summary refs log tree commit diff stats
path: root/lib/wrappers/libsvm.nim
diff options
context:
space:
mode:
Diffstat (limited to 'lib/wrappers/libsvm.nim')
-rw-r--r--lib/wrappers/libsvm.nim61
1 files changed, 31 insertions, 30 deletions
diff --git a/lib/wrappers/libsvm.nim b/lib/wrappers/libsvm.nim
index 00d5ac73c..8cc314412 100644
--- a/lib/wrappers/libsvm.nim
+++ b/lib/wrappers/libsvm.nim
@@ -21,24 +21,24 @@ else:
   const svmdll* = "libsvm.so"
 
 type 
-  Tnode*{.pure, final.} = object 
+  Node*{.pure, final.} = object 
     index*: cint
     value*: cdouble
 
-  Tproblem*{.pure, final.} = object 
+  Problem*{.pure, final.} = object 
     L*: cint
     y*: ptr cdouble
-    x*: ptr ptr Tnode
+    x*: ptr ptr Node
 
-  Ttype*{.size: sizeof(cint).} = enum 
+  Type*{.size: sizeof(cint).} = enum 
     C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR
   
-  TKernelType*{.size: sizeof(cint).} = enum 
+  KernelType*{.size: sizeof(cint).} = enum 
     LINEAR, POLY, RBF, SIGMOID, PRECOMPUTED
   
-  Tparameter*{.pure, final.} = object 
-    typ*: TType
-    kernelType*: TKernelType
+  Parameter*{.pure, final.} = object 
+    typ*: Type
+    kernelType*: KernelType
     degree*: cint             # for poly 
     gamma*: cdouble           # for poly/rbf/sigmoid 
     coef0*: cdouble           # for poly/sigmoid 
@@ -53,18 +53,19 @@ type
     p*: cdouble               # for EPSILON_SVR 
     shrinking*: cint          # use the shrinking heuristics 
     probability*: cint        # do probability estimates 
-  
+{.deprecated: [Tnode: Node, Tproblem: Problem, Ttype: Type,
+              TKernelType: KernelType, Tparameter: Parameter].}
 
 #
 # svm_model
 # 
 
 type 
-  TModel*{.pure, final.} = object 
-    param*: Tparameter        # parameter 
+  Model*{.pure, final.} = object 
+    param*: Parameter         # parameter 
     nr_class*: cint           # number of classes, = 2 in regression/one class svm 
     L*: cint                  # total #SV 
-    SV*: ptr ptr Tnode        # SVs (SV[l]) 
+    SV*: ptr ptr Node         # SVs (SV[l])
     sv_coef*: ptr ptr cdouble # coefficients for SVs in decision functions (sv_coef[k-1][l]) 
     rho*: ptr cdouble         # constants in decision functions (rho[k*(k-1)/2]) 
     probA*: ptr cdouble       # pariwise probability information 
@@ -74,42 +75,42 @@ type
                               # nSV[0] + nSV[1] + ... + nSV[k-1] = l 
                               # XXX 
     free_sv*: cint            # 1 if svm_model is created by svm_load_model
-                              # 0 if svm_model is created by svm_train 
-  
+                              # 0 if svm_model is created by svm_train
+{.deprecated: [TModel: Model].}
 
-proc train*(prob: ptr Tproblem, param: ptr Tparameter): ptr Tmodel{.cdecl, 
+proc train*(prob: ptr Problem, param: ptr Parameter): ptr Model{.cdecl, 
     importc: "svm_train", dynlib: svmdll.}
-proc cross_validation*(prob: ptr Tproblem, param: ptr Tparameter, nr_fold: cint, 
+proc cross_validation*(prob: ptr Problem, param: ptr Parameter, nr_fold: cint, 
                        target: ptr cdouble){.cdecl, 
     importc: "svm_cross_validation", dynlib: svmdll.}
-proc save_model*(model_file_name: cstring, model: ptr Tmodel): cint{.cdecl, 
+proc save_model*(model_file_name: cstring, model: ptr Model): cint{.cdecl, 
     importc: "svm_save_model", dynlib: svmdll.}
-proc load_model*(model_file_name: cstring): ptr Tmodel{.cdecl, 
+proc load_model*(model_file_name: cstring): ptr Model{.cdecl, 
     importc: "svm_load_model", dynlib: svmdll.}
-proc get_svm_type*(model: ptr Tmodel): cint{.cdecl, importc: "svm_get_svm_type", 
+proc get_svm_type*(model: ptr Model): cint{.cdecl, importc: "svm_get_svm_type", 
     dynlib: svmdll.}
-proc get_nr_class*(model: ptr Tmodel): cint{.cdecl, importc: "svm_get_nr_class", 
+proc get_nr_class*(model: ptr Model): cint{.cdecl, importc: "svm_get_nr_class", 
     dynlib: svmdll.}
-proc get_labels*(model: ptr Tmodel, label: ptr cint){.cdecl, 
+proc get_labels*(model: ptr Model, label: ptr cint){.cdecl, 
     importc: "svm_get_labels", dynlib: svmdll.}
-proc get_svr_probability*(model: ptr Tmodel): cdouble{.cdecl, 
+proc get_svr_probability*(model: ptr Model): cdouble{.cdecl, 
     importc: "svm_get_svr_probability", dynlib: svmdll.}
-proc predict_values*(model: ptr Tmodel, x: ptr Tnode, dec_values: ptr cdouble): cdouble{.
+proc predict_values*(model: ptr Model, x: ptr Node, dec_values: ptr cdouble): cdouble{.
     cdecl, importc: "svm_predict_values", dynlib: svmdll.}
-proc predict*(model: ptr Tmodel, x: ptr Tnode): cdouble{.cdecl, 
+proc predict*(model: ptr Model, x: ptr Node): cdouble{.cdecl, 
     importc: "svm_predict", dynlib: svmdll.}
-proc predict_probability*(model: ptr Tmodel, x: ptr Tnode, 
+proc predict_probability*(model: ptr Model, x: ptr Node, 
                           prob_estimates: ptr cdouble): cdouble{.cdecl, 
     importc: "svm_predict_probability", dynlib: svmdll.}
-proc free_model_content*(model_ptr: ptr Tmodel){.cdecl, 
+proc free_model_content*(model_ptr: ptr Model){.cdecl, 
     importc: "svm_free_model_content", dynlib: svmdll.}
-proc free_and_destroy_model*(model_ptr_ptr: ptr ptr Tmodel){.cdecl, 
+proc free_and_destroy_model*(model_ptr_ptr: ptr ptr Model){.cdecl, 
     importc: "svm_free_and_destroy_model", dynlib: svmdll.}
-proc destroy_param*(param: ptr Tparameter){.cdecl, importc: "svm_destroy_param", 
+proc destroy_param*(param: ptr Parameter){.cdecl, importc: "svm_destroy_param", 
     dynlib: svmdll.}
-proc check_parameter*(prob: ptr Tproblem, param: ptr Tparameter): cstring{.
+proc check_parameter*(prob: ptr Problem, param: ptr Parameter): cstring{.
     cdecl, importc: "svm_check_parameter", dynlib: svmdll.}
-proc check_probability_model*(model: ptr Tmodel): cint{.cdecl, 
+proc check_probability_model*(model: ptr Model): cint{.cdecl, 
     importc: "svm_check_probability_model", dynlib: svmdll.}
 
 proc set_print_string_function*(print_func: proc (arg: cstring) {.cdecl.}){.