proc `=`*[T](dest: var Channel[T], src: Channel[T]) = - ## Shares `Channel` by reference counting. - if src.d != nil: - atomicInc(src.d.atomicCounter) - - if dest.d != nil: - `=destroy`(dest) - dest.d = src.d - -func trySend*[T](c: Channel[T], src: var Isolated[T]): bool {.inline.} = - ## Sends item to the channel(non blocking). - var data = src.extract - result = sendMpmc(c.d, data.addr, sizeof(T), true) - if result: - wasMoved(data) - -template trySend*[T](c: Channel[T], src: T): bool = - ## Helper templates for `trySend`. - trySend(c, isolate(src)) - -func tryRecv*[T](c: Channel[T], dst: var T): bool {.inline.} = - ## Receives item from the channel(non blocking). - recvMpmc(c.d, dst.addr, sizeof(T), true) - -func send*[T](c: Channel[T], src: sink Isolated[T]) {.inline.} = - ## Sends item to the channel(blocking). - var data = src.extract - discard sendMpmc(c.d, data.addr, sizeof(T), false) - wasMoved(data) - -template send*[T](c: Channel[T]; src: T) = - ## Helper templates for `send`. - send(c, isolate(src)) - -func recv*[T](c: Channel[T]): T {.inline.} = - ## Receives item from the channel(blocking). - discard recvMpmc(c.d, result.addr, sizeof(result), false) - -func open*[T](c: Channel[T]): bool {.inline.} = - result = c.d.channelOpenMpmc() - -func close*[T](c: Channel[T]): bool {.inline.} = - result = c.d.channelCloseMpmc() - -func peek*[T](c: Channel[T]): int {.inline.} = peek(c.d) - -proc newChannel*[T](elements = 30): Channel[T] = - ## Returns a new `Channel`. `elements` should be positive. - ## `elements` is used to specify whether a channel is buffered or not. - ## If `elements` = 1, the channel is unbuffered. If `elements` > 1, the - ## channel is buffered. - assert elements >= 1, "Elements must be positive!" - result = Channel[T](d: allocChannel(sizeof(T), elements)) |