summary refs log tree commit diff stats
path: root/nimlib/pure/math.nim
diff options
context:
space:
mode:
Diffstat (limited to 'nimlib/pure/math.nim')
-rwxr-xr-xnimlib/pure/math.nim249
1 files changed, 249 insertions, 0 deletions
diff --git a/nimlib/pure/math.nim b/nimlib/pure/math.nim
new file mode 100755
index 000000000..bca45894c
--- /dev/null
+++ b/nimlib/pure/math.nim
@@ -0,0 +1,249 @@
+#
+#
+#            Nimrod's Runtime Library
+#        (c) Copyright 2009 Andreas Rumpf
+#
+#    See the file "copying.txt", included in this
+#    distribution, for details about the copyright.
+#
+
+## Basic math routines for Nimrod.
+## This module is available for the ECMAScript target.
+
+{.push debugger:off .} # the user does not want to trace a part
+                       # of the standard library!
+
+{.push checks:off, line_dir:off, stack_trace:off.}
+
+when defined(Posix): 
+  {.passl: "-lm".}
+
+const
+  PI* = 3.1415926535897932384626433 ## the circle constant PI (Ludolph's number)
+  E* = 2.71828182845904523536028747 ## Euler's number
+
+type
+  TFloatClass* = enum ## describes the class a floating point value belongs to.
+                      ## This is the type that is returned by `classify`.
+    fcNormal,    ## value is an ordinary nonzero floating point value
+    fcSubnormal, ## value is a subnormal (a very small) floating point value
+    fcZero,      ## value is zero
+    fcNegZero,   ## value is the negative zero
+    fcNan,       ## value is Not-A-Number (NAN)
+    fcInf,       ## value is positive infinity
+    fcNegInf     ## value is negative infinity
+
+proc classify*(x: float): TFloatClass = 
+  ## classifies a floating point value. Returns `x`'s class as specified by
+  ## `TFloatClass`.
+    
+  # ECMAScript and most C compilers have no classify:
+  if x == 0.0:
+    if 1.0/x == Inf:
+      return fcZero
+    else:
+      return fcNegZero
+  if x*0.5 == x:
+    if x > 0.0: return fcInf
+    else: return fcNegInf
+  if x != x: return fcNan
+  return fcNormal
+  # XXX: fcSubnormal is not detected!
+
+
+proc binom*(n, k: int): int {.noSideEffect.} = 
+  ## computes the binomial coefficient
+  if k <= 0: return 1
+  if 2*k > n: return binom(n, n-k)
+  result = n
+  for i in countup(2, k):
+    result = (result * (n + 1 - i)) div i
+    
+proc fac*(n: int): int {.noSideEffect.} = 
+  ## computes the faculty function
+  result = 1
+  for i in countup(2, n):
+    result = result * i
+
+proc isPowerOfTwo*(x: int): bool {.noSideEffect.} =
+  ## returns true, if x is a power of two, false otherwise.
+  ## Negative numbers are not a power of two.
+  return (x and -x) == x
+
+proc nextPowerOfTwo*(x: int): int =
+  ## returns the nearest power of two, so that
+  ## result**2 >= x > (result-1)**2.
+  result = x - 1
+  when defined(cpu64):
+    result = result or (result shr 32)
+  result = result or (result shr 16)
+  result = result or (result shr 8)
+  result = result or (result shr 4)
+  result = result or (result shr 2)
+  result = result or (result shr 1)
+  Inc(result)
+
+proc countBits32*(n: int32): int {.noSideEffect.} =
+  ## counts the set bits in `n`.
+  var v = n
+  v = v -% ((v shr 1'i32) and 0x55555555'i32)
+  v = (v and 0x33333333'i32) +% ((v shr 2'i32) and 0x33333333'i32)
+  result = ((v +% (v shr 4'i32) and 0xF0F0F0F'i32) *% 0x1010101'i32) shr 24'i32
+
+proc sum*[T](x: openarray[T]): T {.noSideEffect.} = 
+  ## computes the sum of the elements in `x`. 
+  ## If `x` is empty, 0 is returned.
+  for i in items(x): result = result + i
+
+proc mean*(x: openarray[float]): float {.noSideEffect.} = 
+  ## computes the mean of the elements in `x`. 
+  ## If `x` is empty, NaN is returned.
+  result = sum(x) / toFloat(len(x))
+
+proc variance*(x: openarray[float]): float {.noSideEffect.} = 
+  ## computes the mean of the elements in `x`. 
+  ## If `x` is empty, NaN is returned.
+  result = 0.0
+  var m = mean(x)
+  for i in 0 .. high(x):
+    var diff = x[i] - m
+    result = result + diff*diff
+  result = result / toFloat(len(x))
+
+when not defined(ECMAScript):
+  proc random*(max: int): int
+    ## returns a random number in the range 0..max-1. The sequence of
+    ## random number is always the same, unless `randomize` is called
+    ## which initializes the random number generator with a "random"
+    ## number, i.e. a tickcount.
+  proc randomize*()
+    ## initializes the random number generator with a "random"
+    ## number, i.e. a tickcount. Note: Does nothing for the ECMAScript target,
+    ## as ECMAScript does not support this.
+  
+  proc sqrt*(x: float): float {.importc: "sqrt", header: "<math.h>".}
+    ## computes the square root of `x`.
+  
+  proc ln*(x: float): float {.importc: "log", header: "<math.h>".}
+    ## computes ln(x).
+  proc log10*(x: float): float {.importc: "log10", header: "<math.h>".}
+  proc log2*(x: float): float = return ln(x) / ln(2.0)
+  proc exp*(x: float): float {.importc: "exp", header: "<math.h>".}
+    ## computes e**x.
+  
+  proc frexp*(x: float, exponent: var int): float {.
+    importc: "frexp", header: "<math.h>".}
+    ## Split a number into mantissa and exponent.
+    ## `frexp` calculates the mantissa m (a float greater than or equal to 0.5
+    ## and less than 1) and the integer value n such that `x` (the original
+    ## float value) equals m * 2**n. frexp stores n in `exponent` and returns
+    ## m.
+  
+  proc round*(x: float): int {.importc: "lrint", nodecl.}
+    ## converts a float to an int by rounding.  
+  
+  proc arccos*(x: float): float {.importc: "acos", header: "<math.h>".}
+  proc arcsin*(x: float): float {.importc: "asin", header: "<math.h>".}
+  proc arctan*(x: float): float {.importc: "atan", header: "<math.h>".}
+  proc arctan2*(y, x: float): float {.importc: "atan2", header: "<math.h>".}
+    ## Calculate the arc tangent of `y` / `x`.
+    ## `atan2` returns the arc tangent of `y` / `x`; it produces correct
+    ## results even when the resulting angle is near pi/2 or -pi/2
+    ## (`x` near 0).
+  
+  proc cos*(x: float): float {.importc: "cos", header: "<math.h>".}
+  proc cosh*(x: float): float {.importc: "cosh", header: "<math.h>".}
+  proc hypot*(x, y: float): float {.importc: "hypot", header: "<math.h>".}
+    ## same as ``sqrt(x*x + y*y)``.
+  
+  proc sinh*(x: float): float {.importc: "sinh", header: "<math.h>".}
+  proc tan*(x: float): float {.importc: "tan", header: "<math.h>".}
+  proc tanh*(x: float): float {.importc: "tanh", header: "<math.h>".}
+  proc pow*(x, y: float): float {.importc: "pow", header: "<math.h>".}
+    ## computes x to power raised of y.
+    
+  # C procs:
+  proc gettime(dummy: ptr cint): cint {.importc: "time", header: "<time.h>".}
+  proc srand(seed: cint) {.importc: "srand", nodecl.}
+  proc rand(): cint {.importc: "rand", nodecl.}
+    
+  proc randomize() = srand(gettime(nil))
+  proc random(max: int): int = return int(rand()) mod max
+
+else:  
+  proc mathrandom(): float {.importc: "Math.random", nodecl.}
+  proc mathfloor(x: float): float {.importc: "Math.floor", nodecl.}
+  proc random*(max: int): int = return mathfloor(mathrandom() * max)
+  proc randomize*() = nil
+  
+  proc sqrt*(x: float): float {.importc: "Math.sqrt", nodecl.}
+  proc ln*(x: float): float {.importc: "Math.log", nodecl.}
+  proc log10*(x: float): float = return ln(x) / ln(10.0)
+  proc log2*(x: float): float = return ln(x) / ln(2.0)
+
+  proc exp*(x: float): float {.importc: "Math.exp", nodecl.}
+  proc round*(x: float): int {.importc: "Math.round", nodecl.}
+  proc pow*(x, y: float): float {.importc: "Math.pow", nodecl.}
+  
+  proc frexp*(x: float, exponent: var int): float =
+    if x == 0.0:
+      exponent = 0.0
+      result = 0.0
+    elif x < 0.0:
+      result = -frexp(-x, exponent)
+    else:
+      var ex = mathfloor(log2(x))
+      exponent = round(ex)
+      result = x / pow(2.0, ex)
+
+  proc arccos*(x: float): float {.importc: "Math.acos", nodecl.}
+  proc arcsin*(x: float): float {.importc: "Math.asin", nodecl.}
+  proc arctan*(x: float): float {.importc: "Math.atan", nodecl.}
+  proc arctan2*(y, x: float): float {.importc: "Math.atan2", nodecl.}
+  
+  proc cos*(x: float): float {.importc: "Math.cos", nodecl.}
+  proc cosh*(x: float): float = return (exp(x)+exp(-x))*0.5
+  proc hypot*(x, y: float): float = return sqrt(x*x + y*y)
+  proc sinh*(x: float): float = return (exp(x)-exp(-x))*0.5
+  proc tan*(x: float): float {.importc: "Math.tan", nodecl.}
+  proc tanh*(x: float): float =
+    var y = exp(2.0*x)
+    return (y-1.0)/(y+1.0)
+
+
+type
+  TRunningStat* = object  ## an accumulator for statistical data
+    n*: int               ## number of pushed data
+    sum*, min*, max*, mean*: float ## self-explaining
+    oldM, oldS, newS: float
+
+proc push*(s: var TRunningStat, x: float) = 
+  ## pushes a value `x` for processing
+  inc(s.n)
+  # See Knuth TAOCP vol 2, 3rd edition, page 232
+  if s.n == 1:
+    s.oldM = x
+    s.mean = x
+    s.oldS = 0.0
+  else:
+    s.mean = s.oldM + (x - s.oldM)/toFloat(s.n)
+    s.newS = s.oldS + (x - s.oldM)*(x - s.mean)
+
+    # set up for next iteration:
+    s.oldM = s.mean
+    s.oldS = s.newS
+  
+  s.sum = s.sum + x
+  if s.min > x: s.min = x
+  if s.max < x: s.max = x
+
+proc variance*(s: TRunningStat): float = 
+  ## computes the current variance of `s`
+  if s.n > 1: result = s.newS / (toFloat(s.n - 1))
+
+proc standardDeviation*(s: TRunningStat): float = 
+  ## computes the current standard deviation of `s`
+  result = sqrt(variance(s))
+
+{.pop.}
+{.pop.}