summary refs log tree commit diff stats
path: root/tests/stdlib/tmath.nim
diff options
context:
space:
mode:
Diffstat (limited to 'tests/stdlib/tmath.nim')
0 files changed, 0 insertions, 0 deletions
/a> 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
#
#
#            Nim's Runtime Library
#        (c) Copyright 2020 Nim contributors
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

import macros
from typetraits import OrdinalEnum, HoleyEnum

when defined(nimPreviewSlimSystem):
  import std/assertions


# xxx `genEnumCaseStmt` needs tests and runnableExamples

macro genEnumCaseStmt*(typ: typedesc, argSym: typed, default: typed,
            userMin, userMax: static[int], normalizer: static[proc(s :string): string]): untyped =
  # Generates a case stmt, which assigns the correct enum field given
  # a normalized string comparison to the `argSym` input.
  # string normalization is done using passed normalizer.
  # NOTE: for an enum with fields Foo, Bar, ... we cannot generate
  # `of "Foo".nimIdentNormalize: Foo`.
  # This will fail, if the enum is not defined at top level (e.g. in a block).
  # Thus we check for the field value of the (possible holed enum) and convert
  # the integer value to the generic argument `typ`.
  let typ = typ.getTypeInst[1]
  let impl = typ.getImpl[2]
  expectKind impl, nnkEnumTy
  let normalizerNode = quote: `normalizer`
  expectKind normalizerNode, nnkSym
  result = nnkCaseStmt.newTree(newCall(normalizerNode, argSym))
  # stores all processed field strings to give error msg for ambiguous enums
  var foundFields: seq[string] = @[]
  var fStr = "" # string of current field
  var fNum = BiggestInt(0) # int value of current field
  for f in impl:
    case f.kind
    of nnkEmpty: continue # skip first node of `enumTy`
    of nnkSym, nnkIdent: fStr = f.strVal
    of nnkAccQuoted:
      fStr = ""
      for ch in f:
        fStr.add ch.strVal
    of nnkEnumFieldDef:
      case f[1].kind
      of nnkStrLit: fStr = f[1].strVal
      of nnkTupleConstr:
        fStr = f[1][1].strVal
        fNum = f[1][0].intVal
      of nnkIntLit:
        fStr = f[0].strVal
        fNum = f[1].intVal
      else:
        let fAst = f[0].getImpl
        if fAst.kind == nnkStrLit:
          fStr = fAst.strVal
        else:
          error("Invalid tuple syntax!", f[1])
    else: error("Invalid node for enum type `" & $f.kind & "`!", f)
    # add field if string not already added
    if fNum >= userMin and fNum <= userMax:
      fStr = normalizer(fStr)
      if fStr notin foundFields:
        result.add nnkOfBranch.newTree(newLit fStr,  nnkCall.newTree(typ, newLit fNum))
        foundFields.add fStr
      else:
        error("Ambiguous enums cannot be parsed, field " & $fStr &
          " appears multiple times!", f)
    inc fNum
  # finally add else branch to raise or use default
  if default == nil:
    let raiseStmt = quote do:
      raise newException(ValueError, "Invalid enum value: " & $`argSym`)
    result.add nnkElse.newTree(raiseStmt)
  else:
    expectKind(default, nnkSym)
    result.add nnkElse.newTree(default)

macro enumFullRange(a: typed): untyped =
  newNimNode(nnkCurly).add(a.getType[1][1..^1])

macro enumNames(a: typed): untyped =
  # this could be exported too; in particular this could be useful for enum with holes.
  result = newNimNode(nnkBracket)
  for ai in a.getType[1][1..^1]:
    assert ai.kind == nnkSym
    result.add newLit ai.strVal

iterator items*[T: HoleyEnum](E: typedesc[T]): T =
  ## Iterates over an enum with holes.
  runnableExamples:
    type
      A = enum
        a0 = 2
        a1 = 4
        a2
      B[T] = enum
        b0 = 2
        b1 = 4
    from std/sequtils import toSeq
    assert A.toSeq == [a0, a1, a2]
    assert B[float].toSeq == [B[float].b0, B[float].b1]
  for a in enumFullRange(E): yield a

func span(T: typedesc[HoleyEnum]): int =
  (T.high.ord - T.low.ord) + 1

const invalidSlot = uint8.high

proc genLookup[T: typedesc[HoleyEnum]](_: T): auto =
  const n = span(T)
  var ret: array[n, uint8]
  var i = 0
  assert n <= invalidSlot.int
  for ai in mitems(ret): ai = invalidSlot
  for ai in items(T):
    ret[ai.ord - T.low.ord] = uint8(i)
    inc(i)
  return ret

func symbolRankImpl[T](a: T): int {.inline.} =
  const n = T.span
  const thres = 255 # must be <= `invalidSlot`, but this should be tuned.
  when n <= thres:
    const lookup = genLookup(T)
    let lookup2 {.global.} = lookup # xxx improve pending https://github.com/timotheecour/Nim/issues/553
    #[
    This could be optimized using a hash adapted to `T` (possible since it's known at CT)
    to get better key distribution before indexing into the lookup table table.
    ]#
    {.noSideEffect.}: # because it's immutable
      let ret = lookup2[ord(a) - T.low.ord]
    if ret != invalidSlot: return ret.int
  else:
    var i = 0
    # we could also generate a case statement as optimization
    for ai in items(T):
      if ai == a: return i
      inc(i)
  raise newException(IndexDefect, $ord(a) & " invalid for " & $T)

template symbolRank*[T: enum](a: T): int =
  ## Returns the index in which `a` is listed in `T`.
  ##
  ## The cost for a `HoleyEnum` is implementation defined, currently optimized
  ## for small enums, otherwise is `O(T.enumLen)`.
  runnableExamples:
    type
      A = enum # HoleyEnum
        a0 = -3
        a1 = 10
        a2
        a3 = (20, "f3Alt")
      B = enum # OrdinalEnum
        b0
        b1
        b2
      C = enum # OrdinalEnum
        c0 = 10
        c1
        c2
    assert a2.symbolRank == 2
    assert b2.symbolRank == 2
    assert c2.symbolRank == 2
    assert c2.ord == 12
    assert a2.ord == 11
    var invalid = 7.A
    doAssertRaises(IndexDefect): discard invalid.symbolRank
  when T is Ordinal: ord(a) - T.low.ord.static
  else: symbolRankImpl(a)

func symbolName*[T: enum](a: T): string =
  ## Returns the symbol name of an enum.
  ##
  ## This uses `symbolRank`.
  runnableExamples:
    type B = enum
      b0 = (10, "kb0")
      b1 = "kb1"
      b2
    let b = B.low
    assert b.symbolName == "b0"
    assert $b == "kb0"
    static: assert B.high.symbolName == "b2"
    type C = enum # HoleyEnum
      c0 = -3
      c1 = 4
      c2 = 20
    assert c1.symbolName == "c1"
  const names = enumNames(T)
  names[a.symbolRank]