summary refs log tree commit diff stats
path: root/tests/generics/trtree.nim
diff options
context:
space:
mode:
Diffstat (limited to 'tests/generics/trtree.nim')
-rw-r--r--tests/generics/trtree.nim640
1 files changed, 0 insertions, 640 deletions
diff --git a/tests/generics/trtree.nim b/tests/generics/trtree.nim
deleted file mode 100644
index b45ac8c83..000000000
--- a/tests/generics/trtree.nim
+++ /dev/null
@@ -1,640 +0,0 @@
-discard """
-  output: '''1 [2, 3, 4, 7]
-[0, 0]'''
-  target: "c"
-  joinable: false
-disabled: 32bit
-  cmd: "nim c --gc:arc $file"
-"""
-
-# bug #13110: This test failed with --gc:arc.
-
-# this test wasn't written for 32 bit
-# don't join because the code is too messy.
-
-# Nim RTree and R*Tree implementation
-# S. Salewski, 06-JAN-2018
-
-# http://www-db.deis.unibo.it/courses/SI-LS/papers/Gut84.pdf
-# http://dbs.mathematik.uni-marburg.de/publications/myPapers/1990/BKSS90.pdf
-
-# RT: range type like float, int
-# D: Dimension
-# M: Max entries in one node
-# LT: leaf type
-
-type
-  Dim* = static[int]
-  Ext[RT] = tuple[a, b: RT] # extend (range)
-  Box*[D: Dim; RT] = array[D, Ext[RT]] # Rectangle for 2D
-  BoxCenter*[D: Dim; RT] = array[D, RT]
-  L*[D: Dim; RT, LT] = tuple[b: Box[D, RT]; l: LT] # called Index Entry or index record in the Guttman paper
-  H[M, D: Dim; RT, LT] = ref object of RootRef
-    parent: H[M, D, RT, LT]
-    numEntries: int
-    level: int
-  N[M, D: Dim; RT, LT] = tuple[b: Box[D, RT]; n: H[M, D, RT, LT]]
-  LA[M, D: Dim; RT, LT] = array[M, L[D, RT, LT]]
-  NA[M, D: Dim; RT, LT] = array[M, N[M, D, RT, LT]]
-  Leaf[M, D: Dim; RT, LT] = ref object of H[M, D, RT, LT]
-    a: LA[M, D, RT, LT]
-  Node[M, D: Dim; RT, LT] = ref object of H[M, D, RT, LT]
-    a: NA[M, D, RT, LT]
-
-  RTree*[M, D: Dim; RT, LT] = ref object of RootRef
-    root: H[M, D, RT, LT]
-    bigM: int
-    m: int
-
-  RStarTree*[M, D: Dim; RT, LT] = ref object of RTree[M, D, RT, LT]
-    firstOverflow: array[32, bool]
-    p: int
-
-proc newLeaf[M, D: Dim; RT, LT](): Leaf[M, D, RT, LT] =
-  new result
-
-proc newNode[M, D: Dim; RT, LT](): Node[M, D, RT, LT] =
-  new result
-
-proc newRTree*[M, D: Dim; RT, LT](minFill: range[30 .. 50] = 40): RTree[M, D, RT, LT] =
-  assert(M > 1 and M < 101)
-  new result
-  result.bigM = M
-  result.m = M * minFill div 100
-  result.root = newLeaf[M, D, RT, LT]()
-
-proc newRStarTree*[M, D: Dim; RT, LT](minFill: range[30 .. 50] = 40): RStarTree[M, D, RT, LT] =
-  assert(M > 1 and M < 101)
-  new result
-  result.bigM = M
-  result.m = M * minFill div 100
-  result.p = M * 30 div 100
-  result.root = newLeaf[M, D, RT, LT]()
-
-proc center(r: Box): auto =#BoxCenter[r.len, type(r[0].a)] =
-  var res: BoxCenter[r.len, type(r[0].a)]
-  for i in 0 .. r.high:
-    when r[0].a is SomeInteger:
-      res[i] = (r[i].a + r[i].b) div 2
-    elif r[0].a is SomeFloat:
-      res[i] = (r[i].a + r[i].b) / 2
-    else: assert false
-  return res
-
-proc distance(c1, c2: BoxCenter): auto =
-  var res: type(c1[0])
-  for i in 0 .. c1.high:
-    res += (c1[i] - c2[i]) * (c1[i] - c2[i])
-  return res
-
-proc overlap(r1, r2: Box): auto =
-  result = type(r1[0].a)(1)
-  for i in 0 .. r1.high:
-    result *= (min(r1[i].b, r2[i].b) - max(r1[i].a, r2[i].a))
-    if result <= 0: return 0
-
-proc union(r1, r2: Box): Box =
-  for i in 0 .. r1.high:
-    result[i].a = min(r1[i].a, r2[i].a)
-    result[i].b = max(r1[i].b, r2[i].b)
-
-proc intersect(r1, r2: Box): bool =
-  for i in 0 .. r1.high:
-    if r1[i].b < r2[i].a or r1[i].a > r2[i].b:
-      return false
-  return true
-
-proc area(r: Box): auto = #type(r[0].a) =
-  result = type(r[0].a)(1)
-  for i in 0 .. r.high:
-    result *= r[i].b - r[i].a
-
-proc margin(r: Box): auto = #type(r[0].a) =
-  result = type(r[0].a)(0)
-  for i in 0 .. r.high:
-    result += r[i].b - r[i].a
-
-# how much enlargement does r1 need to include r2
-proc enlargement(r1, r2: Box): auto =
-  area(union(r1, r2)) - area(r1)
-
-proc search*[M, D: Dim; RT, LT](t: RTree[M, D, RT, LT]; b: Box[D, RT]): seq[LT] =
-  proc s[M, D: Dim; RT, LT](n: H[M, D, RT, LT]; b: Box[D, RT]; res: var seq[LT]) =
-    if n of Node[M, D, RT, LT]:
-      let h = Node[M, D, RT, LT](n)
-      for i in 0 ..< n.numEntries:
-        if intersect(h.a[i].b, b):
-          s(h.a[i].n, b, res)
-    elif n of Leaf[M, D, RT, LT]:
-      let h = Leaf[M, D, RT, LT](n)
-      for i in 0 ..< n.numEntries:
-        if intersect(h.a[i].b, b):
-          res.add(h.a[i].l)
-    else: assert false
-  result = newSeq[LT]()
-  s(t.root, b, result)
-
-# Insertion
-# a R*TREE proc
-proc chooseSubtree[M, D: Dim; RT, LT](t: RTree[M, D, RT, LT]; b: Box[D, RT]; level: int): H[M, D, RT, LT] =
-  assert level >= 0
-  var n = t.root
-  while n.level > level:
-    let nn = Node[M, D, RT, LT](n)
-    var i0 = 0 # selected index
-    var minLoss = type(b[0].a).high
-    if n.level == 1: # childreen are leaves -- determine the minimum overlap costs
-      for i in 0 ..< n.numEntries:
-        let nx = union(nn.a[i].b, b)
-        var loss = 0
-        for j in 0 ..< n.numEntries:
-          if i == j: continue
-          loss += (overlap(nx, nn.a[j].b) - overlap(nn.a[i].b, nn.a[j].b)) # overlap (i, j) == (j, i), so maybe cache that?
-        var rep = loss < minLoss
-        if loss == minLoss:
-          let l2 = enlargement(nn.a[i].b, b) - enlargement(nn.a[i0].b, b)
-          rep = l2 < 0
-          if l2 == 0:
-            let l3 = area(nn.a[i].b) - area(nn.a[i0].b)
-            rep = l3 < 0
-            if l3 == 0:
-              rep = nn.a[i].n.numEntries < nn.a[i0].n.numEntries
-        if rep:
-          i0 = i
-          minLoss = loss
-    else:
-      for i in 0 ..< n.numEntries:
-        let loss = enlargement(nn.a[i].b, b)
-        var rep = loss < minLoss
-        if loss == minLoss:
-          let l3 = area(nn.a[i].b) - area(nn.a[i0].b)
-          rep = l3 < 0
-          if l3 == 0:
-            rep = nn.a[i].n.numEntries < nn.a[i0].n.numEntries
-        if rep:
-          i0 = i
-          minLoss = loss
-    n = nn.a[i0].n
-  return n
-
-proc pickSeeds[M, D: Dim; RT, LT](t: RTree[M, D, RT, LT]; n: Node[M, D, RT, LT] | Leaf[M, D, RT, LT]; bx: Box[D, RT]): (int, int) =
-  var i0, j0: int
-  var bi, bj: type(bx)
-  var largestWaste = type(bx[0].a).low
-  for i in -1 .. n.a.high:
-    for j in 0 .. n.a.high:
-      if unlikely(i == j): continue
-      if unlikely(i < 0):
-        bi = bx
-      else:
-        bi = n.a[i].b
-      bj = n.a[j].b
-      let b = union(bi, bj)
-      let h = area(b) - area(bi) - area(bj)
-      if h > largestWaste:
-        largestWaste = h
-        i0 = i
-        j0 = j
-  return (i0, j0)
-
-proc pickNext[M, D: Dim; RT, LT](t: RTree[M, D, RT, LT]; n0, n1, n2: Node[M, D, RT, LT] | Leaf[M, D, RT, LT]; b1, b2: Box[D, RT]): int =
-  let a1 = area(b1)
-  let a2 = area(b2)
-  var d = type(a1).low
-  for i in 0 ..< n0.numEntries:
-    let d1 = area(union(b1, n0.a[i].b)) - a1
-    let d2 = area(union(b2, n0.a[i].b)) - a2
-    if (d1 - d2) * (d1 - d2) > d:
-      result = i
-      d = (d1 - d2) * (d1 - d2)
-
-from algorithm import SortOrder, sort
-proc sortPlus[T](a: var openArray[T], ax: var T, cmp: proc (x, y: T): int {.closure.}, order = algorithm.SortOrder.Ascending) =
-  var j = 0
-  let sign = if order == algorithm.SortOrder.Ascending: 1 else: -1
-  for i in 1 .. a.high:
-    if cmp(a[i], a[j]) * sign < 0:
-      j = i
-  if cmp(a[j], ax) * sign < 0:
-    swap(ax, a[j])
-  a.sort(cmp, order)
-
-# R*TREE procs
-proc rstarSplit[M, D: Dim; RT, LT](t: RStarTree[M, D, RT, LT]; n: var Node[M, D, RT, LT] | var Leaf[M, D, RT, LT]; lx: L[D, RT, LT] | N[M, D, RT, LT]): type(n) =
-  type NL = type(lx)
-  var nBest: type(n)
-  new nBest
-  var lx = lx
-  when n is Node[M, D, RT, LT]:
-    lx.n.parent = n
-  var lxbest: type(lx)
-  var m0 = lx.b[0].a.high
-  for d2 in 0 ..< 2 * D:
-    let d = d2 div 2
-    if d2 mod 2 == 0:
-      sortPlus(n.a, lx, proc (x, y: NL): int = cmp(x.b[d].a, y.b[d].a))
-    else:
-      sortPlus(n.a, lx, proc (x, y: NL): int = cmp(x.b[d].b, y.b[d].b))
-    for i in t.m - 1 .. n.a.high - t.m + 1:
-      var b = lx.b
-      for j in 0 ..< i: # we can precalculate union() for range 0 .. t.m - 1, but that seems to give no real benefit.Maybe for very large M?
-        #echo "x",j
-        b = union(n.a[j].b, b)
-      var m = margin(b)
-      b = n.a[^1].b
-      for j in i ..< n.a.high: # again, precalculation of tail would be possible
-        #echo "y",j
-        b = union(n.a[j].b, b)
-      m += margin(b)
-      if m < m0:
-        nbest[] = n[]
-        lxbest = lx
-        m0 = m
-  var i0 = -1
-  var o0 = lx.b[0].a.high
-  for i in t.m - 1 .. n.a.high - t.m + 1:
-    var b1 = lxbest.b
-    for j in 0 ..< i:
-      b1 = union(nbest.a[j].b, b1)
-    var b2 = nbest.a[^1].b
-    for j in i ..< n.a.high:
-      b2 = union(nbest.a[j].b, b2)
-    let o = overlap(b1, b2)
-    if o < o0:
-      i0 = i
-      o0 = o
-  n.a[0] = lxbest
-  for i in 0 ..< i0:
-    n.a[i + 1] = nbest.a[i]
-  new result
-  result.level = n.level
-  result.parent = n.parent
-  for i in i0 .. n.a.high:
-    result.a[i - i0] = nbest.a[i]
-  n.numEntries = i0 + 1
-  result.numEntries = M - i0
-  when n is Node[M, D, RT, LT]:
-    for i in 0 ..< result.numEntries:
-      result.a[i].n.parent = result
-
-proc quadraticSplit[M, D: Dim; RT, LT](t: RTree[M, D, RT, LT]; n: var Node[M, D, RT, LT] | var Leaf[M, D, RT, LT]; lx: L[D, RT, LT] | N[M, D, RT, LT]): type(n) =
-  var n1, n2: type(n)
-  var s1, s2: int
-  new n1
-  new n2
-  n1.parent = n.parent
-  n2.parent = n.parent
-  n1.level = n.level
-  n2.level = n.level
-  var lx = lx
-  when n is Node[M, D, RT, LT]:
-    lx.n.parent = n
-  (s1, s2) = pickSeeds(t, n, lx.b)
-  assert s1 >= -1 and s2 >= 0
-  if unlikely(s1 < 0):
-    n1.a[0] = lx
-  else:
-    n1.a[0] = n.a[s1]
-    dec(n.numEntries)
-    if s2 == n.numEntries: # important fix
-      s2 = s1
-    n.a[s1] = n.a[n.numEntries]
-  inc(n1.numEntries)
-  var b1 = n1.a[0].b
-  n2.a[0] = n.a[s2]
-  dec(n.numEntries)
-  n.a[s2] = n.a[n.numEntries]
-  inc(n2.numEntries)
-  var b2 = n2.a[0].b
-  if s1 >= 0:
-    n.a[n.numEntries] = lx
-    inc(n.numEntries)
-  while n.numEntries > 0 and n1.numEntries < (t.bigM + 1 - t.m) and n2.numEntries < (t.bigM + 1 - t.m):
-    let next = pickNext(t, n, n1, n2, b1, b2)
-    let d1 = area(union(b1, n.a[next].b)) - area(b1)
-    let d2 = area(union(b2, n.a[next].b)) - area(b2)
-    if (d1 < d2) or (d1 == d2 and ((area(b1) < area(b2)) or (area(b1) == area(b2) and n1.numEntries < n2.numEntries))):
-      n1.a[n1.numEntries] = n.a[next]
-      b1 = union(b1, n.a[next].b)
-      inc(n1.numEntries)
-    else:
-      n2.a[n2.numEntries] = n.a[next]
-      b2 = union(b2, n.a[next].b)
-      inc(n2.numEntries)
-    dec(n.numEntries)
-    n.a[next] = n.a[n.numEntries]
-  if n.numEntries == 0:
-    discard
-  elif n1.numEntries == (t.bigM + 1 - t.m):
-    while n.numEntries > 0:
-      dec(n.numEntries)
-      n2.a[n2.numEntries] = n.a[n.numEntries]
-      inc(n2.numEntries)
-  elif n2.numEntries == (t.bigM + 1 - t.m):
-    while n.numEntries > 0:
-      dec(n.numEntries)
-      n1.a[n1.numEntries] = n.a[n.numEntries]
-      inc(n1.numEntries)
-  when n is Node[M, D, RT, LT]:
-    for i in 0 ..< n2.numEntries:
-      n2.a[i].n.parent = n2
-  n[] = n1[]
-  return n2
-
-proc overflowTreatment[M, D: Dim; RT, LT](t: RStarTree[M, D, RT, LT]; n: var Node[M, D, RT, LT] | var Leaf[M, D, RT, LT]; lx: L[D, RT, LT] | N[M, D, RT, LT]): type(n)
-
-proc adjustTree[M, D: Dim; RT, LT](t: RTree[M, D, RT, LT]; l, ll: H[M, D, RT, LT]; hb: Box[D, RT]) =
-  var n = l
-  var nn = ll
-  assert n != nil
-  while true:
-    if n == t.root:
-      if nn == nil:
-        break
-      t.root = newNode[M, D, RT, LT]()
-      t.root.level = n.level + 1
-      Node[M, D, RT, LT](t.root).a[0].n = n
-      n.parent = t.root
-      nn.parent = t.root
-      t.root.numEntries = 1
-    let p = Node[M, D, RT, LT](n.parent)
-    var i = 0
-    while p.a[i].n != n:
-      inc(i)
-    var b: type(p.a[0].b)
-    if n of Leaf[M, D, RT, LT]:
-      when false:#if likely(nn.isNil): # no performance gain
-        b = union(p.a[i].b, Leaf[M, D, RT, LT](n).a[n.numEntries - 1].b)
-      else:
-        b = Leaf[M, D, RT, LT](n).a[0].b
-        for j in 1 ..< n.numEntries:
-          b = trtree.union(b, Leaf[M, D, RT, LT](n).a[j].b)
-    elif n of Node[M, D, RT, LT]:
-      b = Node[M, D, RT, LT](n).a[0].b
-      for j in 1 ..< n.numEntries:
-        b = union(b, Node[M, D, RT, LT](n).a[j].b)
-    else:
-      assert false
-    #if nn.isNil and p.a[i].b == b: break # no performance gain
-    p.a[i].b = b
-    n = H[M, D, RT, LT](p)
-    if unlikely(nn != nil):
-      if nn of Leaf[M, D, RT, LT]:
-        b = Leaf[M, D, RT, LT](nn).a[0].b
-        for j in 1 ..< nn.numEntries:
-          b = union(b, Leaf[M, D, RT, LT](nn).a[j].b)
-      elif nn of Node[M, D, RT, LT]:
-        b = Node[M, D, RT, LT](nn).a[0].b
-        for j in 1 ..< nn.numEntries:
-          b = union(b, Node[M, D, RT, LT](nn).a[j].b)
-      else:
-        assert false
-      if p.numEntries < p.a.len:
-        p.a[p.numEntries].b = b
-        p.a[p.numEntries].n = nn
-        inc(p.numEntries)
-        assert n != nil
-        nn = nil
-      else:
-        let h: N[M, D, RT, LT] = (b, nn)
-        nn = quadraticSplit(t, p, h)
-    assert n == H[M, D, RT, LT](p)
-    assert n != nil
-    assert t.root != nil
-
-proc insert*[M, D: Dim; RT, LT](t: RTree[M, D, RT, LT]; leaf: N[M, D, RT, LT] | L[D, RT, LT]; level: int = 0) =
-  when leaf is N[M, D, RT, LT]:
-    assert level > 0
-    type NodeLeaf = Node[M, D, RT, LT]
-  else:
-    assert level == 0
-    type NodeLeaf = Leaf[M, D, RT, LT]
-  for d in leaf.b:
-    assert d.a <= d.b
-  let l = NodeLeaf(chooseSubtree(t, leaf.b, level))
-  if l.numEntries < l.a.len:
-    l.a[l.numEntries] = leaf
-    inc(l.numEntries)
-    when leaf is N[M, D, RT, LT]:
-      leaf.n.parent = l
-    adjustTree(t, l, nil, leaf.b)
-  else:
-    let l2 = quadraticSplit(t, l, leaf)
-    assert l2.level == l.level
-    adjustTree(t, l, l2, leaf.b)
-
-# R*Tree insert procs
-proc rsinsert[M, D: Dim; RT, LT](t: RStarTree[M, D, RT, LT]; leaf: N[M, D, RT, LT] | L[D, RT, LT]; level: int)
-
-proc reInsert[M, D: Dim; RT, LT](t: RStarTree[M, D, RT, LT]; n: var Node[M, D, RT, LT] | var Leaf[M, D, RT, LT]; lx: L[D, RT, LT] | N[M, D, RT, LT]) =
-  type NL = type(lx)
-  var lx = lx
-  var buf: type(n.a)
-  let p = Node[M, D, RT, LT](n.parent)
-  var i = 0
-  while p.a[i].n != n:
-    inc(i)
-  let c = center(p.a[i].b)
-  sortPlus(n.a, lx, proc (x, y: NL): int = cmp(distance(center(x.b), c), distance(center(y.b), c)))
-  n.numEntries = M - t.p
-  swap(n.a[n.numEntries], lx)
-  inc n.numEntries
-  var b = n.a[0].b
-  for i in 1 ..< n.numEntries:
-    b = union(b, n.a[i].b)
-  p.a[i].b = b
-  for i in M - t.p + 1 .. n.a.high:
-    buf[i] = n.a[i]
-  rsinsert(t, lx, n.level)
-  for i in M - t.p + 1 .. n.a.high:
-    rsinsert(t, buf[i], n.level)
-
-proc overflowTreatment[M, D: Dim; RT, LT](t: RStarTree[M, D, RT, LT]; n: var Node[M, D, RT, LT] | var Leaf[M, D, RT, LT]; lx: L[D, RT, LT] | N[M, D, RT, LT]): type(n) =
-  if n.level != t.root.level and t.firstOverflow[n.level]:
-    t.firstOverflow[n.level] = false
-    reInsert(t, n, lx)
-    return nil
-  else:
-    let l2 = rstarSplit(t, n, lx)
-    assert l2.level == n.level
-    return l2
-
-proc rsinsert[M, D: Dim; RT, LT](t: RStarTree[M, D, RT, LT]; leaf: N[M, D, RT, LT] | L[D, RT, LT]; level: int) =
-  when leaf is N[M, D, RT, LT]:
-    assert level > 0
-    type NodeLeaf = Node[M, D, RT, LT]
-  else:
-    assert level == 0
-    type NodeLeaf = Leaf[M, D, RT, LT]
-  let l = NodeLeaf(chooseSubtree(t, leaf.b, level))
-  if l.numEntries < l.a.len:
-    l.a[l.numEntries] = leaf
-    inc(l.numEntries)
-    when leaf is N[M, D, RT, LT]:
-      leaf.n.parent = l
-    adjustTree(t, l, nil, leaf.b)
-  else:
-    when leaf is N[M, D, RT, LT]: # TODO do we need this?
-      leaf.n.parent = l
-    let l2 = overflowTreatment(t, l, leaf)
-    if l2 != nil:
-      assert l2.level == l.level
-      adjustTree(t, l, l2, leaf.b)
-
-proc insert*[M, D: Dim; RT, LT](t: RStarTree[M, D, RT, LT]; leaf: L[D, RT, LT]) =
-  for d in leaf.b:
-    assert d.a <= d.b
-  for i in mitems(t.firstOverflow):
-    i = true
-  rsinsert(t, leaf, 0)
-
-# delete
-proc findLeaf[M, D: Dim; RT, LT](t: RTree[M, D, RT, LT]; leaf: L[D, RT, LT]): Leaf[M, D, RT, LT] =
-  proc fl[M, D: Dim; RT, LT](h: H[M, D, RT, LT]; leaf: L[D, RT, LT]): Leaf[M, D, RT, LT] =
-    var n = h
-    if n of Node[M, D, RT, LT]:
-      for i in 0 ..< n.numEntries:
-        if intersect(Node[M, D, RT, LT](n).a[i].b, leaf.b):
-          let l = fl(Node[M, D, RT, LT](n).a[i].n, leaf)
-          if l != nil:
-            return l
-    elif n of Leaf[M, D, RT, LT]:
-      for i in 0 ..< n.numEntries:
-        if Leaf[M, D, RT, LT](n).a[i] == leaf:
-          return Leaf[M, D, RT, LT](n)
-    else:
-      assert false
-    return nil
-  fl(t.root, leaf)
-
-proc condenseTree[M, D: Dim; RT, LT](t: RTree[M, D, RT, LT]; leaf: Leaf[M, D, RT, LT]) =
-  var n: H[M, D, RT, LT] = leaf
-  var q = newSeq[H[M, D, RT, LT]]()
-  var b: typeof(leaf.a[0].b)
-  while n != t.root:
-    let p = Node[M, D, RT, LT](n.parent)
-    var i = 0
-    while p.a[i].n != n:
-      inc(i)
-    if n.numEntries < t.m:
-      dec(p.numEntries)
-      p.a[i] = p.a[p.numEntries]
-      q.add(n)
-    else:
-      if n of Leaf[M, D, RT, LT]:
-        b = Leaf[M, D, RT, LT](n).a[0].b
-        for j in 1 ..< n.numEntries:
-          b = union(b, Leaf[M, D, RT, LT](n).a[j].b)
-      elif n of Node[M, D, RT, LT]:
-        b = Node[M, D, RT, LT](n).a[0].b
-        for j in 1 ..< n.numEntries:
-          b = union(b, Node[M, D, RT, LT](n).a[j].b)
-      else:
-        assert false
-      p.a[i].b = b
-    n = n.parent
-  if t of RStarTree[M, D, RT, LT]:
-    for n in q:
-      if n of Leaf[M, D, RT, LT]:
-        for i in 0 ..< n.numEntries:
-          for i in mitems(RStarTree[M, D, RT, LT](t).firstOverflow):
-            i = true
-          rsinsert(RStarTree[M, D, RT, LT](t), Leaf[M, D, RT, LT](n).a[i], 0)
-      elif n of Node[M, D, RT, LT]:
-        for i in 0 ..< n.numEntries:
-          for i in mitems(RStarTree[M, D, RT, LT](t).firstOverflow):
-            i = true
-          rsinsert(RStarTree[M, D, RT, LT](t), Node[M, D, RT, LT](n).a[i], n.level)
-      else:
-        assert false
-  else:
-    for n in q:
-      if n of Leaf[M, D, RT, LT]:
-        for i in 0 ..< n.numEntries:
-          insert(t, Leaf[M, D, RT, LT](n).a[i])
-      elif n of Node[M, D, RT, LT]:
-        for i in 0 ..< n.numEntries:
-          insert(t, Node[M, D, RT, LT](n).a[i], n.level)
-      else:
-        assert false
-
-proc delete*[M, D: Dim; RT, LT](t: RTree[M, D, RT, LT]; leaf: L[D, RT, LT]): bool {.discardable.} =
-  let l = findLeaf(t, leaf)
-  if l.isNil:
-    return false
-  else:
-    var i = 0
-    while l.a[i] != leaf:
-      inc(i)
-    dec(l.numEntries)
-    l.a[i] = l.a[l.numEntries]
-    condenseTree(t, l)
-    if t.root.numEntries == 1:
-      if t.root of Node[M, D, RT, LT]:
-        t.root = Node[M, D, RT, LT](t.root).a[0].n
-      t.root.parent = nil
-    return true
-
-
-var t = [4, 1, 3, 2]
-var xt = 7
-sortPlus(t, xt, system.cmp, SortOrder.Ascending)
-echo xt, " ", t
-
-type
-  RSE = L[2, int, int]
-  RSeq = seq[RSE]
-
-proc rseq_search(rs: RSeq; rse: RSE): seq[int] =
-  result = newSeq[int]()
-  for i in rs:
-    if intersect(i.b, rse.b):
-      result.add(i.l)
-
-proc rseq_delete(rs: var RSeq; rse: RSE): bool =
-  for i in 0 .. rs.high:
-    if rs[i] == rse:
-      #rs.delete(i)
-      rs[i] = rs[rs.high]
-      rs.setLen(rs.len - 1)
-      return true
-
-import random, algorithm
-
-proc test(n: int) =
-  var b: Box[2, int]
-  echo center(b)
-  var x1, x2, y1, y2: int
-  var t = newRStarTree[8, 2, int, int]()
-  #var t = newRTree[8, 2, int, int]()
-  var rs = newSeq[RSE]()
-  for i in 0 .. 5:
-    for i in 0 .. n - 1:
-      x1 = rand(1000)
-      y1 = rand(1000)
-      x2 = x1 + rand(25)
-      y2 = y1 + rand(25)
-      b = [(x1, x2), (y1, y2)]
-      let el: L[2, int, int] = (b, i + 7)
-      t.insert(el)
-      rs.add(el)
-
-    for i in 0 .. (n div 4):
-      let j = rand(rs.high)
-      var el = rs[j]
-      assert t.delete(el)
-      assert rs.rseq_delete(el)
-
-    for i in 0 .. n - 1:
-      x1 = rand(1000)
-      y1 = rand(1000)
-      x2 = x1 + rand(100)
-      y2 = y1 + rand(100)
-      b = [(x1, x2), (y1, y2)]
-      let el: L[2, int, int] = (b, i)
-      let r = search(t, b)
-      let r2 = rseq_search(rs, el)
-      assert r.len == r2.len
-      assert r.sorted(system.cmp) == r2.sorted(system.cmp)
-
-test(500)