summary refs log tree commit diff stats
path: root/lib/system/gc2.nim
diff options
context:
space:
mode:
Diffstat (limited to 'lib/system/gc2.nim')
-rw-r--r--lib/system/gc2.nim911
1 files changed, 0 insertions, 911 deletions
diff --git a/lib/system/gc2.nim b/lib/system/gc2.nim
deleted file mode 100644
index e68a8586e..000000000
--- a/lib/system/gc2.nim
+++ /dev/null
@@ -1,911 +0,0 @@
-#
-#
-#            Nim's Runtime Library
-#        (c) Copyright 2015 Andreas Rumpf
-#
-#    See the file "copying.txt", included in this
-#    distribution, for details about the copyright.
-#
-
-#            Garbage Collector
-#
-# The basic algorithm is *Deferred Reference Counting* with an incremental mark
-# and sweep GC to free cycles. It is hard realtime in that if you play
-# according to its rules, no deadline will ever be missed.
-
-# XXX Ensure by smart color masking that the object is not in the ZCT.
-
-when defined(nimCoroutines):
-  import arch
-
-{.push profiler:off.}
-
-const
-  CycleIncrease = 2 # is a multiplicative increase
-  InitialCycleThreshold = 4*1024*1024 # X MB because cycle checking is slow
-  ZctThreshold = 500  # we collect garbage if the ZCT's size
-                      # reaches this threshold
-                      # this seems to be a good value
-  withRealTime = defined(useRealtimeGC)
-
-when withRealTime and not declared(getTicks):
-  include "system/timers"
-when defined(memProfiler):
-  proc nimProfile(requestedSize: int) {.benign.}
-
-type
-  ObjectSpaceIter = object
-    state: range[-1..0]
-
-iterToProc(allObjects, ptr ObjectSpaceIter, allObjectsAsProc)
-
-const
-  rcIncrement = 0b1000 # so that lowest 3 bits are not touched
-  rcBlackOrig = 0b000
-  rcWhiteOrig = 0b001
-  rcGrey = 0b010   # traditional color for incremental mark&sweep
-  rcUnused = 0b011
-  ZctFlag = 0b100  # in ZCT
-  rcShift = 3      # shift by rcShift to get the reference counter
-  colorMask = 0b011
-type
-  WalkOp = enum
-    waMarkGlobal,    # part of the backup mark&sweep
-    waMarkGrey,
-    waZctDecRef #, waDebug
-
-  Phase {.pure.} = enum
-    None, Marking, Sweeping
-  Finalizer {.compilerproc.} = proc (self: pointer) {.nimcall, benign.}
-    # A ref type can have a finalizer that is called before the object's
-    # storage is freed.
-
-  GcStat = object
-    stackScans: int          # number of performed stack scans (for statistics)
-    cycleCollections: int    # number of performed full collections
-    maxThreshold: int        # max threshold that has been set
-    maxStackSize: int        # max stack size
-    maxStackCells: int       # max stack cells in ``decStack``
-    cycleTableSize: int      # max entries in cycle table
-    maxPause: int64          # max measured GC pause in nanoseconds
-
-  GcStack = object
-    prev: ptr GcStack
-    next: ptr GcStack
-    starts: pointer
-    pos: pointer
-    maxStackSize: int
-
-  GcHeap = object # this contains the zero count and
-                  # non-zero count table
-    black: int    # either 0 or 1.
-    stack: ptr GcStack
-    stackBottom: pointer
-    phase: Phase
-    cycleThreshold: int
-    when useCellIds:
-      idGenerator: int
-    zct: CellSeq             # the zero count table
-    decStack: CellSeq        # cells in the stack that are to decref again
-    greyStack: CellSeq
-    recGcLock: int           # prevent recursion via finalizers; no thread lock
-    when withRealTime:
-      maxPause: Nanos        # max allowed pause in nanoseconds; active if > 0
-    region: MemRegion        # garbage collected region
-    stat: GcStat
-    additionalRoots: CellSeq # dummy roots for GC_ref/unref
-    spaceIter: ObjectSpaceIter
-
-var
-  gch {.rtlThreadVar.}: GcHeap
-
-when not defined(useNimRtl):
-  instantiateForRegion(gch.region)
-
-proc initGC() =
-  when not defined(useNimRtl):
-    when traceGC:
-      for i in low(CellState)..high(CellState): init(states[i])
-    gch.cycleThreshold = InitialCycleThreshold
-    gch.stat.stackScans = 0
-    gch.stat.cycleCollections = 0
-    gch.stat.maxThreshold = 0
-    gch.stat.maxStackSize = 0
-    gch.stat.maxStackCells = 0
-    gch.stat.cycleTableSize = 0
-    # init the rt
-    init(gch.zct)
-    init(gch.decStack)
-    init(gch.additionalRoots)
-    init(gch.greyStack)
-
-template gcAssert(cond: bool, msg: string) =
-  when defined(useGcAssert):
-    if not cond:
-      echo "[GCASSERT] ", msg
-      GC_disable()
-      writeStackTrace()
-      quit 1
-
-proc addZCT(s: var CellSeq, c: PCell) {.noinline.} =
-  if (c.refcount and ZctFlag) == 0:
-    c.refcount = c.refcount or ZctFlag
-    add(s, c)
-
-proc cellToUsr(cell: PCell): pointer {.inline.} =
-  # convert object (=pointer to refcount) to pointer to userdata
-  result = cast[pointer](cast[ByteAddress](cell)+%ByteAddress(sizeof(Cell)))
-
-proc usrToCell(usr: pointer): PCell {.inline.} =
-  # convert pointer to userdata to object (=pointer to refcount)
-  result = cast[PCell](cast[ByteAddress](usr)-%ByteAddress(sizeof(Cell)))
-
-proc canBeCycleRoot(c: PCell): bool {.inline.} =
-  result = ntfAcyclic notin c.typ.flags
-
-proc extGetCellType(c: pointer): PNimType {.compilerproc.} =
-  # used for code generation concerning debugging
-  result = usrToCell(c).typ
-
-proc internRefcount(p: pointer): int {.exportc: "getRefcount".} =
-  result = int(usrToCell(p).refcount) shr rcShift
-
-# this that has to equals zero, otherwise we have to round up UnitsPerPage:
-when BitsPerPage mod (sizeof(int)*8) != 0:
-  {.error: "(BitsPerPage mod BitsPerUnit) should be zero!".}
-
-template color(c): expr = c.refCount and colorMask
-template setColor(c, col) =
-  c.refcount = c.refcount and not colorMask or col
-
-proc writeCell(msg: cstring, c: PCell) =
-  var kind = -1
-  if c.typ != nil: kind = ord(c.typ.kind)
-  when leakDetector:
-    c_fprintf(c_stdout, "[GC] %s: %p %d rc=%ld from %s(%ld)\n",
-              msg, c, kind, c.refcount shr rcShift, c.filename, c.line)
-  else:
-    c_fprintf(c_stdout, "[GC] %s: %p %d rc=%ld; color=%ld\n",
-              msg, c, kind, c.refcount shr rcShift, c.color)
-
-template gcTrace(cell, state: expr): stmt {.immediate.} =
-  when traceGC: traceCell(cell, state)
-
-# forward declarations:
-proc collectCT(gch: var GcHeap) {.benign.}
-proc isOnStack(p: pointer): bool {.noinline, benign.}
-proc forAllChildren(cell: PCell, op: WalkOp) {.benign.}
-proc doOperation(p: pointer, op: WalkOp) {.benign.}
-proc forAllChildrenAux(dest: pointer, mt: PNimType, op: WalkOp) {.benign.}
-# we need the prototype here for debugging purposes
-
-when hasThreadSupport and hasSharedHeap:
-  template `--`(x: expr): expr = atomicDec(x, rcIncrement) <% rcIncrement
-  template `++`(x: expr): stmt = discard atomicInc(x, rcIncrement)
-else:
-  template `--`(x: expr): expr =
-    dec(x, rcIncrement)
-    x <% rcIncrement
-  template `++`(x: expr): stmt = inc(x, rcIncrement)
-
-proc prepareDealloc(cell: PCell) =
-  if cell.typ.finalizer != nil:
-    # the finalizer could invoke something that
-    # allocates memory; this could trigger a garbage
-    # collection. Since we are already collecting we
-    # prevend recursive entering here by a lock.
-    # XXX: we should set the cell's children to nil!
-    inc(gch.recGcLock)
-    (cast[Finalizer](cell.typ.finalizer))(cellToUsr(cell))
-    dec(gch.recGcLock)
-
-proc rtlAddCycleRoot(c: PCell) {.rtl, inl.} =
-  # we MUST access gch as a global here, because this crosses DLL boundaries!
-  discard
-
-proc rtlAddZCT(c: PCell) {.rtl, inl.} =
-  # we MUST access gch as a global here, because this crosses DLL boundaries!
-  addZCT(gch.zct, c)
-
-proc decRef(c: PCell) {.inline.} =
-  gcAssert(isAllocatedPtr(gch.region, c), "decRef: interiorPtr")
-  gcAssert(c.refcount >=% rcIncrement, "decRef")
-  if --c.refcount:
-    rtlAddZCT(c)
-
-proc incRef(c: PCell) {.inline.} =
-  gcAssert(isAllocatedPtr(gch.region, c), "incRef: interiorPtr")
-  c.refcount = c.refcount +% rcIncrement
-
-proc nimGCref(p: pointer) {.compilerProc.} =
-  let cell = usrToCell(p)
-  incRef(cell)
-  add(gch.additionalRoots, cell)
-
-proc nimGCunref(p: pointer) {.compilerProc.} =
-  let cell = usrToCell(p)
-  decRef(cell)
-  var L = gch.additionalRoots.len-1
-  var i = L
-  let d = gch.additionalRoots.d
-  while i >= 0:
-    if d[i] == cell:
-      d[i] = d[L]
-      dec gch.additionalRoots.len
-      break
-    dec(i)
-
-template markGrey(x: PCell) =
-  if x.color == 1-gch.black and gch.phase == Phase.Marking:
-    x.setColor(rcGrey)
-    add(gch.greyStack, x)
-
-proc GC_addCycleRoot*[T](p: ref T) {.inline.} =
-  ## adds 'p' to the cycle candidate set for the cycle collector. It is
-  ## necessary if you used the 'acyclic' pragma for optimization
-  ## purposes and need to break cycles manually.
-  rtlAddCycleRoot(usrToCell(cast[pointer](p)))
-
-proc nimGCunrefNoCycle(p: pointer) {.compilerProc, inline.} =
-  sysAssert(allocInv(gch.region), "begin nimGCunrefNoCycle")
-  var c = usrToCell(p)
-  gcAssert(isAllocatedPtr(gch.region, c), "nimGCunrefNoCycle: isAllocatedPtr")
-  if --c.refcount:
-    rtlAddZCT(c)
-    sysAssert(allocInv(gch.region), "end nimGCunrefNoCycle 2")
-  sysAssert(allocInv(gch.region), "end nimGCunrefNoCycle 5")
-
-proc asgnRef(dest: PPointer, src: pointer) {.compilerProc, inline.} =
-  # the code generator calls this proc!
-  gcAssert(not isOnStack(dest), "asgnRef")
-  # BUGFIX: first incRef then decRef!
-  if src != nil:
-    let s = usrToCell(src)
-    incRef(s)
-    markGrey(s)
-  if dest[] != nil: decRef(usrToCell(dest[]))
-  dest[] = src
-
-proc asgnRefNoCycle(dest: PPointer, src: pointer) {.compilerProc, inline.} =
-  # the code generator calls this proc if it is known at compile time that no
-  # cycle is possible.
-  gcAssert(not isOnStack(dest), "asgnRefNoCycle")
-  if src != nil:
-    var c = usrToCell(src)
-    ++c.refcount
-    markGrey(c)
-  if dest[] != nil:
-    var c = usrToCell(dest[])
-    if --c.refcount:
-      rtlAddZCT(c)
-  dest[] = src
-
-proc unsureAsgnRef(dest: PPointer, src: pointer) {.compilerProc.} =
-  # unsureAsgnRef updates the reference counters only if dest is not on the
-  # stack. It is used by the code generator if it cannot decide wether a
-  # reference is in the stack or not (this can happen for var parameters).
-  if not isOnStack(dest):
-    if src != nil:
-      let s = usrToCell(src)
-      incRef(s)
-      markGrey(s)
-    # XXX finally use assembler for the stack checking instead!
-    # the test for '!= nil' is correct, but I got tired of the segfaults
-    # resulting from the crappy stack checking:
-    if cast[int](dest[]) >=% PageSize: decRef(usrToCell(dest[]))
-  else:
-    # can't be an interior pointer if it's a stack location!
-    gcAssert(interiorAllocatedPtr(gch.region, dest) == nil,
-             "stack loc AND interior pointer")
-  dest[] = src
-
-type
-  GlobalMarkerProc = proc () {.nimcall, benign.}
-var
-  globalMarkersLen: int
-  globalMarkers: array[0.. 7_000, GlobalMarkerProc]
-
-proc nimRegisterGlobalMarker(markerProc: GlobalMarkerProc) {.compilerProc.} =
-  if globalMarkersLen <= high(globalMarkers):
-    globalMarkers[globalMarkersLen] = markerProc
-    inc globalMarkersLen
-  else:
-    echo "[GC] cannot register global variable; too many global variables"
-    quit 1
-
-proc forAllSlotsAux(dest: pointer, n: ptr TNimNode, op: WalkOp) {.benign.} =
-  var d = cast[ByteAddress](dest)
-  case n.kind
-  of nkSlot: forAllChildrenAux(cast[pointer](d +% n.offset), n.typ, op)
-  of nkList:
-    for i in 0..n.len-1:
-      forAllSlotsAux(dest, n.sons[i], op)
-  of nkCase:
-    var m = selectBranch(dest, n)
-    if m != nil: forAllSlotsAux(dest, m, op)
-  of nkNone: sysAssert(false, "forAllSlotsAux")
-
-proc forAllChildrenAux(dest: pointer, mt: PNimType, op: WalkOp) =
-  var d = cast[ByteAddress](dest)
-  if dest == nil: return # nothing to do
-  if ntfNoRefs notin mt.flags:
-    case mt.kind
-    of tyRef, tyString, tySequence: # leaf:
-      doOperation(cast[PPointer](d)[], op)
-    of tyObject, tyTuple:
-      forAllSlotsAux(dest, mt.node, op)
-    of tyArray, tyArrayConstr, tyOpenArray:
-      for i in 0..(mt.size div mt.base.size)-1:
-        forAllChildrenAux(cast[pointer](d +% i *% mt.base.size), mt.base, op)
-    else: discard
-
-proc forAllChildren(cell: PCell, op: WalkOp) =
-  gcAssert(cell != nil, "forAllChildren: 1")
-  gcAssert(isAllocatedPtr(gch.region, cell), "forAllChildren: 2")
-  gcAssert(cell.typ != nil, "forAllChildren: 3")
-  gcAssert cell.typ.kind in {tyRef, tySequence, tyString}, "forAllChildren: 4"
-  let marker = cell.typ.marker
-  if marker != nil:
-    marker(cellToUsr(cell), op.int)
-  else:
-    case cell.typ.kind
-    of tyRef: # common case
-      forAllChildrenAux(cellToUsr(cell), cell.typ.base, op)
-    of tySequence:
-      var d = cast[ByteAddress](cellToUsr(cell))
-      var s = cast[PGenericSeq](d)
-      if s != nil:
-        for i in 0..s.len-1:
-          forAllChildrenAux(cast[pointer](d +% i *% cell.typ.base.size +%
-            GenericSeqSize), cell.typ.base, op)
-    else: discard
-
-proc addNewObjToZCT(res: PCell, gch: var GcHeap) {.inline.} =
-  # we check the last 8 entries (cache line) for a slot that could be reused.
-  # In 63% of all cases we succeed here! But we have to optimize the heck
-  # out of this small linear search so that ``newObj`` is not slowed down.
-  #
-  # Slots to try          cache hit
-  # 1                     32%
-  # 4                     59%
-  # 8                     63%
-  # 16                    66%
-  # all slots             68%
-  var L = gch.zct.len
-  var d = gch.zct.d
-  when true:
-    # loop unrolled for performance:
-    template replaceZctEntry(i: expr) =
-      c = d[i]
-      if c.refcount >=% rcIncrement:
-        c.refcount = c.refcount and not ZctFlag
-        d[i] = res
-        return
-    if L > 8:
-      var c: PCell
-      replaceZctEntry(L-1)
-      replaceZctEntry(L-2)
-      replaceZctEntry(L-3)
-      replaceZctEntry(L-4)
-      replaceZctEntry(L-5)
-      replaceZctEntry(L-6)
-      replaceZctEntry(L-7)
-      replaceZctEntry(L-8)
-      add(gch.zct, res)
-    else:
-      d[L] = res
-      inc(gch.zct.len)
-  else:
-    for i in countdown(L-1, max(0, L-8)):
-      var c = d[i]
-      if c.refcount >=% rcIncrement:
-        c.refcount = c.refcount and not ZctFlag
-        d[i] = res
-        return
-    add(gch.zct, res)
-
-{.push stackTrace: off, profiler:off.}
-proc gcInvariant*() =
-  sysAssert(allocInv(gch.region), "injected")
-  when declared(markForDebug):
-    markForDebug(gch)
-{.pop.}
-
-proc rawNewObj(typ: PNimType, size: int, gch: var GcHeap): pointer =
-  # generates a new object and sets its reference counter to 0
-  sysAssert(allocInv(gch.region), "rawNewObj begin")
-  gcAssert(typ.kind in {tyRef, tyString, tySequence}, "newObj: 1")
-  collectCT(gch)
-  var res = cast[PCell](rawAlloc(gch.region, size + sizeof(Cell)))
-  gcAssert((cast[ByteAddress](res) and (MemAlign-1)) == 0, "newObj: 2")
-  # now it is buffered in the ZCT
-  res.typ = typ
-  when leakDetector and not hasThreadSupport:
-    if framePtr != nil and framePtr.prev != nil:
-      res.filename = framePtr.prev.filename
-      res.line = framePtr.prev.line
-  # refcount is zero, color is black, but mark it to be in the ZCT
-  res.refcount = ZctFlag or gch.black
-  sysAssert(isAllocatedPtr(gch.region, res), "newObj: 3")
-  # its refcount is zero, so add it to the ZCT:
-  addNewObjToZCT(res, gch)
-  when logGC: writeCell("new cell", res)
-  gcTrace(res, csAllocated)
-  when useCellIds:
-    inc gch.idGenerator
-    res.id = gch.idGenerator
-  result = cellToUsr(res)
-  sysAssert(allocInv(gch.region), "rawNewObj end")
-
-{.pop.}
-
-proc newObjNoInit(typ: PNimType, size: int): pointer {.compilerRtl.} =
-  result = rawNewObj(typ, size, gch)
-  when defined(memProfiler): nimProfile(size)
-
-proc newObj(typ: PNimType, size: int): pointer {.compilerRtl.} =
-  result = rawNewObj(typ, size, gch)
-  zeroMem(result, size)
-  when defined(memProfiler): nimProfile(size)
-
-proc newSeq(typ: PNimType, len: int): pointer {.compilerRtl.} =
-  # `newObj` already uses locks, so no need for them here.
-  let size = addInt(mulInt(len, typ.base.size), GenericSeqSize)
-  result = newObj(typ, size)
-  cast[PGenericSeq](result).len = len
-  cast[PGenericSeq](result).reserved = len
-  when defined(memProfiler): nimProfile(size)
-
-proc newObjRC1(typ: PNimType, size: int): pointer {.compilerRtl.} =
-  # generates a new object and sets its reference counter to 1
-  sysAssert(allocInv(gch.region), "newObjRC1 begin")
-  gcAssert(typ.kind in {tyRef, tyString, tySequence}, "newObj: 1")
-  collectCT(gch)
-  sysAssert(allocInv(gch.region), "newObjRC1 after collectCT")
-
-  var res = cast[PCell](rawAlloc(gch.region, size + sizeof(Cell)))
-  sysAssert(allocInv(gch.region), "newObjRC1 after rawAlloc")
-  sysAssert((cast[ByteAddress](res) and (MemAlign-1)) == 0, "newObj: 2")
-  # now it is buffered in the ZCT
-  res.typ = typ
-  when leakDetector and not hasThreadSupport:
-    if framePtr != nil and framePtr.prev != nil:
-      res.filename = framePtr.prev.filename
-      res.line = framePtr.prev.line
-  res.refcount = rcIncrement or gch.black # refcount is 1
-  sysAssert(isAllocatedPtr(gch.region, res), "newObj: 3")
-  when logGC: writeCell("new cell", res)
-  gcTrace(res, csAllocated)
-  when useCellIds:
-    inc gch.idGenerator
-    res.id = gch.idGenerator
-  result = cellToUsr(res)
-  zeroMem(result, size)
-  sysAssert(allocInv(gch.region), "newObjRC1 end")
-  when defined(memProfiler): nimProfile(size)
-
-proc newSeqRC1(typ: PNimType, len: int): pointer {.compilerRtl.} =
-  let size = addInt(mulInt(len, typ.base.size), GenericSeqSize)
-  result = newObjRC1(typ, size)
-  cast[PGenericSeq](result).len = len
-  cast[PGenericSeq](result).reserved = len
-  when defined(memProfiler): nimProfile(size)
-
-proc growObj(old: pointer, newsize: int, gch: var GcHeap): pointer =
-  collectCT(gch)
-  var ol = usrToCell(old)
-  gcAssert(isAllocatedPtr(gch.region, ol), "growObj: freed pointer?")
-
-  sysAssert(ol.typ != nil, "growObj: 1")
-  gcAssert(ol.typ.kind in {tyString, tySequence}, "growObj: 2")
-  sysAssert(allocInv(gch.region), "growObj begin")
-
-  var res = cast[PCell](rawAlloc(gch.region, newsize + sizeof(Cell)))
-  var elemSize = 1
-  if ol.typ.kind != tyString: elemSize = ol.typ.base.size
-
-  let oldsize = cast[PGenericSeq](old).len*elemSize + GenericSeqSize
-  copyMem(res, ol, oldsize + sizeof(Cell))
-  zeroMem(cast[pointer](cast[ByteAddress](res) +% oldsize +% sizeof(Cell)),
-          newsize-oldsize)
-  sysAssert((cast[ByteAddress](res) and (MemAlign-1)) == 0, "growObj: 3")
-  # This can be wrong for intermediate temps that are nevertheless on the
-  # heap because of lambda lifting:
-  #gcAssert(res.refcount shr rcShift <=% 1, "growObj: 4")
-  when logGC:
-    writeCell("growObj old cell", ol)
-    writeCell("growObj new cell", res)
-  gcTrace(ol, csZctFreed)
-  gcTrace(res, csAllocated)
-  when reallyDealloc:
-    sysAssert(allocInv(gch.region), "growObj before dealloc")
-    if ol.refcount shr rcShift <=% 1:
-      # free immediately to save space:
-      if (ol.refcount and ZctFlag) != 0:
-        var j = gch.zct.len-1
-        var d = gch.zct.d
-        while j >= 0:
-          if d[j] == ol:
-            d[j] = res
-            break
-          dec(j)
-      rawDealloc(gch.region, ol)
-    else:
-      # we split the old refcount in 2 parts. XXX This is still not entirely
-      # correct if the pointer that receives growObj's result is on the stack.
-      # A better fix would be to emit the location specific write barrier for
-      # 'growObj', but this is lots of more work and who knows what new problems
-      # this would create.
-      res.refcount = rcIncrement or gch.black
-      decRef(ol)
-  else:
-    sysAssert(ol.typ != nil, "growObj: 5")
-    zeroMem(ol, sizeof(Cell))
-  when useCellIds:
-    inc gch.idGenerator
-    res.id = gch.idGenerator
-  result = cellToUsr(res)
-  sysAssert(allocInv(gch.region), "growObj end")
-  when defined(memProfiler): nimProfile(newsize-oldsize)
-
-proc growObj(old: pointer, newsize: int): pointer {.rtl.} =
-  result = growObj(old, newsize, gch)
-
-{.push profiler:off.}
-
-
-template takeStartTime(workPackageSize) {.dirty.} =
-  const workPackage = workPackageSize
-  var debugticker = 1000
-  when withRealTime:
-    var steps = workPackage
-    var t0: Ticks
-    if gch.maxPause > 0: t0 = getticks()
-
-template takeTime {.dirty.} =
-  when withRealTime: dec steps
-  dec debugticker
-
-template checkTime {.dirty.} =
-  if debugticker <= 0:
-    echo "in loop"
-    debugticker = 1000
-  when withRealTime:
-    if steps == 0:
-      steps = workPackage
-      if gch.maxPause > 0:
-        let duration = getticks() - t0
-        # the GC's measuring is not accurate and needs some cleanup actions
-        # (stack unmarking), so subtract some short amount of time in
-        # order to miss deadlines less often:
-        if duration >= gch.maxPause - 50_000:
-          return false
-
-# ---------------- cycle collector -------------------------------------------
-
-proc freeCyclicCell(gch: var GcHeap, c: PCell) =
-  gcAssert(isAllocatedPtr(gch.region, c), "freeCyclicCell: freed pointer?")
-
-  var d = gch.decStack.d
-  for i in 0..gch.decStack.len-1:
-    gcAssert d[i] != c, "wtf man, freeing obviously alive stuff?!!"
-
-  prepareDealloc(c)
-  gcTrace(c, csCycFreed)
-  when logGC: writeCell("cycle collector dealloc cell", c)
-  when reallyDealloc:
-    sysAssert(allocInv(gch.region), "free cyclic cell")
-    rawDealloc(gch.region, c)
-  else:
-    gcAssert(c.typ != nil, "freeCyclicCell")
-    zeroMem(c, sizeof(Cell))
-
-proc sweep(gch: var GcHeap): bool =
-  takeStartTime(100)
-  echo "loop start"
-  let black = gch.black
-  while true:
-    let x = allObjectsAsProc(gch.region, addr gch.spaceIter)
-    if gch.spaceIter.state < 0: break
-    takeTime()
-    if isCell(x):
-      # cast to PCell is correct here:
-      var c = cast[PCell](x)
-      gcAssert c.color != rcGrey, "cell is still grey?"
-      if c.color != black: freeCyclicCell(gch, c)
-      # Since this is incremental, we MUST not set the object to 'white' here.
-      # We could set all the remaining objects to white after the 'sweep'
-      # completed but instead we flip the meaning of black/white to save one
-      # traversal over the heap!
-    checkTime()
-  # prepare for next iteration:
-  echo "loop end"
-  gch.spaceIter = ObjectSpaceIter()
-  result = true
-
-proc markRoot(gch: var GcHeap, c: PCell) =
-  # since we start with 'black' cells, we need to mark them here too:
-  if c.color != rcGrey:
-    c.setColor(rcGrey)
-    add(gch.greyStack, c)
-
-proc markIncremental(gch: var GcHeap): bool =
-  var L = addr(gch.greyStack.len)
-  takeStartTime(100)
-  while L[] > 0:
-    var c = gch.greyStack.d[0]
-    sysAssert(isAllocatedPtr(gch.region, c), "markIncremental: isAllocatedPtr")
-    gch.greyStack.d[0] = gch.greyStack.d[L[] - 1]
-    dec(L[])
-    takeTime()
-    if c.color == rcGrey:
-      c.setColor(gch.black)
-      forAllChildren(c, waMarkGrey)
-    checkTime()
-  gcAssert gch.greyStack.len == 0, "markIncremental: greystack not empty "
-  result = true
-
-proc markGlobals(gch: var GcHeap) =
-  for i in 0 .. < globalMarkersLen: globalMarkers[i]()
-
-proc markLocals(gch: var GcHeap) =
-  var d = gch.decStack.d
-  for i in 0 .. < gch.decStack.len:
-    sysAssert isAllocatedPtr(gch.region, d[i]), "markLocals"
-    markRoot(gch, d[i])
-
-when logGC:
-  var
-    cycleCheckA: array[100, PCell]
-    cycleCheckALen = 0
-
-  proc alreadySeen(c: PCell): bool =
-    for i in 0 .. <cycleCheckALen:
-      if cycleCheckA[i] == c: return true
-    if cycleCheckALen == len(cycleCheckA):
-      gcAssert(false, "cycle detection overflow")
-      quit 1
-    cycleCheckA[cycleCheckALen] = c
-    inc cycleCheckALen
-
-  proc debugGraph(s: PCell) =
-    if alreadySeen(s):
-      writeCell("child cell (already seen) ", s)
-    else:
-      writeCell("cell {", s)
-      forAllChildren(s, waDebug)
-      c_fprintf(c_stdout, "}\n")
-
-proc doOperation(p: pointer, op: WalkOp) =
-  if p == nil: return
-  var c: PCell = usrToCell(p)
-  gcAssert(c != nil, "doOperation: 1")
-  # the 'case' should be faster than function pointers because of easy
-  # prediction:
-  case op
-  of waZctDecRef:
-    #if not isAllocatedPtr(gch.region, c):
-    #  c_fprintf(c_stdout, "[GC] decref bug: %p", c)
-    gcAssert(isAllocatedPtr(gch.region, c), "decRef: waZctDecRef")
-    gcAssert(c.refcount >=% rcIncrement, "doOperation 2")
-    #c.refcount = c.refcount -% rcIncrement
-    when logGC: writeCell("decref (from doOperation)", c)
-    decRef(c)
-    #if c.refcount <% rcIncrement: addZCT(gch.zct, c)
-  of waMarkGlobal:
-    when hasThreadSupport:
-      # could point to a cell which we don't own and don't want to touch/trace
-      if isAllocatedPtr(gch.region, c):
-        markRoot(gch, c)
-    else:
-      markRoot(gch, c)
-  of waMarkGrey:
-    if c.color == 1-gch.black:
-      c.setColor(rcGrey)
-      add(gch.greyStack, c)
-  #of waDebug: debugGraph(c)
-
-proc nimGCvisit(d: pointer, op: int) {.compilerRtl.} =
-  doOperation(d, WalkOp(op))
-
-proc collectZCT(gch: var GcHeap): bool {.benign.}
-
-proc collectCycles(gch: var GcHeap): bool =
-  # ensure the ZCT 'color' is not used:
-  while gch.zct.len > 0: discard collectZCT(gch)
-  case gch.phase
-  of Phase.None, Phase.Marking:
-    #if gch.phase == Phase.None:
-    gch.phase = Phase.Marking
-    markGlobals(gch)
-    markLocals(gch)
-    if markIncremental(gch):
-      gch.phase = Phase.Sweeping
-  of Phase.Sweeping:
-    gcAssert gch.greyStack.len == 0, "greystack not empty"
-    if sweep(gch):
-      gch.phase = Phase.None
-      # flip black/white meanings:
-      gch.black = 1 - gch.black
-      result = true
-
-proc gcMark(gch: var GcHeap, p: pointer) {.inline.} =
-  # the addresses are not as cells on the stack, so turn them to cells:
-  sysAssert(allocInv(gch.region), "gcMark begin")
-  var cell = usrToCell(p)
-  var c = cast[ByteAddress](cell)
-  if c >% PageSize:
-    # fast check: does it look like a cell?
-    var objStart = cast[PCell](interiorAllocatedPtr(gch.region, cell))
-    if objStart != nil:
-      # mark the cell:
-      objStart.refcount = objStart.refcount +% rcIncrement
-      add(gch.decStack, objStart)
-  sysAssert(allocInv(gch.region), "gcMark end")
-
-include gc_common
-
-proc markStackAndRegisters(gch: var GcHeap) {.noinline, cdecl.} =
-  forEachStackSlot(gch, gcMark)
-
-proc collectZCT(gch: var GcHeap): bool =
-  # Note: Freeing may add child objects to the ZCT! So essentially we do
-  # deep freeing, which is bad for incremental operation. In order to
-  # avoid a deep stack, we move objects to keep the ZCT small.
-  # This is performance critical!
-  var L = addr(gch.zct.len)
-  takeStartTime(100)
-
-  while L[] > 0:
-    var c = gch.zct.d[0]
-    sysAssert(isAllocatedPtr(gch.region, c), "CollectZCT: isAllocatedPtr")
-    # remove from ZCT:
-    gcAssert((c.refcount and ZctFlag) == ZctFlag, "collectZCT")
-
-    c.refcount = c.refcount and not ZctFlag
-    gch.zct.d[0] = gch.zct.d[L[] - 1]
-    dec(L[])
-    takeTime()
-    if c.refcount <% rcIncrement:
-      # It may have a RC > 0, if it is in the hardware stack or
-      # it has not been removed yet from the ZCT. This is because
-      # ``incref`` does not bother to remove the cell from the ZCT
-      # as this might be too slow.
-      # In any case, it should be removed from the ZCT. But not
-      # freed. **KEEP THIS IN MIND WHEN MAKING THIS INCREMENTAL!**
-      when logGC: writeCell("zct dealloc cell", c)
-      gcTrace(c, csZctFreed)
-      # We are about to free the object, call the finalizer BEFORE its
-      # children are deleted as well, because otherwise the finalizer may
-      # access invalid memory. This is done by prepareDealloc():
-      prepareDealloc(c)
-      forAllChildren(c, waZctDecRef)
-      when reallyDealloc:
-        sysAssert(allocInv(gch.region), "collectZCT: rawDealloc")
-        rawDealloc(gch.region, c)
-      else:
-        sysAssert(c.typ != nil, "collectZCT 2")
-        zeroMem(c, sizeof(Cell))
-    checkTime()
-  result = true
-
-proc unmarkStackAndRegisters(gch: var GcHeap) =
-  var d = gch.decStack.d
-  for i in 0..gch.decStack.len-1:
-    sysAssert isAllocatedPtr(gch.region, d[i]), "unmarkStackAndRegisters"
-    decRef(d[i])
-  gch.decStack.len = 0
-
-proc collectCTBody(gch: var GcHeap) =
-  when withRealTime:
-    let t0 = getticks()
-  sysAssert(allocInv(gch.region), "collectCT: begin")
-
-  when not defined(nimCoroutines):
-    gch.stat.maxStackSize = max(gch.stat.maxStackSize, stackSize())
-  sysAssert(gch.decStack.len == 0, "collectCT")
-  prepareForInteriorPointerChecking(gch.region)
-  markStackAndRegisters(gch)
-  gch.stat.maxStackCells = max(gch.stat.maxStackCells, gch.decStack.len)
-  inc(gch.stat.stackScans)
-  if collectZCT(gch):
-    when cycleGC:
-      if getOccupiedMem(gch.region) >= gch.cycleThreshold or alwaysCycleGC:
-        if collectCycles(gch):
-          inc(gch.stat.cycleCollections)
-          gch.cycleThreshold = max(InitialCycleThreshold, getOccupiedMem() *
-                                   CycleIncrease)
-          gch.stat.maxThreshold = max(gch.stat.maxThreshold, gch.cycleThreshold)
-  unmarkStackAndRegisters(gch)
-  sysAssert(allocInv(gch.region), "collectCT: end")
-
-  when withRealTime:
-    let duration = getticks() - t0
-    gch.stat.maxPause = max(gch.stat.maxPause, duration)
-    when defined(reportMissedDeadlines):
-      if gch.maxPause > 0 and duration > gch.maxPause:
-        c_fprintf(c_stdout, "[GC] missed deadline: %ld\n", duration)
-
-when defined(nimCoroutines):
-  proc currentStackSizes(): int =
-    for stack in items(gch.stack):
-      result = result + stackSize(stack.starts, stack.pos)
-
-proc collectCT(gch: var GcHeap) =
-  # stackMarkCosts prevents some pathological behaviour: Stack marking
-  # becomes more expensive with large stacks and large stacks mean that
-  # cells with RC=0 are more likely to be kept alive by the stack.
-  when defined(nimCoroutines):
-    let stackMarkCosts = max(currentStackSizes() div (16*sizeof(int)), ZctThreshold)
-  else:
-    let stackMarkCosts = max(stackSize() div (16*sizeof(int)), ZctThreshold)
-  if (gch.zct.len >= stackMarkCosts or (cycleGC and
-      getOccupiedMem(gch.region)>=gch.cycleThreshold) or alwaysGC) and
-      gch.recGcLock == 0:
-    collectCTBody(gch)
-
-when withRealTime:
-  proc toNano(x: int): Nanos {.inline.} =
-    result = x * 1000
-
-  proc GC_setMaxPause*(MaxPauseInUs: int) =
-    gch.maxPause = MaxPauseInUs.toNano
-
-  proc GC_step(gch: var GcHeap, us: int, strongAdvice: bool) =
-    gch.maxPause = us.toNano
-    if (gch.zct.len >= ZctThreshold or (cycleGC and
-        getOccupiedMem(gch.region)>=gch.cycleThreshold) or alwaysGC) or
-        strongAdvice:
-      collectCTBody(gch)
-
-  proc GC_step*(us: int, strongAdvice = false) = GC_step(gch, us, strongAdvice)
-
-when not defined(useNimRtl):
-  proc GC_disable() =
-    when hasThreadSupport and hasSharedHeap:
-      discard atomicInc(gch.recGcLock, 1)
-    else:
-      inc(gch.recGcLock)
-  proc GC_enable() =
-    if gch.recGcLock > 0:
-      when hasThreadSupport and hasSharedHeap:
-        discard atomicDec(gch.recGcLock, 1)
-      else:
-        dec(gch.recGcLock)
-
-  proc GC_setStrategy(strategy: GC_Strategy) =
-    discard
-
-  proc GC_enableMarkAndSweep() =
-    gch.cycleThreshold = InitialCycleThreshold
-
-  proc GC_disableMarkAndSweep() =
-    gch.cycleThreshold = high(gch.cycleThreshold)-1
-    # set to the max value to suppress the cycle detector
-
-  proc GC_fullCollect() =
-    var oldThreshold = gch.cycleThreshold
-    gch.cycleThreshold = 0 # forces cycle collection
-    collectCT(gch)
-    gch.cycleThreshold = oldThreshold
-
-  proc GC_getStatistics(): string =
-    GC_disable()
-    result = "[GC] total memory: " & $(getTotalMem()) & "\n" &
-             "[GC] occupied memory: " & $(getOccupiedMem()) & "\n" &
-             "[GC] stack scans: " & $gch.stat.stackScans & "\n" &
-             "[GC] stack cells: " & $gch.stat.maxStackCells & "\n" &
-             "[GC] cycle collections: " & $gch.stat.cycleCollections & "\n" &
-             "[GC] max threshold: " & $gch.stat.maxThreshold & "\n" &
-             "[GC] zct capacity: " & $gch.zct.cap & "\n" &
-             "[GC] max cycle table size: " & $gch.stat.cycleTableSize & "\n" &
-             "[GC] max pause time [ms]: " & $(gch.stat.maxPause div 1000_000)
-    when defined(nimCoroutines):
-      result = result & "[GC] number of stacks: " & $gch.stack.len & "\n"
-      for stack in items(gch.stack):
-        result = result & "[GC]   stack " & stack.starts.repr & "[GC]     max stack size " & $stack.maxStackSize & "\n"
-    else:
-      result = result & "[GC] max stack size: " & $gch.stat.maxStackSize & "\n"
-    GC_enable()
-
-{.pop.}