summary refs log tree commit diff stats
path: root/lib/system/comparisons.nim
diff options
context:
space:
mode:
Diffstat (limited to 'lib/system/comparisons.nim')
-rw-r--r--lib/system/comparisons.nim337
1 files changed, 337 insertions, 0 deletions
diff --git a/lib/system/comparisons.nim b/lib/system/comparisons.nim
new file mode 100644
index 000000000..a8d78bb93
--- /dev/null
+++ b/lib/system/comparisons.nim
@@ -0,0 +1,337 @@
+# comparison operators:
+proc `==`*[Enum: enum](x, y: Enum): bool {.magic: "EqEnum", noSideEffect.} =
+  ## Checks whether values within the *same enum* have the same underlying value.
+  runnableExamples:
+    type
+      Enum1 = enum
+        field1 = 3, field2
+      Enum2 = enum
+        place1, place2 = 3
+    var
+      e1 = field1
+      e2 = place2.ord.Enum1
+    assert e1 == e2
+    assert not compiles(e1 == place2) # raises error
+proc `==`*(x, y: pointer): bool {.magic: "EqRef", noSideEffect.} =
+  ## Checks for equality between two `pointer` variables.
+  runnableExamples:
+    var # this is a wildly dangerous example
+      a = cast[pointer](0)
+      b = cast[pointer](nil)
+    assert a == b # true due to the special meaning of `nil`/0 as a pointer
+proc `==`*(x, y: string): bool {.magic: "EqStr", noSideEffect.}
+  ## Checks for equality between two `string` variables.
+
+proc `==`*(x, y: char): bool {.magic: "EqCh", noSideEffect.}
+  ## Checks for equality between two `char` variables.
+proc `==`*(x, y: bool): bool {.magic: "EqB", noSideEffect.}
+  ## Checks for equality between two `bool` variables.
+proc `==`*[T](x, y: set[T]): bool {.magic: "EqSet", noSideEffect.} =
+  ## Checks for equality between two variables of type `set`.
+  runnableExamples:
+    assert {1, 2, 2, 3} == {1, 2, 3} # duplication in sets is ignored
+
+proc `==`*[T](x, y: ref T): bool {.magic: "EqRef", noSideEffect.}
+  ## Checks that two `ref` variables refer to the same item.
+proc `==`*[T](x, y: ptr T): bool {.magic: "EqRef", noSideEffect.}
+  ## Checks that two `ptr` variables refer to the same item.
+proc `==`*[T: proc | iterator](x, y: T): bool {.magic: "EqProc", noSideEffect.}
+  ## Checks that two `proc` variables refer to the same procedure.
+
+proc `<=`*[Enum: enum](x, y: Enum): bool {.magic: "LeEnum", noSideEffect.}
+proc `<=`*(x, y: string): bool {.magic: "LeStr", noSideEffect.} =
+  ## Compares two strings and returns true if `x` is lexicographically
+  ## before `y` (uppercase letters come before lowercase letters).
+  runnableExamples:
+    let
+      a = "abc"
+      b = "abd"
+      c = "ZZZ"
+    assert a <= b
+    assert a <= a
+    assert not (a <= c)
+
+proc `<=`*(x, y: char): bool {.magic: "LeCh", noSideEffect.} =
+  ## Compares two chars and returns true if `x` is lexicographically
+  ## before `y` (uppercase letters come before lowercase letters).
+  runnableExamples:
+    let
+      a = 'a'
+      b = 'b'
+      c = 'Z'
+    assert a <= b
+    assert a <= a
+    assert not (a <= c)
+
+proc `<=`*[T](x, y: set[T]): bool {.magic: "LeSet", noSideEffect.} =
+  ## Returns true if `x` is a subset of `y`.
+  ##
+  ## A subset `x` has all of its members in `y` and `y` doesn't necessarily
+  ## have more members than `x`. That is, `x` can be equal to `y`.
+  runnableExamples:
+    let
+      a = {3, 5}
+      b = {1, 3, 5, 7}
+      c = {2}
+    assert a <= b
+    assert a <= a
+    assert not (a <= c)
+
+proc `<=`*(x, y: bool): bool {.magic: "LeB", noSideEffect.}
+proc `<=`*[T](x, y: ref T): bool {.magic: "LePtr", noSideEffect.}
+proc `<=`*(x, y: pointer): bool {.magic: "LePtr", noSideEffect.}
+
+proc `<`*[Enum: enum](x, y: Enum): bool {.magic: "LtEnum", noSideEffect.}
+proc `<`*(x, y: string): bool {.magic: "LtStr", noSideEffect.} =
+  ## Compares two strings and returns true if `x` is lexicographically
+  ## before `y` (uppercase letters come before lowercase letters).
+  runnableExamples:
+    let
+      a = "abc"
+      b = "abd"
+      c = "ZZZ"
+    assert a < b
+    assert not (a < a)
+    assert not (a < c)
+
+proc `<`*(x, y: char): bool {.magic: "LtCh", noSideEffect.} =
+  ## Compares two chars and returns true if `x` is lexicographically
+  ## before `y` (uppercase letters come before lowercase letters).
+  runnableExamples:
+    let
+      a = 'a'
+      b = 'b'
+      c = 'Z'
+    assert a < b
+    assert not (a < a)
+    assert not (a < c)
+
+proc `<`*[T](x, y: set[T]): bool {.magic: "LtSet", noSideEffect.} =
+  ## Returns true if `x` is a strict or proper subset of `y`.
+  ##
+  ## A strict or proper subset `x` has all of its members in `y` but `y` has
+  ## more elements than `y`.
+  runnableExamples:
+    let
+      a = {3, 5}
+      b = {1, 3, 5, 7}
+      c = {2}
+    assert a < b
+    assert not (a < a)
+    assert not (a < c)
+
+proc `<`*(x, y: bool): bool {.magic: "LtB", noSideEffect.}
+proc `<`*[T](x, y: ref T): bool {.magic: "LtPtr", noSideEffect.}
+proc `<`*[T](x, y: ptr T): bool {.magic: "LtPtr", noSideEffect.}
+proc `<`*(x, y: pointer): bool {.magic: "LtPtr", noSideEffect.}
+
+when not defined(nimHasCallsitePragma):
+  {.pragma: callsite.}
+
+template `!=`*(x, y: untyped): untyped {.callsite.} =
+  ## Unequals operator. This is a shorthand for `not (x == y)`.
+  not (x == y)
+
+template `>=`*(x, y: untyped): untyped {.callsite.} =
+  ## "is greater or equals" operator. This is the same as `y <= x`.
+  y <= x
+
+template `>`*(x, y: untyped): untyped {.callsite.} =
+  ## "is greater" operator. This is the same as `y < x`.
+  y < x
+
+
+proc `==`*(x, y: int): bool {.magic: "EqI", noSideEffect.}
+  ## Compares two integers for equality.
+proc `==`*(x, y: int8): bool {.magic: "EqI", noSideEffect.}
+proc `==`*(x, y: int16): bool {.magic: "EqI", noSideEffect.}
+proc `==`*(x, y: int32): bool {.magic: "EqI", noSideEffect.}
+proc `==`*(x, y: int64): bool {.magic: "EqI", noSideEffect.}
+
+proc `<=`*(x, y: int): bool {.magic: "LeI", noSideEffect.}
+  ## Returns true if `x` is less than or equal to `y`.
+proc `<=`*(x, y: int8): bool {.magic: "LeI", noSideEffect.}
+proc `<=`*(x, y: int16): bool {.magic: "LeI", noSideEffect.}
+proc `<=`*(x, y: int32): bool {.magic: "LeI", noSideEffect.}
+proc `<=`*(x, y: int64): bool {.magic: "LeI", noSideEffect.}
+
+proc `<`*(x, y: int): bool {.magic: "LtI", noSideEffect.}
+  ## Returns true if `x` is less than `y`.
+proc `<`*(x, y: int8): bool {.magic: "LtI", noSideEffect.}
+proc `<`*(x, y: int16): bool {.magic: "LtI", noSideEffect.}
+proc `<`*(x, y: int32): bool {.magic: "LtI", noSideEffect.}
+proc `<`*(x, y: int64): bool {.magic: "LtI", noSideEffect.}
+
+proc `<=`*(x, y: uint): bool {.magic: "LeU", noSideEffect.}
+  ## Returns true if `x <= y`.
+proc `<=`*(x, y: uint8): bool {.magic: "LeU", noSideEffect.}
+proc `<=`*(x, y: uint16): bool {.magic: "LeU", noSideEffect.}
+proc `<=`*(x, y: uint32): bool {.magic: "LeU", noSideEffect.}
+proc `<=`*(x, y: uint64): bool {.magic: "LeU", noSideEffect.}
+
+proc `<`*(x, y: uint): bool {.magic: "LtU", noSideEffect.}
+  ## Returns true if `x < y`.
+proc `<`*(x, y: uint8): bool {.magic: "LtU", noSideEffect.}
+proc `<`*(x, y: uint16): bool {.magic: "LtU", noSideEffect.}
+proc `<`*(x, y: uint32): bool {.magic: "LtU", noSideEffect.}
+proc `<`*(x, y: uint64): bool {.magic: "LtU", noSideEffect.}
+
+proc `<=%`*(x, y: int): bool {.inline.} =
+  ## Treats `x` and `y` as unsigned and compares them.
+  ## Returns true if `unsigned(x) <= unsigned(y)`.
+  cast[uint](x) <= cast[uint](y)
+proc `<=%`*(x, y: int8): bool {.inline.} = cast[uint8](x) <= cast[uint8](y)
+proc `<=%`*(x, y: int16): bool {.inline.} = cast[uint16](x) <= cast[uint16](y)
+proc `<=%`*(x, y: int32): bool {.inline.} = cast[uint32](x) <= cast[uint32](y)
+proc `<=%`*(x, y: int64): bool {.inline.} = cast[uint64](x) <= cast[uint64](y)
+
+proc `<%`*(x, y: int): bool {.inline.} =
+  ## Treats `x` and `y` as unsigned and compares them.
+  ## Returns true if `unsigned(x) < unsigned(y)`.
+  cast[uint](x) < cast[uint](y)
+proc `<%`*(x, y: int8): bool {.inline.} = cast[uint8](x) < cast[uint8](y)
+proc `<%`*(x, y: int16): bool {.inline.} = cast[uint16](x) < cast[uint16](y)
+proc `<%`*(x, y: int32): bool {.inline.} = cast[uint32](x) < cast[uint32](y)
+proc `<%`*(x, y: int64): bool {.inline.} = cast[uint64](x) < cast[uint64](y)
+
+template `>=%`*(x, y: untyped): untyped = y <=% x
+  ## Treats `x` and `y` as unsigned and compares them.
+  ## Returns true if `unsigned(x) >= unsigned(y)`.
+
+template `>%`*(x, y: untyped): untyped = y <% x
+  ## Treats `x` and `y` as unsigned and compares them.
+  ## Returns true if `unsigned(x) > unsigned(y)`.
+
+proc `==`*(x, y: uint): bool {.magic: "EqI", noSideEffect.}
+  ## Compares two unsigned integers for equality.
+proc `==`*(x, y: uint8): bool {.magic: "EqI", noSideEffect.}
+proc `==`*(x, y: uint16): bool {.magic: "EqI", noSideEffect.}
+proc `==`*(x, y: uint32): bool {.magic: "EqI", noSideEffect.}
+proc `==`*(x, y: uint64): bool {.magic: "EqI", noSideEffect.}
+
+proc `<=`*(x, y: float32): bool {.magic: "LeF64", noSideEffect.}
+proc `<=`*(x, y: float): bool {.magic: "LeF64", noSideEffect.}
+
+proc `<`*(x, y: float32): bool {.magic: "LtF64", noSideEffect.}
+proc `<`*(x, y: float): bool {.magic: "LtF64", noSideEffect.}
+
+proc `==`*(x, y: float32): bool {.magic: "EqF64", noSideEffect.}
+proc `==`*(x, y: float): bool {.magic: "EqF64", noSideEffect.}
+
+{.push stackTrace: off.}
+
+proc min*(x, y: int): int {.magic: "MinI", noSideEffect.} =
+  if x <= y: x else: y
+proc min*(x, y: int8): int8 {.magic: "MinI", noSideEffect.} =
+  if x <= y: x else: y
+proc min*(x, y: int16): int16 {.magic: "MinI", noSideEffect.} =
+  if x <= y: x else: y
+proc min*(x, y: int32): int32 {.magic: "MinI", noSideEffect.} =
+  if x <= y: x else: y
+proc min*(x, y: int64): int64 {.magic: "MinI", noSideEffect.} =
+  ## The minimum value of two integers.
+  if x <= y: x else: y
+proc min*(x, y: float32): float32 {.noSideEffect, inline.} =
+  if x <= y or y != y: x else: y
+proc min*(x, y: float64): float64 {.noSideEffect, inline.} =
+  if x <= y or y != y: x else: y
+proc min*[T: not SomeFloat](x, y: T): T {.inline.} =
+  ## Generic minimum operator of 2 values based on `<=`.
+  if x <= y: x else: y
+
+proc max*(x, y: int): int {.magic: "MaxI", noSideEffect.} =
+  if y <= x: x else: y
+proc max*(x, y: int8): int8 {.magic: "MaxI", noSideEffect.} =
+  if y <= x: x else: y
+proc max*(x, y: int16): int16 {.magic: "MaxI", noSideEffect.} =
+  if y <= x: x else: y
+proc max*(x, y: int32): int32 {.magic: "MaxI", noSideEffect.} =
+  if y <= x: x else: y
+proc max*(x, y: int64): int64 {.magic: "MaxI", noSideEffect.} =
+  ## The maximum value of two integers.
+  if y <= x: x else: y
+proc max*(x, y: float32): float32 {.noSideEffect, inline.} =
+  if y <= x or y != y: x else: y
+proc max*(x, y: float64): float64 {.noSideEffect, inline.} =
+  if y <= x or y != y: x else: y
+proc max*[T: not SomeFloat](x, y: T): T {.inline.} =
+  ## Generic maximum operator of 2 values based on `<=`.
+  if y <= x: x else: y
+
+
+proc min*[T](x: openArray[T]): T =
+  ## The minimum value of `x`. `T` needs to have a `<` operator.
+  result = x[0]
+  for i in 1..high(x):
+    if x[i] < result: result = x[i]
+
+proc max*[T](x: openArray[T]): T =
+  ## The maximum value of `x`. `T` needs to have a `<` operator.
+  result = x[0]
+  for i in 1..high(x):
+    if result < x[i]: result = x[i]
+
+{.pop.} # stackTrace: off
+
+
+proc clamp*[T](x, a, b: T): T =
+  ## Limits the value `x` within the interval \[a, b].
+  ## This proc is equivalent to but faster than `max(a, min(b, x))`.
+  ## 
+  ## .. warning:: `a <= b` is assumed and will not be checked (currently).
+  ##
+  ## **See also:**
+  ## `math.clamp` for a version that takes a `Slice[T]` instead.
+  runnableExamples:
+    assert (1.4).clamp(0.0, 1.0) == 1.0
+    assert (0.5).clamp(0.0, 1.0) == 0.5
+    assert 4.clamp(1, 3) == max(1, min(3, 4))
+  if x < a: return a
+  if x > b: return b
+  return x
+
+
+proc `==`*[I, T](x, y: array[I, T]): bool =
+  for f in low(x)..high(x):
+    if x[f] != y[f]:
+      return
+  result = true
+
+proc `==`*[T](x, y: openArray[T]): bool =
+  if x.len != y.len:
+    return false
+  for f in low(x)..high(x):
+    if x[f] != y[f]:
+      return false
+  result = true
+
+
+proc `==`*[T](x, y: seq[T]): bool {.noSideEffect.} =
+  ## Generic equals operator for sequences: relies on a equals operator for
+  ## the element type `T`.
+  when nimvm:
+    if x.len == 0 and y.len == 0:
+      return true
+  else:
+    when not defined(js):
+      proc seqToPtr[T](x: seq[T]): pointer {.inline, noSideEffect.} =
+        when defined(nimSeqsV2):
+          result = cast[NimSeqV2[T]](x).p
+        else:
+          result = cast[pointer](x)
+
+      if seqToPtr(x) == seqToPtr(y):
+        return true
+    else:
+      var sameObject = false
+      {.emit: """`sameObject` = `x` === `y`;""".}
+      if sameObject: return true
+
+  if x.len != y.len:
+    return false
+
+  for i in 0..x.len-1:
+    if x[i] != y[i]:
+      return false
+
+  return true