summary refs log tree commit diff stats
path: root/tests/stdlib/tcstring.nim
diff options
context:
space:
mode:
Diffstat (limited to 'tests/stdlib/tcstring.nim')
0 files changed, 0 insertions, 0 deletions
ref='#n82'>82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
; Mu: An exploration on making the global structure of programs more accessible.
;
;   "Is it a language, or an operating system, or a virtual machine? Mu."
;   (with apologies to Robert Pirsig: http://en.wikipedia.org/wiki/Mu_%28negative%29#In_popular_culture)
;
; I want to live in a world where I can have an itch to tweak a program, clone
; its open-source repository, orient myself on how it's organized, and make
; the simple change I envisioned, all in an afternoon. This codebase tries to
; make this possible for its readers. (More details: http://akkartik.name/about)
;
; What helps comprehend the global structure of programs? For starters, let's
; enumerate what doesn't: idiomatic code, adherence to a style guide or naming
; convention, consistent indentation, API documentation for each class, etc.
; These conventional considerations improve matters in the small, but don't
; help understand global organization. They help existing programmers manage
; day-to-day operations, but they can't turn outsider programmers into
; insiders. (Elaboration: http://akkartik.name/post/readable-bad)
;
; In my experience, two things have improved matters so far: version control
; and automated tests. Version control lets me rewind back to earlier, simpler
; times when the codebase was simpler, when its core skeleton was easier to
; ascertain. Indeed, arguably what came first is by definition the skeleton of
; a program, modulo major rewrites. Once you understand the skeleton, it
; becomes tractable to 'play back' later major features one by one. (Previous
; project that fleshed out this idea: http://akkartik.name/post/wart-layers)
;
; The second and biggest boost to comprehension comes from tests. Tests are
; good for writers for well-understood reasons: they avoid regressions, and
; they can influence code to be more decoupled and easier to change. In
; addition, tests are also good for the outsider reader because they permit
; active reading. If you can't build a program and run its tests it can't help
; you understand it. It hangs limp at best, and might even be actively
; misleading. If you can run its tests, however, it comes alive. You can step
; through scenarios in a debugger. You can add logging and scan logs to make
; sense of them. You can run what-if scenarios: "why is this line not written
; like this?" Make a change, rerun tests: "Oh, that's why." (Elaboration:
; http://akkartik.name/post/literate-programming)
;
; However, tests are only useful to the extent that they exist. Think back to
; your most recent codebase. Do you feel comfortable releasing a new version
; just because the tests pass? I'm not aware of any such project. There's just
; too many situations envisaged by the authors that were never encoded in a
; test. Even disciplined authors can't test for performance or race conditions
; or fault tolerance. If a line is phrased just so because of some subtle
; performance consideration, it's hard to communicate to newcomers.
;
; This isn't an arcane problem, and it isn't just a matter of altruism. As
; more and more such implicit considerations proliferate, and as the original
; authors are replaced by latecomers for day-to-day operations, knowledge is
; actively forgotten and lost. The once-pristine codebase turns into legacy
; code that is hard to modify without expensive and stress-inducing
; regressions.
;
; How to write tests for performance, fault tolerance, race conditions, etc.?
; How can we state and verify that a codepath doesn't ever perform memory
; allocation, or write to disk? It requires better, more observable primitives
; than we currently have. Modern operating systems have their roots in the
; 70s. Their interfaces were not designed to be testable. They provide no way
; to simulate a full disk, or a specific sequence of writes from different
; threads. We need something better.
;
; This project tries to move, groping, towards that 'something better', a
; platform that is both thoroughly tested and allows programs written for it
; to be thoroughly tested. It tries to answer the question:
;
;   If Denis Ritchie and Ken Thompson were to set out today to co-design unix
;   and C, knowing what we know about automated tests, what would they do
;   differently?
;
; To try to impose *some* constraints on this gigantic yak-shave, we'll try to
; keep both language and OS as simple as possible, focused entirely on
; permitting more kinds of tests, on first *collecting* all the information
; about implicit considerations in some form so that readers and tools can
; have at least some hope of making sense of it.
;
; The initial language will be just assembly. We'll try to make it convenient
; to program in with some simple localized rewrite rules inspired by lisp
; macros and literate programming. Programmers will have to do their own
; memory management and register allocation, but we'll provide libraries to
; help with them.
;
; The initial OS will provide just memory management and concurrency
; primitives. No users or permissions (we don't live on mainframes anymore),
; no kernel- vs user-mode, no virtual memory or process abstraction, all
; threads sharing a single address space (use VMs for security and
; sandboxing). The only use case we care about is getting a test harness to
; run some code, feed it data through blocking channels, stop it and observe
; its internals. The code under test is expected to cooperate in such testing,
; by logging important events for the test harness to observe. (More info:
; http://akkartik.name/post/tracing-tests)
;
; The common thread here is elimination of abstractions, and it's not an
; accident. Abstractions help insiders manage the evolution of a codebase, but
; they actively hinder outsiders in understanding it from scratch. This
; matters, because the funnel to turn outsiders into insiders is critical to
; the long-term life of a codebase. Perhaps authors should raise their
; estimation of the costs of abstraction, and go against their instincts for
; introducing it. That's what I'll be trying to do: question every abstraction
; before I introduce it. We'll see how it goes.

; ---

; Mu is currently built atop Racket and Arc, but this is temporary and
; contingent. We want to keep our options open, whether to port to a different
; host language, and easy to rewrite to native code for any platform. So we'll
; try to avoid 'cheating': relying on the host platform for advanced
; functionality.
;
; Other than that, we'll say no more about the code, and focus in the rest of
; this file on the scenarios the code cares about.

(load "mu.arc")

; Our language is assembly-like in that functions consist of series of
; statements, and statements consist of an operation and its arguments (input
; and output).
;
;   oarg1, oarg2, ... <- op arg1, arg2, ...
;
; Args must be atomic, like an integer or a memory address, they can't be
; expressions doing arithmetic or function calls. But we can have any number
; of them.
;
; Since we're building on lisp, our code samples won't look quite like the
; idealized syntax above. For now they will be lists of lists:
;
;   (function-name
;     ((oarg1 oarg2 ... <- op arg1 arg2 ...)
;      ...
;      ...))
;
; Each arg/oarg is itself a list, with the payload value at the head, and
; various metadata in the rest. In this first example the only metadata is types:
; 'integer' for a memory location containing an integer, and 'literal' for a
; value included directly in code. (Assembly languages traditionally call them
; 'immediate' operands.) In the future a simple tool will check that the types
; line up as expected in each op. A different tool might add types where they
; aren't provided. Instead of a monolithic compiler I want to build simple,
; lightweight tools that can be combined in various ways, say for using
; different typecheckers in different subsystems.
;
; In our tests we'll define such mu functions using a call to 'add-fns', so
; look for it. Everything outside 'add-fns' is just test-harness details.

(reset)
(new-trace "literal")
(add-fns
  '((main
      ((1 integer) <- copy (23 literal)))))
(run 'main)
;? (prn memory*)
(if (~is memory*.1 23)
  (prn "F - 'copy' writes its lone 'arg' after the instruction name to its lone 'oarg' or output arg before the arrow. After this test, the value 23 is stored in memory address 1."))
;? (quit)

; Our basic arithmetic ops can operate on memory locations or literals.
; (Ignore hardware details like registers for now.)

(reset)
(new-trace "add")
(add-fns
  '((main
      ((1 integer) <- copy (1 literal))
      ((2 integer) <- copy (3 literal))
      ((3 integer) <- add (1 integer) (2 integer)))))
(run 'main)
(if (~iso memory* (obj 1 1  2 3  3 4))
  (prn "F - 'add' operates on two addresses"))

(reset)
(new-trace "add-literal")
(add-fns
  '((main
      ((1 integer) <- add (2 literal) (3 literal)))))
(run 'main)
(if (~is memory*.1 5)
  (prn "F - ops can take 'literal' operands (but not return them)"))

(reset)
(new-trace "sub-literal")
(add-fns
  '((main
      ((1 integer) <- sub (1 literal) (3 literal)))))
(run 'main)
;? (prn memory*)
(if (~is memory*.1 -2)
  (prn "F - 'sub' subtracts the second arg from the first"))

(reset)
(new-trace "mul-literal")
(add-fns
  '((main
      ((1 integer) <- mul (2 literal) (3 literal)))))
(run 'main)
;? (prn memory*)
(if (~is memory*.1 6)
  (prn "F - 'mul' multiplies like 'add' adds"))

(reset)
(new-trace "div-literal")
(add-fns
  '((main
      ((1 integer) <- div (8 literal) (3 literal)))))
(run 'main)
;? (prn memory*)
(if (~is memory*.1 (/ real.8 3))
  (prn "F - 'div' divides like 'sub' subtracts"))

(reset)
(new-trace "idiv-literal")
(add-fns
  '((main
      ((1 integer) (2 integer) <- idiv (23 literal) (6 literal)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 3  2 5))
  (prn "F - 'idiv' performs integer division, returning quotient and remainder"))

; Basic boolean operations: and, or, not
; There are easy ways to encode booleans in binary, but we'll skip past those
; details for now.

(reset)
(new-trace "and-literal")
(add-fns
  '((main
      ((1 boolean) <- and (t literal) (nil literal)))))
(run 'main)
;? (prn memory*)
(if (~is memory*.1 nil)
  (prn "F - logical 'and' for booleans"))

; Basic comparison operations: lt, le, gt, ge, eq, neq

(reset)
(new-trace "lt-literal")
(add-fns
  '((main
      ((1 boolean) <- lt (4 literal) (3 literal)))))
(run 'main)
;? (prn memory*)
(if (~is memory*.1 nil)
  (prn "F - 'lt' is the less-than inequality operator"))

(reset)
(new-trace "le-literal-false")
(add-fns
  '((main
      ((1 boolean) <- le (4 literal) (3 literal)))))
(run 'main)
;? (prn memory*)
(if (~is memory*.1 nil)
  (prn "F - 'le' is the <= inequality operator"))

(reset)
(new-trace "le-literal-true")
(add-fns
  '((main
      ((1 boolean) <- le (4 literal) (4 literal)))))
(run 'main)
;? (prn memory*)
(if (~is memory*.1 t)
  (prn "F - 'le' returns true for equal operands"))

(reset)
(new-trace "le-literal-true-2")
(add-fns
  '((main
      ((1 boolean) <- le (4 literal) (5 literal)))))
(run 'main)
;? (prn memory*)
(if (~is memory*.1 t)
  (prn "F - le is the <= inequality operator - 2"))

; Control flow operations: jump, jump-if, jump-unless
; These introduce a new type -- 'offset' -- for literals that refer to memory
; locations relative to the current location.

(reset)
(new-trace "jump-skip")
(add-fns
  '((main
      ((1 integer) <- copy (8 literal))
      (jump (1 offset))
      ((2 integer) <- copy (3 literal))  ; should be skipped
      (reply))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 8))
  (prn "F - 'jump' skips some instructions"))

(reset)
(new-trace "jump-target")
(add-fns
  '((main
      ((1 integer) <- copy (8 literal))
      (jump (1 offset))
      ((2 integer) <- copy (3 literal))  ; should be skipped
      (reply)
      ((3 integer) <- copy (34 literal)))))  ; never reached
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 8))
  (prn "F - 'jump' doesn't skip too many instructions"))
;? (quit)

(reset)
(new-trace "jump-if-skip")
(add-fns
  '((main
      ((2 integer) <- copy (1 literal))
      ((1 boolean) <- eq (1 literal) (2 integer))
      (jump-if (1 boolean) (1 offset))
      ((2 integer) <- copy (3 literal))
      (reply)
      ((3 integer) <- copy (34 literal)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 t  2 1))
  (prn "F - 'jump-if' is a conditional 'jump'"))

(reset)
(new-trace "jump-if-fallthrough")
(add-fns
  '((main
      ((1 boolean) <- eq (1 literal) (2 literal))
      (jump-if (3 boolean) (1 offset))
      ((2 integer) <- copy (3 literal))
      (reply)
      ((3 integer) <- copy (34 literal)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 nil  2 3))
  (prn "F - if 'jump-if's first arg is false, it doesn't skip any instructions"))

(reset)
(new-trace "jump-if-backward")
(add-fns
  '((main
      ((1 integer) <- copy (2 literal))
      ((2 integer) <- copy (1 literal))
      ; loop
      ((2 integer) <- add (2 integer) (2 integer))
      ((3 boolean) <- eq (1 integer) (2 integer))
      (jump-if (3 boolean) (-3 offset))  ; to loop
      ((4 integer) <- copy (3 literal))
      (reply)
      ((3 integer) <- copy (34 literal)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 2  2 4  3 nil  4 3))
  (prn "F - 'jump-if' can take a negative offset to make backward jumps"))

; Data movement relies on addressing modes:
;   'direct' - refers to a memory location; default for most types.
;   'literal' - directly encoded in the code; implicit for some types like 'offset'.

(reset)
(new-trace "direct-addressing")
(add-fns
  '((main
      ((1 integer) <- copy (34 literal))
      ((2 integer) <- copy (1 integer)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 34  2 34))
  (prn "F - 'copy' performs direct addressing"))

; 'Indirect' addressing refers to an address stored in a memory location.
; Indicated by the metadata 'deref'. Usually requires an address type.
; In the test below, the memory location 1 contains '2', so an indirect read
; of location 1 returns the value of location 2.

(reset)
(new-trace "indirect-addressing")
(add-fns
  '((main
      ((1 integer-address) <- copy (2 literal))  ; unsafe; can't do this in general
      ((2 integer) <- copy (34 literal))
      ((3 integer) <- copy (1 integer-address deref)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 2  2 34  3 34))
  (prn "F - 'copy' performs indirect addressing"))

; Output args can use indirect addressing. In the test below the value is
; stored at the location stored in location 1 (i.e. location 2).

(reset)
(new-trace "indirect-addressing-oarg")
(add-fns
  '((main
      ((1 integer-address) <- copy (2 literal))
      ((2 integer) <- copy (34 literal))
      ((1 integer-address deref) <- add (2 integer) (2 literal)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 2  2 36))
  (prn "F - instructions can perform indirect addressing on output arg"))

; Until now we've dealt with scalar types like integers and booleans and
; addresses, where mu looks like other assembly languages. In addition, mu
; provides first-class support for compound types: arrays and records.
;
; 'get' accesses fields in records
; 'index' accesses indices in arrays
;
; Both operations require knowledge about the types being worked on, so all
; types used in mu programs are defined in a single global system-wide table
; (see types* in mu.arc for the complete list of types; we'll add to it over
; time).

(reset)
(new-trace "get-record")
(add-fns
  '((main
      ((1 integer) <- copy (34 literal))
      ((2 boolean) <- copy (nil literal))
      ((3 boolean) <- get (1 integer-boolean-pair) (1 offset))
      ((4 integer) <- get (1 integer-boolean-pair) (0 offset)))))
;? (set dump-trace*)
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 34  2 nil  3 nil  4 34))
  (prn "F - 'get' accesses fields of records"))

(reset)
(new-trace "get-indirect")
(add-fns
  '((main
      ((1 integer) <- copy (34 literal))
      ((2 boolean) <- copy (nil literal))
      ((3 integer-boolean-pair-address) <- copy (1 literal))
      ((4 boolean) <- get (3 integer-boolean-pair-address deref) (1 offset))
      ((5 integer) <- get (3 integer-boolean-pair-address deref) (0 offset)))))
;? (set dump-trace*)
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 34  2 nil  3 1  4 nil  5 34))
  (prn "F - 'get' accesses fields of record address"))

(reset)
(new-trace "get-compound-field")
(add-fns
  '((main
      ((1 integer) <- copy (34 literal))
      ((2 integer) <- copy (35 literal))
      ((3 integer) <- copy (36 literal))
      ((4 integer-integer-pair) <- get (1 integer-point-pair) (1 offset)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 34  2 35  3 36  4 35  5 36))
  (prn "F - 'get' accesses fields spanning multiple locations"))

(reset)
(new-trace "get-address")
(add-fns
  '((main
      ((1 integer) <- copy (34 literal))
      ((2 boolean) <- copy (t literal))
      ((3 boolean-address) <- get-address (1 integer-boolean-pair) (1 offset)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 34  2 t  3 2))
  (prn "F - 'get-address' returns address of fields of records"))

(reset)
(new-trace "get-address-indirect")
(add-fns
  '((main
      ((1 integer) <- copy (34 literal))
      ((2 boolean) <- copy (t literal))
      ((3 integer-boolean-pair-address) <- copy (1 literal))
      ((4 boolean-address) <- get-address (3 integer-boolean-pair-address deref) (1 offset)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 34  2 t  3 1  4 2))
  (prn "F - 'get-address' accesses fields of record address"))

(reset)
(new-trace "index-literal")
(add-fns
  '((main
      ((1 integer) <- copy (2 literal))
      ((2 integer) <- copy (23 literal))
      ((3 boolean) <- copy (nil literal))
      ((4 integer) <- copy (24 literal))
      ((5 boolean) <- copy (t literal))
      ((6 integer-boolean-pair) <- index (1 integer-boolean-pair-array) (1 literal)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 2  2 23 3 nil  4 24 5 t  6 24 7 t))
  (prn "F - 'index' accesses indices of arrays"))
;? (quit)

(reset)
(new-trace "index-direct")
(add-fns
  '((main
      ((1 integer) <- copy (2 literal))
      ((2 integer) <- copy (23 literal))
      ((3 boolean) <- copy (nil literal))
      ((4 integer) <- copy (24 literal))
      ((5 boolean) <- copy (t literal))
      ((6 integer) <- copy (1 literal))
      ((7 integer-boolean-pair) <- index (1 integer-boolean-pair-array) (6 integer)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 2  2 23 3 nil  4 24 5 t  6 1  7 24 8 t))
  (prn "F - 'index' accesses indices of arrays"))
;? (quit)

(reset)
(new-trace "index-indirect")
(add-fns
  '((main
      ((1 integer) <- copy (2 literal))
      ((2 integer) <- copy (23 literal))
      ((3 boolean) <- copy (nil literal))
      ((4 integer) <- copy (24 literal))
      ((5 boolean) <- copy (t literal))
      ((6 integer) <- copy (1 literal))
      ((7 integer-boolean-pair-array-address) <- copy (1 literal))
      ((8 integer-boolean-pair) <- index (7 integer-boolean-pair-array-address deref) (6 integer)))))
;? (= dump-trace* (obj blacklist '("sz" "m" "setm" "addr" "cvt0" "cvt1")))
;? (set dump-trace*)
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 2  2 23 3 nil  4 24 5 t  6 1  7 1  8 24 9 t))
  (prn "F - 'index' accesses indices of array address"))
;? (quit)

(reset)
(new-trace "index-address")
(add-fns
  '((main
      ((1 integer) <- copy (2 literal))
      ((2 integer) <- copy (23 literal))
      ((3 boolean) <- copy (nil literal))
      ((4 integer) <- copy (24 literal))
      ((5 boolean) <- copy (t literal))
      ((6 integer) <- copy (1 literal))
      ((7 integer-boolean-pair-address) <- index-address (1 integer-boolean-pair-array) (6 integer)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 2  2 23 3 nil  4 24 5 t  6 1  7 4))
  (prn "F - 'index-address' returns addresses of indices of arrays"))

(reset)
(new-trace "index-address-indirect")
(add-fns
  '((main
      ((1 integer) <- copy (2 literal))
      ((2 integer) <- copy (23 literal))
      ((3 boolean) <- copy (nil literal))
      ((4 integer) <- copy (24 literal))
      ((5 boolean) <- copy (t literal))
      ((6 integer) <- copy (1 literal))
      ((7 integer-boolean-pair-array-address) <- copy (1 literal))
      ((8 integer-boolean-pair-address) <- index-address (7 integer-boolean-pair-array-address deref) (6 integer)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 2  2 23 3 nil  4 24 5 t  6 1  7 1  8 4))
  (prn "F - 'index-address' returns addresses of indices of array addresses"))

; Array values know their length. Record lengths are saved in the types table.

(reset)
(new-trace "len-array")
(add-fns
  '((main
      ((1 integer) <- copy (2 literal))
      ((2 integer) <- copy (23 literal))
      ((3 boolean) <- copy (nil literal))
      ((4 integer) <- copy (24 literal))
      ((5 boolean) <- copy (t literal))
      ((6 integer) <- len (1 integer-boolean-pair-array)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 2  2 23 3 nil  4 24 5 t  6 2))
  (prn "F - 'len' accesses length of array"))

(reset)
(new-trace "len-array-indirect")
(add-fns
  '((main
      ((1 integer) <- copy (2 literal))
      ((2 integer) <- copy (23 literal))
      ((3 boolean) <- copy (nil literal))
      ((4 integer) <- copy (24 literal))
      ((5 boolean) <- copy (t literal))
      ((6 integer-address) <- copy (1 literal))
      ((7 integer) <- len (6 integer-boolean-pair-array-address deref)))))
;? (set dump-trace*)
;? (= dump-trace* (obj blacklist '("sz" "m" "setm" "addr" "cvt0" "cvt1")))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 2  2 23 3 nil  4 24 5 t  6 1  7 2))
  (prn "F - 'len' accesses length of array address"))

; 'sizeof' is a helper to determine the amount of memory required by a type.

(reset)
(new-trace "sizeof-record")
(add-fns
  '((main
      ((1 integer) <- sizeof (integer-boolean-pair literal)))))
(run 'main)
;? (prn memory*)
(if (~is memory*.1 2)
  (prn "F - 'sizeof' returns space required by arg"))

(reset)
(new-trace "sizeof-record-not-len")
(add-fns
  '((main
      ((1 integer) <- sizeof (integer-point-pair literal)))))
(run 'main)
;? (prn memory*)
(if (~is memory*.1 3)
  (prn "F - 'sizeof' is different from number of elems"))

; Regardless of a type's length, you can move it around just like a primitive.

(reset)
(new-trace "compound-operand-copy")
(add-fns
  '((main
      ((1 integer) <- copy (34 literal))
      ((2 boolean) <- copy (nil literal))
      ((4 boolean) <- copy (t literal))
      ((3 integer-boolean-pair) <- copy (1 integer-boolean-pair)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 34  2 nil  3 34  4 nil))
  (prn "F - ops can operate on records spanning multiple locations"))

(reset)
(new-trace "compound-arg")
(add-fns
  '((test1
      ((4 integer-boolean-pair) <- arg))
    (main
      ((1 integer) <- copy (34 literal))
      ((2 boolean) <- copy (nil literal))
      (test1 (1 integer-boolean-pair)))))
(run 'main)
(if (~iso memory* (obj 1 34  2 nil  4 34  5 nil))
  (prn "F - 'arg' can copy records spanning multiple locations"))

(reset)
(new-trace "compound-arg-indirect")
;? (set dump-trace*)
(add-fns
  '((test1
      ((4 integer-boolean-pair) <- arg))
    (main
      ((1 integer) <- copy (34 literal))
      ((2 boolean) <- copy (nil literal))
      ((3 integer-boolean-pair-address) <- copy (1 literal))
      (test1 (3 integer-boolean-pair-address deref)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 34  2 nil  3 1  4 34  5 nil))
  (prn "F - 'arg' can copy records spanning multiple locations in indirect mode"))

; A special kind of record is the 'tagged type'. It lets us represent
; dynamically typed values, which save type information in memory rather than
; in the code to use them. This will let us do things like create heterogenous
; lists containing both integers and strings. Tagged values admit two
; operations:
;
;   'save-type' - turns a regular value into a tagged-value of the appropriate type
;   'maybe-coerce' - turns a tagged value into a regular value if the type matches

(reset)
(new-trace "tagged-value")
;? (= dump-trace* (obj blacklist '("sz" "m" "setm" "addr" "cvt0" "cvt1")))
(add-fns
  '((main
      ((1 type) <- copy (integer-address literal))
      ((2 integer-address) <- copy (34 literal))  ; pointer to nowhere
      ((3 integer-address) (4 boolean) <- maybe-coerce (1 tagged-value) (integer-address literal)))))
(run 'main)
;? (prn memory*)
;? (prn completed-routines*)
(let last-routine (deq completed-routines*)
  (aif rep.last-routine!error (prn "error - " it)))
(if (or (~is memory*.3 34) (~is memory*.4 t))
  (prn "F - 'maybe-coerce' copies value only if type tag matches"))
;? (quit)

(reset)
(new-trace "tagged-value-2")
;? (set dump-trace*)
(add-fns
  '((main
      ((1 type) <- copy (integer-address literal))
      ((2 integer-address) <- copy (34 literal))  ; pointer to nowhere
      ((3 integer-address) (4 boolean) <- maybe-coerce (1 tagged-value) (boolean-address literal)))))
(run 'main)
;? (prn memory*)
(if (or (~is memory*.3 0) (~is memory*.4 nil))
  (prn "F - 'maybe-coerce' doesn't copy value when type tag doesn't match"))

(reset)
(new-trace "save-type")
(add-fns
  '((main
      ((1 integer-address) <- copy (34 literal))  ; pointer to nowhere
      ((2 tagged-value) <- save-type (1 integer-address)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj  1 34  2 'integer-address  3 34))
  (prn "F - 'save-type' saves the type of a value at runtime, turning it into a tagged-value"))

(reset)
(new-trace "new-tagged-value")
(add-fns
  '((main
      ((1 integer-address) <- copy (34 literal))  ; pointer to nowhere
      ((2 tagged-value-address) <- new-tagged-value (integer-address literal) (1 integer-address))
      ((3 integer-address) (4 boolean) <- maybe-coerce (2 tagged-value-address deref) (integer-address literal)))))
;? (= dump-trace* (obj blacklist '("sz" "m" "setm" "addr" "cvt0" "cvt1" "sizeof")))
(run 'main)
;? (prn memory*)
(if (or (~is memory*.3 34) (~is memory*.4 t))
  (prn "F - 'new-tagged-value' is the converse of 'maybe-coerce'"))
;? (quit)

; Now that we can record types for values we can construct a dynamically typed
; list.

(reset)
(new-trace "list")
;? (set dump-trace*)
(add-fns
  '((test1
      ; 1 points at first node: tagged-value (int 34)
      ((1 list-address) <- new (list literal))
      ((2 tagged-value-address) <- list-value-address (1 list-address))
      ((3 type-address) <- get-address (2 tagged-value-address deref) (0 offset))
      ((3 type-address deref) <- copy (integer literal))
      ((4 location) <- get-address (2 tagged-value-address deref) (1 offset))
      ((4 location deref) <- copy (34 literal))
      ((5 list-address-address) <- get-address (1 list-address deref) (1 offset))
      ((5 list-address-address deref) <- new (list literal))
      ; 6 points at second node: tagged-value (boolean t)
      ((6 list-address) <- copy (5 list-address-address deref))
      ((7 tagged-value-address) <- list-value-address (6 list-address))
      ((8 type-address) <- get-address (7 tagged-value-address deref) (0 offset))
      ((8 type-address deref) <- copy (boolean literal))
      ((9 location) <- get-address (7 tagged-value-address deref) (1 offset))
      ((9 location deref) <- copy (t literal))
      ((10 list-address) <- get (6 list-address deref) (1 offset))
      )))
(let first Memory-in-use-until
  (run 'test1)
;?   (prn memory*)
  (if (or (~all first (map memory* '(1 2 3)))
          (~is memory*.first  'integer)
          (~is memory*.4 (+ first 1))
          (~is (memory* (+ first 1))  34)
          (~is memory*.5 (+ first 2))
          (let second memory*.6
            (or
              (~is (memory* (+ first 2)) second)
              (~all second (map memory* '(6 7 8)))
              (~is memory*.second 'boolean)
              (~is memory*.9 (+ second 1))
              (~is (memory* (+ second 1)) t)
              (~is memory*.10 nil))))
    (prn "F - lists can contain elements of different types")))
(add-fns
  '((test2
      ((10 list-address) <- list-next (1 list-address)))))
(run 'test2)
;? (prn memory*)
(if (~is memory*.10 memory*.6)
  (prn "F - 'list-next can move a list pointer to the next node"))

; 'new-list' takes a variable number of args and constructs a list containing
; them.

(reset)
(new-trace "new-list")
(add-fns
  '((main
      ((1 integer) <- new-list (3 literal) (4 literal) (5 literal)))))
;? (= dump-trace* (obj blacklist '("sz" "m" "setm" "addr" "cvt0" "cvt1" "sizeof")))
(run 'main)
;? (prn memory*)
(let first memory*.1
;?   (prn first)
  (if (or (~is memory*.first  'integer)
          (~is (memory* (+ first 1))  3)
          (let second (memory* (+ first 2))
;?             (prn second)
            (or (~is memory*.second 'integer)
                (~is (memory* (+ second 1)) 4)
                (let third (memory* (+ second 2))
;?                   (prn third)
                  (or (~is memory*.third 'integer)
                      (~is (memory* (+ third 1)) 5)
                      (~is (memory* (+ third 2) nil)))))))
    (prn "F - 'new-list' can construct a list of integers")))

; Just like the table of types is centralized, functions are conceptualized as
; a centralized table of operations just like the "primitives" we've seen so
; far. If you create a function you can call it like any other op.

(reset)
(new-trace "new-fn")
(add-fns
  '((test1
      ((3 integer) <- add (1 integer) (2 integer)))
    (main
      ((1 integer) <- copy (1 literal))
      ((2 integer) <- copy (3 literal))
      (test1))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 1  2 3  3 4))
  (prn "F - calling a user-defined function runs its instructions"))
;? (quit)

(reset)
(new-trace "new-fn-once")
(add-fns
  '((test1
      ((1 integer) <- copy (1 literal)))
    (main
      (test1))))
(if (~is 2 (run 'main))
  (prn "F - calling a user-defined function runs its instructions exactly once"))
;? (quit)

; User-defined functions communicate with their callers through two
; primitives:
;
;   'arg' - to access inputs
;   'reply' - to return outputs

(reset)
(new-trace "new-fn-reply")
(add-fns
  '((test1
      ((3 integer) <- add (1 integer) (2 integer))
      (reply)
      ((4 integer) <- copy (34 literal)))
    (main
      ((1 integer) <- copy (1 literal))
      ((2 integer) <- copy (3 literal))
      (test1))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 1  2 3  3 4))
  (prn "F - 'reply' stops executing the current function"))
;? (quit)

(reset)
(new-trace "new-fn-reply-nested")
(add-fns
  `((test1
      ((3 integer) <- test2))
    (test2
      (reply (2 integer)))
    (main
      ((2 integer) <- copy (34 literal))
      (test1))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 2 34  3 34))
  (prn "F - 'reply' stops executing any callers as necessary"))
;? (quit)

(reset)
(new-trace "new-fn-reply-once")
(add-fns
  '((test1
      ((3 integer) <- add (1 integer) (2 integer))
      (reply)
      ((4 integer) <- copy (34 literal)))
    (main
      ((1 integer) <- copy (1 literal))
      ((2 integer) <- copy (3 literal))
      (test1))))
(if (~is 4 (run 'main))  ; last reply sometimes not counted. worth fixing?
  (prn "F - 'reply' executes instructions exactly once"))
;? (quit)

(reset)
(new-trace "new-fn-arg-sequential")
(add-fns
  '((test1
      ((4 integer) <- arg)
      ((5 integer) <- arg)
      ((3 integer) <- add (4 integer) (5 integer))
      (reply)
      ((4 integer) <- copy (34 literal)))
    (main
      ((1 integer) <- copy (1 literal))
      ((2 integer) <- copy (3 literal))
      (test1 (1 integer) (2 integer))
    )))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 1  2 3  3 4
                       ; add-fn's temporaries
                       4 1  5 3))
  (prn "F - 'arg' accesses in order the operands of the most recent function call (the caller)"))
;? (quit)

(reset)
(new-trace "new-fn-arg-random-access")
;? (set dump-trace*)
(add-fns
  '((test1
      ((5 integer) <- arg (1 literal))
      ((4 integer) <- arg (0 literal))
      ((3 integer) <- add (4 integer) (5 integer))
      (reply)
      ((4 integer) <- copy (34 literal)))  ; should never run
    (main
      ((1 integer) <- copy (1 literal))
      ((2 integer) <- copy (3 literal))
      (test1 (1 integer) (2 integer))
    )))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 1  2 3  3 4
                       ; add-fn's temporaries
                       4 1  5 3))
  (prn "F - 'arg' with index can access function call arguments out of order"))
;? (quit)

(reset)
(new-trace "new-fn-arg-status")
(add-fns
  '((test1
      ((4 integer) (5 boolean) <- arg))
    (main
      (test1 (1 literal))
    )))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 4 1  5 t))
  (prn "F - 'arg' sets a second oarg when arg exists"))
;? (quit)

(reset)
(new-trace "new-fn-arg-missing")
(add-fns
  '((test1
      ((4 integer) <- arg)
      ((5 integer) <- arg))
    (main
      (test1 (1 literal))
    )))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 4 1))
  (prn "F - missing 'arg' doesn't cause error"))
;? (quit)

(reset)
(new-trace "new-fn-arg-missing-2")
(add-fns
  '((test1
      ((4 integer) <- arg)
      ((5 integer) (6 boolean) <- arg))
    (main
      (test1 (1 literal))
    )))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 4 1  6 nil))
  (prn "F - missing 'arg' wipes second oarg when provided"))
;? (quit)

(reset)
(new-trace "new-fn-arg-missing-3")
(add-fns
  '((test1
      ((4 integer) <- arg)
      ((5 integer) <- copy (34 literal))
      ((5 integer) (6 boolean) <- arg))
    (main
      (test1 (1 literal))
    )))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 4 1  6 nil))
  (prn "F - missing 'arg' consistently wipes its oarg"))
;? (quit)

(reset)
(new-trace "new-fn-arg-missing-4")
(add-fns
  '((test1
      ; if given two args, adds them; if given one arg, increments
      ((4 integer) <- arg)
      ((5 integer) (6 boolean) <- arg)
      { begin
        (break-if (6 boolean))
        ((5 integer) <- copy (1 literal))
      }
      ((7 integer) <- add (4 integer) (5 integer)))
    (main
      (test1 (34 literal))
    )))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 4 34  5 1  6 nil  7 35))
  (prn "F - function with optional second arg"))
;? (quit)

(reset)
(new-trace "new-fn-arg-by-value")
(add-fns
  '((test1
      ((1 integer) <- copy (0 literal))  ; overwrite caller memory
      ((2 integer) <- arg))  ; arg not clobbered
    (main
      ((1 integer) <- copy (34 literal))
      (test1 (1 integer)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 0  2 34))
  (prn "F - 'arg' passes by value"))

(reset)
(new-trace "new-fn-reply-oarg")
(add-fns
  '((test1
      ((4 integer) <- arg)
      ((5 integer) <- arg)
      ((6 integer) <- add (4 integer) (5 integer))
      (reply (6 integer))
      ((4 integer) <- copy (34 literal)))
    (main
      ((1 integer) <- copy (1 literal))
      ((2 integer) <- copy (3 literal))
      ((3 integer) <- test1 (1 integer) (2 integer)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 1  2 3  3 4
                       ; add-fn's temporaries
                       4 1  5 3  6 4))
  (prn "F - 'reply' can take aguments that are returned, or written back into output args of caller"))

(reset)
(new-trace "new-fn-reply-oarg-multiple")
(add-fns
  '((test1
      ((4 integer) <- arg)
      ((5 integer) <- arg)
      ((6 integer) <- add (4 integer) (5 integer))
      (reply (6 integer) (5 integer))
      ((4 integer) <- copy (34 literal)))
    (main
      ((1 integer) <- copy (1 literal))
      ((2 integer) <- copy (3 literal))
      ((3 integer) (7 integer) <- test1 (1 integer) (2 integer)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 1  2 3  3 4    7 3
                         ; add-fn's temporaries
                         4 1  5 3  6 4))
  (prn "F - 'reply' permits a function to return multiple values at once"))

(reset)
(new-trace "new-fn-prepare-reply")
(add-fns
  '((test1
      ((4 integer) <- arg)
      ((5 integer) <- arg)
      ((6 integer) <- add (4 integer) (5 integer))
      (prepare-reply (6 integer) (5 integer))
      (reply)
      ((4 integer) <- copy (34 literal)))
    (main
      ((1 integer) <- copy (1 literal))
      ((2 integer) <- copy (3 literal))
      ((3 integer) (7 integer) <- test1 (1 integer) (2 integer)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 1  2 3  3 4    7 3
                         ; add-fn's temporaries
                         4 1  5 3  6 4))
  (prn "F - without args, 'reply' returns values from previous 'prepare-reply'."))

; Our control operators are quite inconvenient to use, so mu provides a
; lightweight tool called 'convert-braces' to work in a slightly more
; convenient format with nested braces:
;
;   {
;     some instructions
;     {
;       more instructions
;     }
;   }
;
; Braces are just labels, they require no special parsing. The operations
; 'break' and 'continue' jump to just after the enclosing '}' and '{'
; respectively.
;
; Conditional and unconditional 'break' and 'continue' should give us 80% of
; the benefits of the control-flow primitives we're used to in other
; languages, like 'if', 'while', 'for', etc.

(reset)
(new-trace "convert-braces")
(if (~iso (convert-braces
            '(((1 integer) <- copy (4 literal))
              ((2 integer) <- copy (2 literal))
              ((3 integer) <- add (2 integer) (2 integer))
              { begin  ; 'begin' is just a hack because racket turns curlies into parens
                ((4 boolean) <- neq (1 integer) (3 integer))
                (break-if (4 boolean))
                ((5 integer) <- copy (34 literal))
              }
              (reply)))
          '(((1 integer) <- copy (4 literal))
            ((2 integer) <- copy (2 literal))
            ((3 integer) <- add (2 integer) (2 integer))
            ((4 boolean) <- neq (1 integer) (3 integer))
            (jump-if (4 boolean) (1 offset))
            ((5 integer) <- copy (34 literal))
            (reply)))
  (prn "F - convert-braces replaces break-if with a jump-if to after the next close-curly"))

(reset)
(new-trace "convert-braces-empty-block")
(if (~iso (convert-braces
            '(((1 integer) <- copy (4 literal))
              ((2 integer) <- copy (2 literal))
              ((3 integer) <- add (2 integer) (2 integer))
              { begin
                (break)
              }
              (reply)))
          '(((1 integer) <- copy (4 literal))
            ((2 integer) <- copy (2 literal))
            ((3 integer) <- add (2 integer) (2 integer))
            (jump (0 offset))
            (reply)))
  (prn "F - convert-braces works for degenerate blocks"))

(reset)
(new-trace "convert-braces-nested-break")
(if (~iso (convert-braces
            '(((1 integer) <- copy (4 literal))
              ((2 integer) <- copy (2 literal))
              ((3 integer) <- add (2 integer) (2 integer))
              { begin
                ((4 boolean) <- neq (1 integer) (3 integer))
                (break-if (4 boolean))
                { begin
                  ((5 integer) <- copy (34 literal))
                }
              }
              (reply)))
          '(((1 integer) <- copy (4 literal))
            ((2 integer) <- copy (2 literal))
            ((3 integer) <- add (2 integer) (2 integer))
            ((4 boolean) <- neq (1 integer) (3 integer))
            (jump-if (4 boolean) (1 offset))
            ((5 integer) <- copy (34 literal))
            (reply)))
  (prn "F - convert-braces balances curlies when converting break"))

(reset)
(new-trace "convert-braces-nested-continue")
(if (~iso (convert-braces
            '(((1 integer) <- copy (4 literal))
              ((2 integer) <- copy (2 literal))
              { begin
                ((3 integer) <- add (2 integer) (2 integer))
                { begin
                  ((4 boolean) <- neq (1 integer) (3 integer))
                }
                (continue-if (4 boolean))
                ((5 integer) <- copy (34 literal))
              }
              (reply)))
          '(((1 integer) <- copy (4 literal))
            ((2 integer) <- copy (2 literal))
            ((3 integer) <- add (2 integer) (2 integer))
            ((4 boolean) <- neq (1 integer) (3 integer))
            (jump-if (4 boolean) (-3 offset))
            ((5 integer) <- copy (34 literal))
            (reply)))
  (prn "F - convert-braces balances curlies when converting continue"))

(reset)
(new-trace "continue")
;? (set dump-trace*)
(add-fns
  '((main
      ((1 integer) <- copy (4 literal))
      ((2 integer) <- copy (1 literal))
      { begin
        ((2 integer) <- add (2 integer) (2 integer))
        ((3 boolean) <- neq (1 integer) (2 integer))
        (continue-if (3 boolean))
        ((4 integer) <- copy (34 literal))
      }
      (reply))))
;? (each stmt function*!main
;?   (prn stmt))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 4  2 4  3 nil  4 34))
  (prn "F - continue correctly loops"))

; todo: fuzz-test invariant: convert-braces offsets should be robust to any
; number of inner blocks inside but not around the continue block.

(reset)
(new-trace "continue-nested")
;? (set dump-trace*)
(add-fns
  '((main
      ((1 integer) <- copy (4 literal))
      ((2 integer) <- copy (1 literal))
      { begin
        ((2 integer) <- add (2 integer) (2 integer))
        { begin
          ((3 boolean) <- neq (1 integer) (2 integer))
        }
        (continue-if (3 boolean))
        ((4 integer) <- copy (34 literal))
      }
      (reply))))
;? (each stmt function*!main
;?   (prn stmt))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 4  2 4  3 nil  4 34))
  (prn "F - continue correctly loops"))

(reset)
(new-trace "continue-fail")
(add-fns
  '((main
      ((1 integer) <- copy (4 literal))
      ((2 integer) <- copy (2 literal))
      { begin
        ((2 integer) <- add (2 integer) (2 integer))
        { begin
          ((3 boolean) <- neq (1 integer) (2 integer))
        }
        (continue-if (3 boolean))
        ((4 integer) <- copy (34 literal))
      }
      (reply))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 4  2 4  3 nil  4 34))
  (prn "F - continue might never trigger"))

; A big convenience high-level languages provide is the ability to name memory
; locations. In mu, a lightweight tool called 'convert-names' provides this
; convenience.

(reset)
;? (new-trace "convert-names")
(if (~iso (convert-names
            '(((x integer) <- copy (4 literal))
              ((y integer) <- copy (2 literal))
              ((z integer) <- add (x integer) (y integer))))
          '(((1 integer) <- copy (4 literal))
            ((2 integer) <- copy (2 literal))
            ((3 integer) <- add (1 integer) (2 integer))))
  (prn "F - convert-names renames symbolic names to integer locations"))

(reset)
;? (new-trace "convert-names-compound")
(if (~iso (convert-names
            '(((x integer-boolean-pair) <- copy (4 literal))
              ((y integer) <- copy (2 literal))))
          '(((1 integer-boolean-pair) <- copy (4 literal))
            ((3 integer) <- copy (2 literal))))
  (prn "F - convert-names increments integer locations by the size of the type of the previous var"))

(reset)
;? (new-trace "convert-names-nil")
(if (~iso (convert-names
            '(((x integer) <- copy (4 literal))
              ((y integer) <- copy (2 literal))
              ((nil integer) <- add (x integer) (y integer))))
          '(((1 integer) <- copy (4 literal))
            ((2 integer) <- copy (2 literal))
            ((nil integer) <- add (1 integer) (2 integer))))
  (prn "F - convert-names never renames nil"))

(reset)
;? (new-trace "convert-names-global")
(if (~iso (convert-names
            '(((x integer) <- copy (4 literal))
              ((y integer global) <- copy (2 literal))
              ((default-scope integer) <- add (x integer) (y integer global))))
          '(((1 integer) <- copy (4 literal))
            ((y integer global) <- copy (2 literal))
            ((default-scope integer) <- add (1 integer) (y integer global))))
  (prn "F - convert-names never renames global operands"))

; kludgy support for 'fork'
(reset)
;? (new-trace "convert-names-functions")
(if (~iso (convert-names
            '(((x integer) <- copy (4 literal))
              ((y integer) <- copy (2 literal))
              ((z fn) <- add (x integer) (y integer))))
          '(((1 integer) <- copy (4 literal))
            ((2 integer) <- copy (2 literal))
            ((z fn) <- add (1 integer) (2 integer))))
  (prn "F - convert-names never renames nil"))

(reset)
;? (new-trace "convert-names-record-fields")
(if (~iso (convert-names
            '(((x integer) <- get (34 integer-boolean-pair) (bool offset))))
          '(((1 integer) <- get (34 integer-boolean-pair) (1 offset))))
  (prn "F - convert-names replaces record field offsets"))

(reset)
;? (new-trace "convert-names-record-fields-ambiguous")
(if (errsafe (convert-names
               '(((bool boolean) <- copy (t literal))
                 ((x integer) <- get (34 integer-boolean-pair) (bool offset)))))
  (prn "F - convert-names doesn't allow offsets and variables with the same name in a function"))

(reset)
;? (new-trace "convert-names-record-fields-ambiguous-2")
(if (errsafe (convert-names
               '(((x integer) <- get (34 integer-boolean-pair) (bool offset))
                 ((bool boolean) <- copy (t literal)))))
  (prn "F - convert-names doesn't allow offsets and variables with the same name in a function - 2"))

(reset)
;? (new-trace "convert-names-record-fields-indirect")
(if (~iso (convert-names
            '(((x integer) <- get (34 integer-boolean-pair-address deref) (bool offset))))
          '(((1 integer) <- get (34 integer-boolean-pair-address deref) (1 offset))))
  (prn "F - convert-names replaces field offsets for record addresses"))

; A rudimentary memory allocator. Eventually we want to write this in mu.
;
; No deallocation yet; let's see how much code we can build in mu before we
; feel the need for it.

(reset)
(new-trace "new-primitive")
(add-fns
  '((main
      ((1 integer-address) <- new (integer literal)))))
(let before Memory-in-use-until
  (run 'main)
;?   (prn memory*)
  (if (~iso memory*.1 before)
    (prn "F - 'new' returns current high-water mark"))
  (if (~iso Memory-in-use-until (+ before 1))
    (prn "F - 'new' on primitive types increments high-water mark by their size")))

(reset)
(new-trace "new-array-literal")
(add-fns
  '((main
      ((1 type-array-address) <- new (type-array literal) (5 literal)))))
(let before Memory-in-use-until
  (run 'main)
;?   (prn memory*)
  (if (~iso memory*.1 before)
    (prn "F - 'new' on array with literal size returns current high-water mark"))
  (if (~iso Memory-in-use-until (+ before 6))
    (prn "F - 'new' on primitive arrays increments high-water mark by their size")))

(reset)
(new-trace "new-array-direct")
(add-fns
  '((main
      ((1 integer) <- copy (5 literal))
      ((2 type-array-address) <- new (type-array literal) (1 integer)))))
(let before Memory-in-use-until
  (run 'main)
;?   (prn memory*)
  (if (~iso memory*.2 before)
    (prn "F - 'new' on array with variable size returns current high-water mark"))
  (if (~iso Memory-in-use-until (+ before 6))
    (prn "F - 'new' on primitive arrays increments high-water mark by their (variable) size")))

; Even though our memory locations can now have names, the names are all
; globals, accessible from any function. To isolate functions from their
; callers we need local variables, and mu provides them using a special
; variable called default-scope. When you initialize such a variable (likely
; with a call to our just-defined memory allocator) mu interprets memory
; locations as offsets from its value. If default-scope is set to 1000, for
; example, reads and writes to memory location 1 will really go to 1001.
;
; 'default-scope' is itself hard-coded to be function-local; it's nil in a new
; function, and it's restored when functions return to their callers. But the
; actual scope allocation is independent. So you can define closures, or do
; even more funky things like share locals between two coroutines.

(reset)
(new-trace "set-default-scope")
(add-fns
  '((main
      ((default-scope scope-address) <- new (scope literal) (2 literal))
      ((1 integer) <- copy (23 literal)))))
(let before Memory-in-use-until
;?   (set dump-trace*)
  (run 'main)
;?   (prn memory*)
  (if (~and (~is 23 memory*.1)
            (is 23 (memory* (+ before 1))))
    (prn "F - default-scope implicitly modifies variable locations")))

(reset)
(new-trace "set-default-scope-skips-offset")
(add-fns
  '((main
      ((default-scope scope-address) <- new (scope literal) (2 literal))
      ((1 integer) <- copy (23 offset)))))
(let before Memory-in-use-until
;?   (set dump-trace*)
  (run 'main)
;?   (prn memory*)
  (if (~and (~is 23 memory*.1)
            (is 23 (memory* (+ before 1))))
    (prn "F - default-scope skips 'offset' types just like literals")))

(reset)
(new-trace "default-scope-bounds-check")
(add-fns
  '((main
      ((default-scope scope-address) <- new (scope literal) (2 literal))
      ((2 integer) <- copy (23 literal)))))
;? (set dump-trace*)
(run 'main)
;? (prn memory*)
(let last-routine (deq completed-routines*)
  (if (no rep.last-routine!error)
    (prn "F - default-scope checks bounds")))

(reset)
(new-trace "default-scope-and-get-indirect")
(add-fns
  '((main
      ((default-scope scope-address) <- new (scope literal) (5 literal))
      ((1 integer-boolean-pair-address) <- new (integer-boolean-pair literal))
      ((2 integer-address) <- get-address (1 integer-boolean-pair-address deref) (0 offset))
      ((2 integer-address deref) <- copy (34 literal))
      ((3 integer global) <- get (1 integer-boolean-pair-address deref) (0 offset)))))
;? (= dump-trace* (obj blacklist '("sz" "m" "setm" "addr" "cvt0" "cvt1")))
(run 'main)
;? (prn memory*)
;? (prn (as cons completed-routines*))
(let last-routine (deq completed-routines*)
  (aif rep.last-routine!error (prn "error - " it)))
(if (~is 34 memory*.3)
  (prn "F - indirect 'get' works in the presence of default-scope"))
;? (quit)

(reset)
(new-trace "default-scope-and-index-indirect")
(add-fns
  '((main
      ((default-scope scope-address) <- new (scope literal) (5 literal))
      ((1 integer-array-address) <- new (integer-array literal) (4 literal))
      ((2 integer-address) <- index-address (1 integer-array-address deref) (2 offset))
      ((2 integer-address deref) <- copy (34 literal))
      ((3 integer global) <- index (1 integer-array-address deref) (2 offset)))))
;? (= dump-trace* (obj blacklist '("sz" "m" "setm" "addr" "cvt0" "cvt1")))
(run 'main)
;? (prn memory*)
;? (prn (as cons completed-routines*))
(let last-routine (deq completed-routines*)
  (aif rep.last-routine!error (prn "error - " it)))
(if (~is 34 memory*.3)
  (prn "F - indirect 'index' works in the presence of default-scope"))
;? (quit)

(reset)
;? (new-trace "convert-names-default-scope")
(if (~iso (convert-names
            '(((x integer) <- copy (4 literal))
              ((y integer) <- copy (2 literal))
              ; unsafe in general; don't write random values to 'default-scope'
              ((default-scope integer) <- add (x integer) (y integer))))
          '(((1 integer) <- copy (4 literal))
            ((2 integer) <- copy (2 literal))
            ((default-scope integer) <- add (1 integer) (2 integer))))
  (prn "F - convert-names never renames default-scope"))

(reset)
(new-trace "suppress-default-scope")
(add-fns
  '((main
      ((default-scope scope-address) <- new (scope literal) (2 literal))
      ((1 integer global) <- copy (23 literal)))))
(let before Memory-in-use-until
;?   (set dump-trace*)
  (run 'main)
;?   (prn memory*)
  (if (~and (is 23 memory*.1)
            (~is 23 (memory* (+ before 1))))
    (prn "F - default-scope skipped for locations with metadata 'global'")))

; Putting it all together, here's how you define generic functions that run
; different code based on the types of their args.

(reset)
(new-trace "dispatch-clause")
;? (set dump-trace*)
(add-fns
  '((test1
      ; doesn't matter too much how many locals you allocate space for (here 20)
      ; if it's slightly too many -- memory is plentiful
      ; if it's too few -- mu will raise an error
      ((default-scope scope-address) <- new (scope literal) (20 literal))
      ((first-arg-box tagged-value-address) <- arg)
      ; if given integers, add them
      { begin
        ((first-arg integer) (match? boolean) <- maybe-coerce (first-arg-box tagged-value-address deref) (integer literal))
        (break-unless (match? boolean))
        ((second-arg-box tagged-value-address) <- arg)
        ((second-arg integer) <- maybe-coerce (second-arg-box tagged-value-address deref) (integer literal))
        ((result integer) <- add (first-arg integer) (second-arg integer))
        (reply (result integer))
      }
      (reply (nil literal)))
    (main
      ((1 tagged-value-address) <- new-tagged-value (integer literal) (34 literal))
      ((2 tagged-value-address) <- new-tagged-value (integer literal) (3 literal))
      ((3 integer) <- test1 (1 tagged-value-address) (2 tagged-value-address)))))
(run 'main)
;? (prn memory*)
(if (~is memory*.3 37)
  (prn "F - an example function that checks that its oarg is an integer"))
;? (quit)

; todo - test that reply increments pc for caller frame after popping current frame

(reset)
(new-trace "dispatch-multiple-clauses")
;? (set dump-trace*)
(add-fns
  '((test1
      ((default-scope scope-address) <- new (scope literal) (20 literal))
      ((first-arg-box tagged-value-address) <- arg)
      ; if given integers, add them
      { begin
        ((first-arg integer) (match? boolean) <- maybe-coerce (first-arg-box tagged-value-address deref) (integer literal))
        (break-unless (match? boolean))
        ((second-arg-box tagged-value-address) <- arg)
        ((second-arg integer) <- maybe-coerce (second-arg-box tagged-value-address deref) (integer literal))
        ((result integer) <- add (first-arg integer) (second-arg integer))
        (reply (result integer))
      }
      ; if given booleans, or them (it's a silly kind of generic function)
      { begin
        ((first-arg boolean) (match? boolean) <- maybe-coerce (first-arg-box tagged-value-address deref) (boolean literal))
        (break-unless (match? boolean))
        ((second-arg-box tagged-value-address) <- arg)
        ((second-arg boolean) <- maybe-coerce (second-arg-box tagged-value-address deref) (boolean literal))
        ((result boolean) <- or (first-arg boolean) (second-arg boolean))
        (reply (result integer))
      }
      (reply (nil literal)))
    (main
      ((1 tagged-value-address) <- new-tagged-value (boolean literal) (t literal))
      ((2 tagged-value-address) <- new-tagged-value (boolean literal) (nil literal))
      ((3 boolean) <- test1 (1 tagged-value-address) (2 tagged-value-address)))))
;? (each stmt function*!test-fn
;?   (prn "  " stmt))
(run 'main)
;? (wipe dump-trace*)
;? (prn memory*)
(if (~is memory*.3 t)
  (prn "F - an example function that can do different things (dispatch) based on the type of its args or oargs"))
;? (quit)

(reset)
(new-trace "dispatch-multiple-calls")
(add-fns
  '((test1
      ((default-scope scope-address) <- new (scope literal) (20 literal))
      ((first-arg-box tagged-value-address) <- arg)
      ; if given integers, add them
      { begin
        ((first-arg integer) (match? boolean) <- maybe-coerce (first-arg-box tagged-value-address deref) (integer literal))
        (break-unless (match? boolean))
        ((second-arg-box tagged-value-address) <- arg)
        ((second-arg integer) <- maybe-coerce (second-arg-box tagged-value-address deref) (integer literal))
        ((result integer) <- add (first-arg integer) (second-arg integer))
        (reply (result integer))
      }
      ; if given booleans, or them (it's a silly kind of generic function)
      { begin
        ((first-arg boolean) (match? boolean) <- maybe-coerce (first-arg-box tagged-value-address deref) (boolean literal))
        (break-unless (match? boolean))
        ((second-arg-box tagged-value-address) <- arg)
        ((second-arg boolean) <- maybe-coerce (second-arg-box tagged-value-address deref) (boolean literal))
        ((result boolean) <- or (first-arg boolean) (second-arg boolean))
        (reply (result integer))
      }
      (reply (nil literal)))
    (main
      ((1 tagged-value-address) <- new-tagged-value (boolean literal) (t literal))
      ((2 tagged-value-address) <- new-tagged-value (boolean literal) (nil literal))
      ((3 boolean) <- test1 (1 tagged-value-address) (2 tagged-value-address))
      ((10 tagged-value-address) <- new-tagged-value (integer literal) (34 literal))
      ((11 tagged-value-address) <- new-tagged-value (integer literal) (3 literal))
      ((12 integer) <- test1 (10 tagged-value-address) (11 tagged-value-address)))))
(run 'main)
;? (prn memory*)
(if (~and (is memory*.3 t) (is memory*.12 37))
  (prn "F - different calls can exercise different clauses of the same function"))

; A rudimentary process scheduler. You can 'run' multiple functions at once,
; and they share the virtual processor.
;
; There's also a 'fork' primitive to let functions create new threads of
; execution (we call them routines).
;
; Eventually we want to allow callers to influence how much of their CPU they
; give to their 'children', or to rescind a child's running privileges.

(reset)
(new-trace "scheduler")
(add-fns
  '((f1
      ((1 integer) <- copy (3 literal)))
    (f2
      ((2 integer) <- copy (4 literal)))))
(let ninsts (run 'f1 'f2)
  (when (~iso 2 ninsts)
    (prn "F - scheduler didn't run the right number of instructions: " ninsts)))
(if (~iso memory* (obj 1 3  2 4))
  (prn "F - scheduler runs multiple functions: " memory*))
(check-trace-contents "scheduler orders functions correctly"
  '(("schedule" "f1")
    ("schedule" "f2")
  ))
(check-trace-contents "scheduler orders schedule and run events correctly"
  '(("schedule" "f1")
    ("run" "f1 0")
    ("schedule" "f2")
    ("run" "f2 0")
  ))

; The scheduler needs to keep track of the call stack for each routine.
; Eventually we'll want to save this information in mu's address space itself,
; along with the types array, the magic buffers for args and oargs, and so on.
;
; Eventually we want the right stack-management primitives to build delimited
; continuations in mu.

; Routines can throw errors.
(reset)
(new-trace "array-bounds-check")
(add-fns
  '((main
      ((1 integer) <- copy (2 literal))
      ((2 integer) <- copy (23 literal))
      ((3 integer) <- copy (24 literal))
      ((4 integer) <- index (1 integer-array) (2 literal)))))
;? (set dump-trace*)
(run 'main)
;? (prn memory*)
(let last-routine (deq completed-routines*)
  (if (no rep.last-routine!error)
    (prn "F - 'index' throws an error if out of bounds")))

; Lightweight tools can also operate on quoted lists of statements surrounded
; by square brackets. In the example below, we mimic Go's 'defer' keyword
; using 'convert-quotes'. It lets us write code anywhere in a function, but
; have it run just before the function exits. Great for keeping code to
; reclaim memory or other resources close to the code to allocate it. (C++
; programmers know this as RAII.) We'll use 'defer' when we build a memory
; deallocation routine like C's 'free'.
;
; More powerful reorderings are also possible like in Literate Programming or
; Aspect-Oriented Programming; one advantage of prohibiting arbitrarily nested
; code is that we can naturally name 'join points' wherever we want.

(reset)
;? (new-trace "convert-quotes-defer")
(if (~iso (convert-quotes
            '(((1 integer) <- copy (4 literal))
              (defer [
                       ((3 integer) <- copy (6 literal))
                     ])
              ((2 integer) <- copy (5 literal))))
          '(((1 integer) <- copy (4 literal))
            ((2 integer) <- copy (5 literal))
            ((3 integer) <- copy (6 literal))))
  (prn "F - convert-quotes can handle 'defer'"))

; Synchronization using channels like in Erlang or Go.
; The two ends of a channel will usually belong to different routines, but
; each end should only be used by a single one. Don't try to read from or
; write to it from multiple routines at once.

(reset)
(new-trace "channel-new")
(add-fns
  '((main
      ((1 channel-address) <- new-channel (3 literal)))))
;? (set dump-trace*)
(run 'main)
;? (prn memory*)
(if (or (~is 0 (memory* memory*.1))
        (~is 0 (memory* (+ 1 memory*.1))))
  (prn "F - 'new-channel' initializes 'first-full and 'first-free to 0"))

(reset)
(new-trace "channel-write")
(add-fns
  '((main
      ((1 channel-address) <- new-channel (3 literal))
      ((2 integer-address) <- new (integer literal))
      ((2 integer-address deref) <- copy (34 literal))
      ((3 tagged-value-address) <- new-tagged-value (integer literal) (2 integer-address))
      ((1 channel-address deref) <- write (1 channel-address deref) (3 tagged-value-address deref)))))
;? (set dump-trace*)
;? (= dump-trace* (obj blacklist '("sz" "m" "setm" "addr" "array-len" "cvt0" "cvt1")))
(run 'main)
;? (prn memory*)
(if (or (~is 0 (memory* memory*.1))
        (~is 1 (memory* (+ 1 memory*.1))))
  (prn "F - 'write' enqueues item to channel"))

(reset)  ; end file with this to persist the trace for the final test