summary refs log tree commit diff stats
path: root/lib/std/channels.nim
diff options
context:
space:
mode:
Diffstat (limited to 'lib/std/channels.nim')
-rw-r--r--lib/std/channels.nim498
1 files changed, 0 insertions, 498 deletions
diff --git a/lib/std/channels.nim b/lib/std/channels.nim
deleted file mode 100644
index 3bbc8a6b6..000000000
--- a/lib/std/channels.nim
+++ /dev/null
@@ -1,498 +0,0 @@
-#
-#
-#           The Nim Compiler
-#        (c) Copyright 2021 Andreas Prell, Mamy André-Ratsimbazafy & Nim Contributors
-#
-#    See the file "copying.txt", included in this
-#    distribution, for details about the copyright.
-#
-
-
-# Based on https://github.com/mratsim/weave/blob/5696d94e6358711e840f8c0b7c684fcc5cbd4472/unused/channels/channels_legacy.nim
-# Those are translations of @aprell (Andreas Prell) original channels from C to Nim
-# (https://github.com/aprell/tasking-2.0/blob/master/src/channel_shm/channel.c)
-# And in turn they are an implementation of Michael & Scott lock-based queues
-# (note the paper has 2 channels: lock-free and lock-based) with additional caching:
-# Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue Algorithms
-# Maged M. Michael, Michael L. Scott, 1996
-# https://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf
-
-## This module only works with `--gc:arc` or `--gc:orc`.
-##
-## .. warning:: This module is experimental and its interface may change.
-##
-## The following is a simple example of two different ways to use channels:
-## blocking and non-blocking.
-## 
-
-runnableExamples("--threads:on --gc:orc"):
-  import std/os
-
-  # In this example a channel is declared at module scope.
-  # Channels are generic, and they include support for passing objects between
-  # threads.
-  # Note that isolated data passed through channels is moved around.
-  var chan = newChannel[string]()
-
-  # This proc will be run in another thread using the threads module.
-  proc firstWorker() =
-    chan.send("Hello World!")
-
-  # This is another proc to run in a background thread. This proc takes a while
-  # to send the message since it sleeps for 2 seconds (or 2000 milliseconds).
-  proc secondWorker() =
-    sleep(2000)
-    chan.send("Another message")
-
-  # Launch the worker.
-  var worker1: Thread[void]
-  createThread(worker1, firstWorker)
-
-  # Block until the message arrives, then print it out.
-  let dest = chan.recv()
-  assert dest == "Hello World!"
-
-  # Wait for the thread to exit before moving on to the next example.
-  worker1.joinThread()
-
-  # Launch the other worker.
-  var worker2: Thread[void]
-  createThread(worker2, secondWorker)
-  # This time, use a non-blocking approach with tryRecv.
-  # Since the main thread is not blocked, it could be used to perform other
-  # useful work while it waits for data to arrive on the channel.
-  var messages: seq[string]
-  while true:
-    var msg = ""
-    if chan.tryRecv(msg):
-      messages.add msg # "Another message"
-      break
-
-    messages.add "Pretend I'm doing useful work..."
-    # For this example, sleep in order not to flood stdout with the above
-    # message.
-    sleep(400)
-
-  # Wait for the second thread to exit before cleaning up the channel.
-  worker2.joinThread()
-
-  # Clean up the channel.
-  assert chan.close()
-
-  assert messages[^1] == "Another message"
-  assert messages.len >= 2
-
-
-when not defined(gcArc) and not defined(gcOrc) and not defined(nimdoc):
-  {.error: "This channel implementation requires --gc:arc or --gc:orc".}
-
-import std/[locks, atomics, isolation]
-import system/ansi_c
-
-# Channel (Shared memory channels)
-# ----------------------------------------------------------------------------------
-
-const
-  cacheLineSize {.intdefine.} = 64 # TODO: some Samsung phone have 128 cache-line
-  nimChannelCacheSize* {.intdefine.} = 100
-
-type
-  ChannelRaw = ptr ChannelObj
-  ChannelObj = object
-    headLock, tailLock: Lock
-    notFullCond, notEmptyCond: Cond
-    closed: Atomic[bool]
-    size: int
-    itemsize: int # up to itemsize bytes can be exchanged over this channel
-    head {.align: cacheLineSize.} : int     # Items are taken from head and new items are inserted at tail
-    tail: int
-    buffer: ptr UncheckedArray[byte]
-    atomicCounter: Atomic[int]
-
-  ChannelCache = ptr ChannelCacheObj
-  ChannelCacheObj = object
-    next: ChannelCache
-    chanSize: int
-    chanN: int
-    numCached: int
-    cache: array[nimChannelCacheSize, ChannelRaw]
-
-# ----------------------------------------------------------------------------------
-
-proc numItems(chan: ChannelRaw): int {.inline.} =
-  result = chan.tail - chan.head
-  if result < 0:
-    inc(result, 2 * chan.size)
-
-  assert result <= chan.size
-
-template isFull(chan: ChannelRaw): bool =
-  abs(chan.tail - chan.head) == chan.size
-
-template isEmpty(chan: ChannelRaw): bool =
-  chan.head == chan.tail
-
-# Unbuffered / synchronous channels
-# ----------------------------------------------------------------------------------
-
-template numItemsUnbuf(chan: ChannelRaw): int =
-  chan.head
-
-template isFullUnbuf(chan: ChannelRaw): bool =
-  chan.head == 1
-
-template isEmptyUnbuf(chan: ChannelRaw): bool =
-  chan.head == 0
-
-# ChannelRaw kinds
-# ----------------------------------------------------------------------------------
-
-func isUnbuffered(chan: ChannelRaw): bool =
-  chan.size - 1 == 0
-
-# ChannelRaw status and properties
-# ----------------------------------------------------------------------------------
-
-proc isClosed(chan: ChannelRaw): bool {.inline.} = load(chan.closed, moRelaxed)
-
-proc peek(chan: ChannelRaw): int {.inline.} =
-  (if chan.isUnbuffered: numItemsUnbuf(chan) else: numItems(chan))
-
-# Per-thread channel cache
-# ----------------------------------------------------------------------------------
-
-var channelCache {.threadvar.}: ChannelCache
-var channelCacheLen {.threadvar.}: int
-
-proc allocChannelCache(size, n: int): bool =
-  ## Allocate a free list for storing channels of a given type
-  var p = channelCache
-
-  # Avoid multiple free lists for the exact same type of channel
-  while not p.isNil:
-    if size == p.chanSize and n == p.chanN:
-      return false
-    p = p.next
-
-  p = cast[ptr ChannelCacheObj](c_malloc(csize_t sizeof(ChannelCacheObj)))
-  if p.isNil:
-    raise newException(OutOfMemDefect, "Could not allocate memory")
-
-  p.chanSize = size
-  p.chanN = n
-  p.numCached = 0
-
-  p.next = channelCache
-  channelCache = p
-  inc channelCacheLen
-  result = true
-
-proc freeChannelCache*() =
-  ## Frees the entire channel cache, including all channels
-  var p = channelCache
-  var q: ChannelCache
-
-  while not p.isNil:
-    q = p.next
-    for i in 0 ..< p.numCached:
-      let chan = p.cache[i]
-      if not chan.buffer.isNil:
-        c_free(chan.buffer)
-      deinitLock(chan.headLock)
-      deinitLock(chan.tailLock)
-      deinitCond(chan.notFullCond)
-      deinitCond(chan.notEmptyCond)
-      c_free(chan)
-    c_free(p)
-    dec channelCacheLen
-    p = q
-
-  assert(channelCacheLen == 0)
-  channelCache = nil
-
-# Channels memory ops
-# ----------------------------------------------------------------------------------
-
-proc allocChannel(size, n: int): ChannelRaw =
-  when nimChannelCacheSize > 0:
-    var p = channelCache
-
-    while not p.isNil:
-      if size == p.chanSize and n == p.chanN:
-        # Check if free list contains channel
-        if p.numCached > 0:
-          dec p.numCached
-          result = p.cache[p.numCached]
-          assert(result.isEmpty)
-          return
-        else:
-          # All the other lists in cache won't match
-          break
-      p = p.next
-
-  result = cast[ChannelRaw](c_malloc(csize_t sizeof(ChannelObj)))
-  if result.isNil:
-    raise newException(OutOfMemDefect, "Could not allocate memory")
-
-  # To buffer n items, we allocate for n
-  result.buffer = cast[ptr UncheckedArray[byte]](c_malloc(csize_t n*size))
-  if result.buffer.isNil:
-    raise newException(OutOfMemDefect, "Could not allocate memory")
-
-  initLock(result.headLock)
-  initLock(result.tailLock)
-  initCond(result.notFullCond)
-  initCond(result.notEmptyCond)
-
-  result.closed.store(false, moRelaxed) # We don't need atomic here, how to?
-  result.size = n
-  result.itemsize = size
-  result.head = 0
-  result.tail = 0
-  result.atomicCounter.store(0, moRelaxed)
-
-  when nimChannelCacheSize > 0:
-    # Allocate a cache as well if one of the proper size doesn't exist
-    discard allocChannelCache(size, n)
-
-proc freeChannel(chan: ChannelRaw) =
-  if chan.isNil:
-    return
-
-  when nimChannelCacheSize > 0:
-    var p = channelCache
-    while not p.isNil:
-      if chan.itemsize == p.chanSize and
-         chan.size == p.chanN:
-        if p.numCached < nimChannelCacheSize:
-          # If space left in cache, cache it
-          p.cache[p.numCached] = chan
-          inc p.numCached
-          return
-        else:
-          # All the other lists in cache won't match
-          break
-      p = p.next
-
-  if not chan.buffer.isNil:
-    c_free(chan.buffer)
-
-  deinitLock(chan.headLock)
-  deinitLock(chan.tailLock)
-  deinitCond(chan.notFullCond)
-  deinitCond(chan.notEmptyCond)
-
-  c_free(chan)
-
-# MPMC Channels (Multi-Producer Multi-Consumer)
-# ----------------------------------------------------------------------------------
-
-proc sendUnbufferedMpmc(chan: ChannelRaw, data: sink pointer, size: int, nonBlocking: bool): bool =
-  if nonBlocking and chan.isFullUnbuf:
-    return false
-
-  acquire(chan.headLock)
-
-  if nonBlocking and chan.isFullUnbuf:
-    # Another thread was faster
-    release(chan.headLock)
-    return false
-
-  while chan.isFullUnbuf:
-    wait(chan.notFullcond, chan.headLock)
-
-  assert chan.isEmptyUnbuf
-  assert size <= chan.itemsize
-  copyMem(chan.buffer, data, size)
-
-  chan.head = 1
-
-  release(chan.headLock)
-  signal(chan.notEmptyCond)
-  result = true
-
-proc sendMpmc(chan: ChannelRaw, data: sink pointer, size: int, nonBlocking: bool): bool =
-  assert not chan.isNil
-  assert not data.isNil
-
-  if isUnbuffered(chan):
-    return sendUnbufferedMpmc(chan, data, size, nonBlocking)
-
-  if nonBlocking and chan.isFull:
-    return false
-
-  acquire(chan.tailLock)
-
-  if nonBlocking and chan.isFull:
-    # Another thread was faster
-    release(chan.tailLock)
-    return false
-
-  while chan.isFull:
-    wait(chan.notFullcond, chan.tailLock)
-
-  assert not chan.isFull
-  assert size <= chan.itemsize
-
-  let writeIdx = if chan.tail < chan.size: chan.tail
-                 else: chan.tail - chan.size
-
-  copyMem(chan.buffer[writeIdx * chan.itemsize].addr, data, size)
-
-  inc chan.tail
-  if chan.tail == 2 * chan.size:
-    chan.tail = 0
-
-  release(chan.tailLock)
-  signal(chan.notEmptyCond)
-  result = true
-
-proc recvUnbufferedMpmc(chan: ChannelRaw, data: pointer, size: int, nonBlocking: bool): bool =
-  if nonBlocking and chan.isEmptyUnbuf:
-    return false
-
-  acquire(chan.headLock)
-
-  if nonBlocking and chan.isEmptyUnbuf:
-    # Another thread was faster
-    release(chan.headLock)
-    return false
-
-  while chan.isEmptyUnbuf:
-    wait(chan.notEmptyCond, chan.headLock)
-
-  assert chan.isFullUnbuf
-  assert size <= chan.itemsize
-
-  copyMem(data, chan.buffer, size)
-
-  chan.head = 0
-
-  release(chan.headLock)
-  signal(chan.notFullCond)
-  result = true
-
-proc recvMpmc(chan: ChannelRaw, data: pointer, size: int, nonBlocking: bool): bool =
-  assert not chan.isNil
-  assert not data.isNil
-
-  if isUnbuffered(chan):
-    return recvUnbufferedMpmc(chan, data, size, nonBlocking)
-
-  if nonBlocking and chan.isEmpty:
-    return false
-
-  acquire(chan.headLock)
-
-  if nonBlocking and chan.isEmpty:
-    # Another thread took the last data
-    release(chan.headLock)
-    return false
-
-  while chan.isEmpty:
-    wait(chan.notEmptyCond, chan.headLock)
-
-  assert not chan.isEmpty
-  assert size <= chan.itemsize
-
-  let readIdx = if chan.head < chan.size: chan.head
-                else: chan.head - chan.size
-
-  copyMem(data, chan.buffer[readIdx * chan.itemsize].addr, size)
-
-  inc chan.head
-  if chan.head == 2 * chan.size:
-    chan.head = 0
-
-  release(chan.headLock)
-  signal(chan.notFullCond)
-  result = true
-
-proc channelCloseMpmc(chan: ChannelRaw): bool =
-  # Unsynchronized
-
-  if chan.isClosed:
-    # ChannelRaw already closed
-    return false
-
-  store(chan.closed, true, moRelaxed)
-  result = true
-
-proc channelOpenMpmc(chan: ChannelRaw): bool =
-  # Unsynchronized
-
-  if not chan.isClosed:
-    # ChannelRaw already open
-    return false
-
-  store(chan.closed, false, moRelaxed)
-  result = true
-
-# Public API
-# ----------------------------------------------------------------------------------
-
-type
-  Channel*[T] = object ## Typed channels
-    d: ChannelRaw
-
-proc `=destroy`*[T](c: var Channel[T]) =
-  if c.d != nil:
-    if load(c.d.atomicCounter, moAcquire) == 0:
-      if c.d.buffer != nil:
-        freeChannel(c.d)
-    else:
-      atomicDec(c.d.atomicCounter)
-
-proc `=`*[T](dest: var Channel[T], src: Channel[T]) =
-  ## Shares `Channel` by reference counting.
-  if src.d != nil:
-    atomicInc(src.d.atomicCounter)
-
-  if dest.d != nil:
-    `=destroy`(dest)
-  dest.d = src.d
-
-func trySend*[T](c: Channel[T], src: var Isolated[T]): bool {.inline.} =
-  ## Sends item to the channel(non blocking).
-  var data = src.extract
-  result = sendMpmc(c.d, data.addr, sizeof(T), true)
-  if result:
-    wasMoved(data)
-
-template trySend*[T](c: Channel[T], src: T): bool =
-  ## Helper templates for `trySend`.
-  trySend(c, isolate(src))
-
-func tryRecv*[T](c: Channel[T], dst: var T): bool {.inline.} =
-  ## Receives item from the channel(non blocking).
-  recvMpmc(c.d, dst.addr, sizeof(T), true)
-
-func send*[T](c: Channel[T], src: sink Isolated[T]) {.inline.} =
-  ## Sends item to the channel(blocking).
-  var data = src.extract
-  discard sendMpmc(c.d, data.addr, sizeof(T), false)
-  wasMoved(data)
-
-template send*[T](c: Channel[T]; src: T) =
-  ## Helper templates for `send`.
-  send(c, isolate(src))
-
-func recv*[T](c: Channel[T]): T {.inline.} =
-  ## Receives item from the channel(blocking).
-  discard recvMpmc(c.d, result.addr, sizeof(result), false)
-
-func open*[T](c: Channel[T]): bool {.inline.} =
-  result = c.d.channelOpenMpmc()
-
-func close*[T](c: Channel[T]): bool {.inline.} =
-  result = c.d.channelCloseMpmc()
-
-func peek*[T](c: Channel[T]): int {.inline.} = peek(c.d)
-
-proc newChannel*[T](elements = 30): Channel[T] =
-  ## Returns a new `Channel`. `elements` should be positive.
-  ## `elements` is used to specify whether a channel is buffered or not.
-  ## If `elements` = 1, the channel is unbuffered. If `elements` > 1, the 
-  ## channel is buffered.
-  assert elements >= 1, "Elements must be positive!"
-  result = Channel[T](d: allocChannel(sizeof(T), elements))