summary refs log tree commit diff stats
path: root/tinyc/i386-asm.c
diff options
context:
space:
mode:
Diffstat (limited to 'tinyc/i386-asm.c')
-rw-r--r--tinyc/i386-asm.c1211
1 files changed, 1211 insertions, 0 deletions
diff --git a/tinyc/i386-asm.c b/tinyc/i386-asm.c
new file mode 100644
index 000000000..12ff8f2ba
--- /dev/null
+++ b/tinyc/i386-asm.c
@@ -0,0 +1,1211 @@
+/*
+ *  i386 specific functions for TCC assembler
+ * 
+ *  Copyright (c) 2001, 2002 Fabrice Bellard
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ */
+
+#define MAX_OPERANDS 3
+
+typedef struct ASMInstr {
+    uint16_t sym;
+    uint16_t opcode;
+    uint16_t instr_type;
+#define OPC_JMP       0x01  /* jmp operand */
+#define OPC_B         0x02  /* only used zith OPC_WL */
+#define OPC_WL        0x04  /* accepts w, l or no suffix */
+#define OPC_BWL       (OPC_B | OPC_WL) /* accepts b, w, l or no suffix */
+#define OPC_REG       0x08 /* register is added to opcode */
+#define OPC_MODRM     0x10 /* modrm encoding */
+#define OPC_FWAIT     0x20 /* add fwait opcode */
+#define OPC_TEST      0x40 /* test opcodes */
+#define OPC_SHIFT     0x80 /* shift opcodes */
+#define OPC_D16      0x0100 /* generate data16 prefix */
+#define OPC_ARITH    0x0200 /* arithmetic opcodes */
+#define OPC_SHORTJMP 0x0400 /* short jmp operand */
+#define OPC_FARITH   0x0800 /* FPU arithmetic opcodes */
+#define OPC_GROUP_SHIFT 13
+
+/* in order to compress the operand type, we use specific operands and
+   we or only with EA  */ 
+#define OPT_REG8  0 /* warning: value is hardcoded from TOK_ASM_xxx */
+#define OPT_REG16 1 /* warning: value is hardcoded from TOK_ASM_xxx */
+#define OPT_REG32 2 /* warning: value is hardcoded from TOK_ASM_xxx */
+#define OPT_MMX   3 /* warning: value is hardcoded from TOK_ASM_xxx */
+#define OPT_SSE   4 /* warning: value is hardcoded from TOK_ASM_xxx */
+#define OPT_CR    5 /* warning: value is hardcoded from TOK_ASM_xxx */
+#define OPT_TR    6 /* warning: value is hardcoded from TOK_ASM_xxx */
+#define OPT_DB    7 /* warning: value is hardcoded from TOK_ASM_xxx */
+#define OPT_SEG   8
+#define OPT_ST    9
+#define OPT_IM8   10
+#define OPT_IM8S  11
+#define OPT_IM16  12
+#define OPT_IM32  13
+#define OPT_EAX   14 /* %al, %ax or %eax register */
+#define OPT_ST0   15 /* %st(0) register */
+#define OPT_CL    16 /* %cl register */
+#define OPT_DX    17 /* %dx register */
+#define OPT_ADDR  18 /* OP_EA with only offset */
+#define OPT_INDIR 19 /* *(expr) */
+
+/* composite types */ 
+#define OPT_COMPOSITE_FIRST   20
+#define OPT_IM       20 /* IM8 | IM16 | IM32 */
+#define OPT_REG      21 /* REG8 | REG16 | REG32 */ 
+#define OPT_REGW     22 /* REG16 | REG32 */
+#define OPT_IMW      23 /* IM16 | IM32 */ 
+
+/* can be ored with any OPT_xxx */
+#define OPT_EA    0x80
+
+    uint8_t nb_ops;
+    uint8_t op_type[MAX_OPERANDS]; /* see OP_xxx */
+} ASMInstr;
+
+typedef struct Operand {
+    uint32_t type;
+#define OP_REG8   (1 << OPT_REG8)
+#define OP_REG16  (1 << OPT_REG16)
+#define OP_REG32  (1 << OPT_REG32)
+#define OP_MMX    (1 << OPT_MMX)
+#define OP_SSE    (1 << OPT_SSE)
+#define OP_CR     (1 << OPT_CR)
+#define OP_TR     (1 << OPT_TR)
+#define OP_DB     (1 << OPT_DB)
+#define OP_SEG    (1 << OPT_SEG)
+#define OP_ST     (1 << OPT_ST)
+#define OP_IM8    (1 << OPT_IM8)
+#define OP_IM8S   (1 << OPT_IM8S)
+#define OP_IM16   (1 << OPT_IM16)
+#define OP_IM32   (1 << OPT_IM32)
+#define OP_EAX    (1 << OPT_EAX)
+#define OP_ST0    (1 << OPT_ST0)
+#define OP_CL     (1 << OPT_CL)
+#define OP_DX     (1 << OPT_DX)
+#define OP_ADDR   (1 << OPT_ADDR)
+#define OP_INDIR  (1 << OPT_INDIR)
+
+#define OP_EA     0x40000000
+#define OP_REG    (OP_REG8 | OP_REG16 | OP_REG32)
+#define OP_IM     OP_IM32
+    int8_t  reg; /* register, -1 if none */
+    int8_t  reg2; /* second register, -1 if none */
+    uint8_t shift;
+    ExprValue e;
+} Operand;
+
+static const uint8_t reg_to_size[5] = {
+/*
+    [OP_REG8] = 0,
+    [OP_REG16] = 1,
+    [OP_REG32] = 2,
+*/
+    0, 0, 1, 0, 2
+};
+    
+#define WORD_PREFIX_OPCODE 0x66
+
+#define NB_TEST_OPCODES 30
+
+static const uint8_t test_bits[NB_TEST_OPCODES] = {
+ 0x00, /* o */
+ 0x01, /* no */
+ 0x02, /* b */
+ 0x02, /* c */
+ 0x02, /* nae */
+ 0x03, /* nb */
+ 0x03, /* nc */
+ 0x03, /* ae */
+ 0x04, /* e */
+ 0x04, /* z */
+ 0x05, /* ne */
+ 0x05, /* nz */
+ 0x06, /* be */
+ 0x06, /* na */
+ 0x07, /* nbe */
+ 0x07, /* a */
+ 0x08, /* s */
+ 0x09, /* ns */
+ 0x0a, /* p */
+ 0x0a, /* pe */
+ 0x0b, /* np */
+ 0x0b, /* po */
+ 0x0c, /* l */
+ 0x0c, /* nge */
+ 0x0d, /* nl */
+ 0x0d, /* ge */
+ 0x0e, /* le */
+ 0x0e, /* ng */
+ 0x0f, /* nle */
+ 0x0f, /* g */
+};
+
+static const uint8_t segment_prefixes[] = {
+ 0x26, /* es */
+ 0x2e, /* cs */
+ 0x36, /* ss */
+ 0x3e, /* ds */
+ 0x64, /* fs */
+ 0x65  /* gs */
+};
+
+static const ASMInstr asm_instrs[] = {
+#define ALT(x) x
+#define DEF_ASM_OP0(name, opcode)
+#define DEF_ASM_OP0L(name, opcode, group, instr_type) { TOK_ASM_ ## name, opcode, (instr_type | group << OPC_GROUP_SHIFT), 0 },
+#define DEF_ASM_OP1(name, opcode, group, instr_type, op0) { TOK_ASM_ ## name, opcode, (instr_type | group << OPC_GROUP_SHIFT), 1, { op0 }},
+#define DEF_ASM_OP2(name, opcode, group, instr_type, op0, op1) { TOK_ASM_ ## name, opcode, (instr_type | group << OPC_GROUP_SHIFT), 2, { op0, op1 }},
+#define DEF_ASM_OP3(name, opcode, group, instr_type, op0, op1, op2) { TOK_ASM_ ## name, opcode, (instr_type | group << OPC_GROUP_SHIFT), 3, { op0, op1, op2 }},
+#include "i386-asm.h"
+
+    /* last operation */
+    { 0, },
+};
+
+static const uint16_t op0_codes[] = {
+#define ALT(x)
+#define DEF_ASM_OP0(x, opcode) opcode,
+#define DEF_ASM_OP0L(name, opcode, group, instr_type)
+#define DEF_ASM_OP1(name, opcode, group, instr_type, op0)
+#define DEF_ASM_OP2(name, opcode, group, instr_type, op0, op1)
+#define DEF_ASM_OP3(name, opcode, group, instr_type, op0, op1, op2)
+#include "i386-asm.h"
+};
+
+static inline int get_reg_shift(TCCState *s1)
+{
+    int shift, v;
+
+    v = asm_int_expr(s1);
+    switch(v) {
+    case 1:
+        shift = 0;
+        break;
+    case 2:
+        shift = 1;
+        break;
+    case 4:
+        shift = 2;
+        break;
+    case 8:
+        shift = 3;
+        break;
+    default:
+        expect("1, 2, 4 or 8 constant");
+        shift = 0;
+        break;
+    }
+    return shift;
+}
+
+static int asm_parse_reg(void)
+{
+    int reg;
+    if (tok != '%')
+        goto error_32;
+    next();
+    if (tok >= TOK_ASM_eax && tok <= TOK_ASM_edi) {
+        reg = tok - TOK_ASM_eax;
+        next();
+        return reg;
+    } else {
+    error_32:
+        expect("32 bit register");
+        return 0;
+    }
+}
+
+static void parse_operand(TCCState *s1, Operand *op)
+{
+    ExprValue e;
+    int reg, indir;
+    const char *p;
+
+    indir = 0;
+    if (tok == '*') {
+        next();
+        indir = OP_INDIR;
+    }
+
+    if (tok == '%') {
+        next();
+        if (tok >= TOK_ASM_al && tok <= TOK_ASM_db7) {
+            reg = tok - TOK_ASM_al;
+            op->type = 1 << (reg >> 3); /* WARNING: do not change constant order */
+            op->reg = reg & 7;
+            if ((op->type & OP_REG) && op->reg == TREG_EAX)
+                op->type |= OP_EAX;
+            else if (op->type == OP_REG8 && op->reg == TREG_ECX)
+                op->type |= OP_CL;
+            else if (op->type == OP_REG16 && op->reg == TREG_EDX)
+                op->type |= OP_DX;
+        } else if (tok >= TOK_ASM_dr0 && tok <= TOK_ASM_dr7) {
+            op->type = OP_DB;
+            op->reg = tok - TOK_ASM_dr0;
+        } else if (tok >= TOK_ASM_es && tok <= TOK_ASM_gs) {
+            op->type = OP_SEG;
+            op->reg = tok - TOK_ASM_es;
+        } else if (tok == TOK_ASM_st) {
+            op->type = OP_ST;
+            op->reg = 0;
+            next();
+            if (tok == '(') {
+                next();
+                if (tok != TOK_PPNUM)
+                    goto reg_error;
+                p = tokc.cstr->data;
+                reg = p[0] - '0';
+                if ((unsigned)reg >= 8 || p[1] != '\0')
+                    goto reg_error;
+                op->reg = reg;
+                next();
+                skip(')');
+            }
+            if (op->reg == 0)
+                op->type |= OP_ST0;
+            goto no_skip;
+        } else {
+        reg_error:
+            error("unknown register");
+        }
+        next();
+    no_skip: ;
+    } else if (tok == '$') {
+        /* constant value */
+        next();
+        asm_expr(s1, &e);
+        op->type = OP_IM32;
+        op->e.v = e.v;
+        op->e.sym = e.sym;
+        if (!op->e.sym) {
+            if (op->e.v == (uint8_t)op->e.v)
+                op->type |= OP_IM8;
+            if (op->e.v == (int8_t)op->e.v)
+                op->type |= OP_IM8S;
+            if (op->e.v == (uint16_t)op->e.v)
+                op->type |= OP_IM16;
+        }
+    } else {
+        /* address(reg,reg2,shift) with all variants */
+        op->type = OP_EA;
+        op->reg = -1;
+        op->reg2 = -1;
+        op->shift = 0;
+        if (tok != '(') {
+            asm_expr(s1, &e);
+            op->e.v = e.v;
+            op->e.sym = e.sym;
+        } else {
+            op->e.v = 0;
+            op->e.sym = NULL;
+        }
+        if (tok == '(') {
+            next();
+            if (tok != ',') {
+                op->reg = asm_parse_reg();
+            }
+            if (tok == ',') {
+                next();
+                if (tok != ',') {
+                    op->reg2 = asm_parse_reg();
+                } 
+                if (tok == ',') {
+                    next();
+                    op->shift = get_reg_shift(s1);
+                }
+            }
+            skip(')');
+        }
+        if (op->reg == -1 && op->reg2 == -1)
+            op->type |= OP_ADDR;
+    }
+    op->type |= indir;
+}
+
+/* XXX: unify with C code output ? */
+static void gen_expr32(ExprValue *pe)
+{
+    if (pe->sym)
+        greloc(cur_text_section, pe->sym, ind, R_386_32);
+    gen_le32(pe->v);
+}
+
+/* XXX: unify with C code output ? */
+static void gen_disp32(ExprValue *pe)
+{
+    Sym *sym;
+    sym = pe->sym;
+    if (sym) {
+        if (sym->r == cur_text_section->sh_num) {
+            /* same section: we can output an absolute value. Note
+               that the TCC compiler behaves differently here because
+               it always outputs a relocation to ease (future) code
+               elimination in the linker */
+            gen_le32(pe->v + (long)sym->next - ind - 4);
+        } else {
+            greloc(cur_text_section, sym, ind, R_386_PC32);
+            gen_le32(pe->v - 4);
+        }
+    } else {
+        /* put an empty PC32 relocation */
+        put_elf_reloc(symtab_section, cur_text_section, 
+                      ind, R_386_PC32, 0);
+        gen_le32(pe->v - 4);
+    }
+}
+
+
+static void gen_le16(int v)
+{
+    g(v);
+    g(v >> 8);
+}
+
+/* generate the modrm operand */
+static inline void asm_modrm(int reg, Operand *op)
+{
+    int mod, reg1, reg2, sib_reg1;
+
+    if (op->type & (OP_REG | OP_MMX | OP_SSE)) {
+        g(0xc0 + (reg << 3) + op->reg);
+    } else if (op->reg == -1 && op->reg2 == -1) {
+        /* displacement only */
+        g(0x05 + (reg << 3));
+        gen_expr32(&op->e);
+    } else {
+        sib_reg1 = op->reg;
+        /* fist compute displacement encoding */
+        if (sib_reg1 == -1) {
+            sib_reg1 = 5;
+            mod = 0x00;
+        } else if (op->e.v == 0 && !op->e.sym && op->reg != 5) {
+            mod = 0x00;
+        } else if (op->e.v == (int8_t)op->e.v && !op->e.sym) {
+            mod = 0x40;
+        } else {
+            mod = 0x80;
+        }
+        /* compute if sib byte needed */
+        reg1 = op->reg;
+        if (op->reg2 != -1)
+            reg1 = 4;
+        g(mod + (reg << 3) + reg1);
+        if (reg1 == 4) {
+            /* add sib byte */
+            reg2 = op->reg2;
+            if (reg2 == -1)
+                reg2 = 4; /* indicate no index */
+            g((op->shift << 6) + (reg2 << 3) + sib_reg1);
+        }
+
+        /* add offset */
+        if (mod == 0x40) {
+            g(op->e.v);
+        } else if (mod == 0x80 || op->reg == -1) {
+            gen_expr32(&op->e);
+        }
+    }
+}
+
+static void asm_opcode(TCCState *s1, int opcode)
+{
+    const ASMInstr *pa;
+    int i, modrm_index, reg, v, op1, is_short_jmp, seg_prefix;
+    int nb_ops, s, ss;
+    Operand ops[MAX_OPERANDS], *pop;
+    int op_type[3]; /* decoded op type */
+
+    /* get operands */
+    pop = ops;
+    nb_ops = 0;
+    seg_prefix = 0;
+    for(;;) {
+        if (tok == ';' || tok == TOK_LINEFEED)
+            break;
+        if (nb_ops >= MAX_OPERANDS) {
+            error("incorrect number of operands");
+        }
+        parse_operand(s1, pop);
+        if (tok == ':') {
+           if (pop->type != OP_SEG || seg_prefix) {
+               error("incorrect prefix");
+           }
+           seg_prefix = segment_prefixes[pop->reg];
+           next();
+           parse_operand(s1, pop);
+           if (!(pop->type & OP_EA)) {
+               error("segment prefix must be followed by memory reference");
+           }
+        }
+        pop++;
+        nb_ops++;
+        if (tok != ',')
+            break;
+        next();
+    }
+
+    is_short_jmp = 0;
+    s = 0; /* avoid warning */
+    
+    /* optimize matching by using a lookup table (no hashing is needed
+       !) */
+    for(pa = asm_instrs; pa->sym != 0; pa++) {
+        s = 0;
+        if (pa->instr_type & OPC_FARITH) {
+            v = opcode - pa->sym;
+            if (!((unsigned)v < 8 * 6 && (v % 6) == 0))
+                continue;
+        } else if (pa->instr_type & OPC_ARITH) {
+            if (!(opcode >= pa->sym && opcode < pa->sym + 8 * 4))
+                continue;
+            goto compute_size;
+        } else if (pa->instr_type & OPC_SHIFT) {
+            if (!(opcode >= pa->sym && opcode < pa->sym + 7 * 4))
+                continue;
+            goto compute_size;
+        } else if (pa->instr_type & OPC_TEST) {
+            if (!(opcode >= pa->sym && opcode < pa->sym + NB_TEST_OPCODES))
+                continue;
+        } else if (pa->instr_type & OPC_B) {
+            if (!(opcode >= pa->sym && opcode <= pa->sym + 3))
+                continue;
+        compute_size:
+            s = (opcode - pa->sym) & 3;
+        } else if (pa->instr_type & OPC_WL) {
+            if (!(opcode >= pa->sym && opcode <= pa->sym + 2))
+                continue;
+            s = opcode - pa->sym + 1;
+        } else {
+            if (pa->sym != opcode)
+                continue;
+        }
+        if (pa->nb_ops != nb_ops)
+            continue;
+        /* now decode and check each operand */
+        for(i = 0; i < nb_ops; i++) {
+            int op1, op2;
+            op1 = pa->op_type[i];
+            op2 = op1 & 0x1f;
+            switch(op2) {
+            case OPT_IM:
+                v = OP_IM8 | OP_IM16 | OP_IM32;
+                break;
+            case OPT_REG:
+                v = OP_REG8 | OP_REG16 | OP_REG32;
+                break;
+            case OPT_REGW:
+                v = OP_REG16 | OP_REG32;
+                break;
+            case OPT_IMW:
+                v = OP_IM16 | OP_IM32;
+                break;
+            default:
+                v = 1 << op2;
+                break;
+            }
+            if (op1 & OPT_EA)
+                v |= OP_EA;
+            op_type[i] = v;
+            if ((ops[i].type & v) == 0)
+                goto next;
+        }
+        /* all is matching ! */
+        break;
+    next: ;
+    }
+    if (pa->sym == 0) {
+        if (opcode >= TOK_ASM_pusha && opcode <= TOK_ASM_emms) {
+            int b;
+            b = op0_codes[opcode - TOK_ASM_pusha];
+            if (b & 0xff00) 
+                g(b >> 8);
+            g(b);
+            return;
+        } else {
+            error("unknown opcode '%s'", 
+                  get_tok_str(opcode, NULL));
+        }
+    }
+    /* if the size is unknown, then evaluate it (OPC_B or OPC_WL case) */
+    if (s == 3) {
+        for(i = 0; s == 3 && i < nb_ops; i++) {
+            if ((ops[i].type & OP_REG) && !(op_type[i] & (OP_CL | OP_DX)))
+                s = reg_to_size[ops[i].type & OP_REG];
+        }
+        if (s == 3) {
+            if ((opcode == TOK_ASM_push || opcode == TOK_ASM_pop) && 
+                (ops[0].type & (OP_SEG | OP_IM8S | OP_IM32)))
+                s = 2;
+            else
+                error("cannot infer opcode suffix");
+        }
+    }
+
+    /* generate data16 prefix if needed */
+    ss = s;
+    if (s == 1 || (pa->instr_type & OPC_D16))
+        g(WORD_PREFIX_OPCODE);
+    else if (s == 2)
+        s = 1;
+    /* now generates the operation */
+    if (pa->instr_type & OPC_FWAIT)
+        g(0x9b);
+    if (seg_prefix)
+        g(seg_prefix);
+
+    v = pa->opcode;
+    if (v == 0x69 || v == 0x69) {
+        /* kludge for imul $im, %reg */
+        nb_ops = 3;
+        ops[2] = ops[1];
+    } else if (v == 0xcd && ops[0].e.v == 3 && !ops[0].e.sym) {
+        v--; /* int $3 case */
+        nb_ops = 0;
+    } else if ((v == 0x06 || v == 0x07)) {
+        if (ops[0].reg >= 4) {
+            /* push/pop %fs or %gs */
+            v = 0x0fa0 + (v - 0x06) + ((ops[0].reg - 4) << 3);
+        } else {
+            v += ops[0].reg << 3;
+        }
+        nb_ops = 0;
+    } else if (v <= 0x05) {
+        /* arith case */
+        v += ((opcode - TOK_ASM_addb) >> 2) << 3;
+    } else if ((pa->instr_type & (OPC_FARITH | OPC_MODRM)) == OPC_FARITH) {
+        /* fpu arith case */
+        v += ((opcode - pa->sym) / 6) << 3;
+    }
+    if (pa->instr_type & OPC_REG) {
+        for(i = 0; i < nb_ops; i++) {
+            if (op_type[i] & (OP_REG | OP_ST)) {
+                v += ops[i].reg;
+                break;
+            }
+        }
+        /* mov $im, %reg case */
+        if (pa->opcode == 0xb0 && s >= 1)
+            v += 7;
+    }
+    if (pa->instr_type & OPC_B)
+        v += s;
+    if (pa->instr_type & OPC_TEST)
+        v += test_bits[opcode - pa->sym]; 
+    if (pa->instr_type & OPC_SHORTJMP) {
+        Sym *sym;
+        int jmp_disp;
+
+        /* see if we can really generate the jump with a byte offset */
+        sym = ops[0].e.sym;
+        if (!sym)
+            goto no_short_jump;
+        if (sym->r != cur_text_section->sh_num)
+            goto no_short_jump;
+        jmp_disp = ops[0].e.v + (long)sym->next - ind - 2;
+        if (jmp_disp == (int8_t)jmp_disp) {
+            /* OK to generate jump */
+            is_short_jmp = 1;
+            ops[0].e.v = jmp_disp;
+        } else {
+        no_short_jump:
+            if (pa->instr_type & OPC_JMP) {
+                /* long jump will be allowed. need to modify the
+                   opcode slightly */
+                if (v == 0xeb)
+                    v = 0xe9;
+                else 
+                    v += 0x0f10;
+            } else {
+                error("invalid displacement");
+            }
+        }
+    }
+    op1 = v >> 8;
+    if (op1)
+        g(op1);
+    g(v);
+        
+    /* search which operand will used for modrm */
+    modrm_index = 0;
+    if (pa->instr_type & OPC_SHIFT) {
+        reg = (opcode - pa->sym) >> 2; 
+        if (reg == 6)
+            reg = 7;
+    } else if (pa->instr_type & OPC_ARITH) {
+        reg = (opcode - pa->sym) >> 2;
+    } else if (pa->instr_type & OPC_FARITH) {
+        reg = (opcode - pa->sym) / 6;
+    } else {
+        reg = (pa->instr_type >> OPC_GROUP_SHIFT) & 7;
+    }
+    if (pa->instr_type & OPC_MODRM) {
+        /* first look for an ea operand */
+        for(i = 0;i < nb_ops; i++) {
+            if (op_type[i] & OP_EA)
+                goto modrm_found;
+        }
+        /* then if not found, a register or indirection (shift instructions) */
+        for(i = 0;i < nb_ops; i++) {
+            if (op_type[i] & (OP_REG | OP_MMX | OP_SSE | OP_INDIR))
+                goto modrm_found;
+        }
+#ifdef ASM_DEBUG
+        error("bad op table");
+#endif      
+    modrm_found:
+        modrm_index = i;
+        /* if a register is used in another operand then it is
+           used instead of group */
+        for(i = 0;i < nb_ops; i++) {
+            v = op_type[i];
+            if (i != modrm_index && 
+                (v & (OP_REG | OP_MMX | OP_SSE | OP_CR | OP_TR | OP_DB | OP_SEG))) {
+                reg = ops[i].reg;
+                break;
+            }
+        }
+
+        asm_modrm(reg, &ops[modrm_index]);
+    }
+
+    /* emit constants */
+    if (pa->opcode == 0x9a || pa->opcode == 0xea) {
+        /* ljmp or lcall kludge */
+        gen_expr32(&ops[1].e);
+        if (ops[0].e.sym)
+            error("cannot relocate");
+        gen_le16(ops[0].e.v);
+    } else {
+        for(i = 0;i < nb_ops; i++) {
+            v = op_type[i];
+            if (v & (OP_IM8 | OP_IM16 | OP_IM32 | OP_IM8S | OP_ADDR)) {
+                /* if multiple sizes are given it means we must look
+                   at the op size */
+                if (v == (OP_IM8 | OP_IM16 | OP_IM32) ||
+                    v == (OP_IM16 | OP_IM32)) {
+                    if (ss == 0)
+                        v = OP_IM8;
+                    else if (ss == 1)
+                        v = OP_IM16;
+                    else
+                        v = OP_IM32;
+                }
+                if (v & (OP_IM8 | OP_IM8S)) {
+                    if (ops[i].e.sym)
+                        goto error_relocate;
+                    g(ops[i].e.v);
+                } else if (v & OP_IM16) {
+                    if (ops[i].e.sym) {
+                    error_relocate:
+                        error("cannot relocate");
+                    }
+                    gen_le16(ops[i].e.v);
+                } else {
+                    if (pa->instr_type & (OPC_JMP | OPC_SHORTJMP)) {
+                        if (is_short_jmp)
+                            g(ops[i].e.v);
+                        else
+                            gen_disp32(&ops[i].e);
+                    } else {
+                        gen_expr32(&ops[i].e);
+                    }
+                }
+            }
+        }
+    }
+}
+
+#define NB_SAVED_REGS 3
+#define NB_ASM_REGS 8
+
+/* return the constraint priority (we allocate first the lowest
+   numbered constraints) */
+static inline int constraint_priority(const char *str)
+{
+    int priority, c, pr;
+
+    /* we take the lowest priority */
+    priority = 0;
+    for(;;) {
+        c = *str;
+        if (c == '\0')
+            break;
+        str++;
+        switch(c) {
+        case 'A':
+            pr = 0;
+            break;
+        case 'a':
+        case 'b':
+        case 'c':
+        case 'd':
+        case 'S':
+        case 'D':
+            pr = 1;
+            break;
+        case 'q':
+            pr = 2;
+            break;
+        case 'r':
+            pr = 3;
+            break;
+        case 'N':
+        case 'M':
+        case 'I':
+        case 'i':
+        case 'm':
+        case 'g':
+            pr = 4;
+            break;
+        default:
+            error("unknown constraint '%c'", c);
+            pr = 0;
+        }
+        if (pr > priority)
+            priority = pr;
+    }
+    return priority;
+}
+
+static const char *skip_constraint_modifiers(const char *p)
+{
+    while (*p == '=' || *p == '&' || *p == '+' || *p == '%')
+        p++;
+    return p;
+}
+
+#define REG_OUT_MASK 0x01
+#define REG_IN_MASK  0x02
+
+#define is_reg_allocated(reg) (regs_allocated[reg] & reg_mask)
+
+static void asm_compute_constraints(ASMOperand *operands, 
+                                    int nb_operands, int nb_outputs, 
+                                    const uint8_t *clobber_regs,
+                                    int *pout_reg)
+{
+    ASMOperand *op;
+    int sorted_op[MAX_ASM_OPERANDS];
+    int i, j, k, p1, p2, tmp, reg, c, reg_mask;
+    const char *str;
+    uint8_t regs_allocated[NB_ASM_REGS];
+    
+    /* init fields */
+    for(i=0;i<nb_operands;i++) {
+        op = &operands[i];
+        op->input_index = -1;
+        op->ref_index = -1;
+        op->reg = -1;
+        op->is_memory = 0;
+        op->is_rw = 0;
+    }
+    /* compute constraint priority and evaluate references to output
+       constraints if input constraints */
+    for(i=0;i<nb_operands;i++) {
+        op = &operands[i];
+        str = op->constraint;
+        str = skip_constraint_modifiers(str);
+        if (isnum(*str) || *str == '[') {
+            /* this is a reference to another constraint */
+            k = find_constraint(operands, nb_operands, str, NULL);
+            if ((unsigned)k >= i || i < nb_outputs)
+                error("invalid reference in constraint %d ('%s')",
+                      i, str);
+            op->ref_index = k;
+            if (operands[k].input_index >= 0)
+                error("cannot reference twice the same operand");
+            operands[k].input_index = i;
+            op->priority = 5;
+        } else {
+            op->priority = constraint_priority(str);
+        }
+    }
+    
+    /* sort operands according to their priority */
+    for(i=0;i<nb_operands;i++)
+        sorted_op[i] = i;
+    for(i=0;i<nb_operands - 1;i++) {
+        for(j=i+1;j<nb_operands;j++) {
+            p1 = operands[sorted_op[i]].priority; 
+            p2 = operands[sorted_op[j]].priority;
+            if (p2 < p1) {
+                tmp = sorted_op[i];
+                sorted_op[i] = sorted_op[j];
+                sorted_op[j] = tmp;
+            }
+        }
+    }
+
+    for(i = 0;i < NB_ASM_REGS; i++) {
+        if (clobber_regs[i])
+            regs_allocated[i] = REG_IN_MASK | REG_OUT_MASK;
+        else
+            regs_allocated[i] = 0;
+    }
+    /* esp cannot be used */
+    regs_allocated[4] = REG_IN_MASK | REG_OUT_MASK; 
+    /* ebp cannot be used yet */
+    regs_allocated[5] = REG_IN_MASK | REG_OUT_MASK; 
+
+    /* allocate registers and generate corresponding asm moves */
+    for(i=0;i<nb_operands;i++) {
+        j = sorted_op[i];
+        op = &operands[j];
+        str = op->constraint;
+        /* no need to allocate references */
+        if (op->ref_index >= 0)
+            continue;
+        /* select if register is used for output, input or both */
+        if (op->input_index >= 0) {
+            reg_mask = REG_IN_MASK | REG_OUT_MASK;
+        } else if (j < nb_outputs) {
+            reg_mask = REG_OUT_MASK;
+        } else {
+            reg_mask = REG_IN_MASK;
+        }
+    try_next:
+        c = *str++;
+        switch(c) {
+        case '=':
+            goto try_next;
+        case '+':
+            op->is_rw = 1;
+            /* FALL THRU */
+        case '&':
+            if (j >= nb_outputs)
+                error("'%c' modifier can only be applied to outputs", c);
+            reg_mask = REG_IN_MASK | REG_OUT_MASK;
+            goto try_next;
+        case 'A':
+            /* allocate both eax and edx */
+            if (is_reg_allocated(TREG_EAX) || 
+                is_reg_allocated(TREG_EDX))
+                goto try_next;
+            op->is_llong = 1;
+            op->reg = TREG_EAX;
+            regs_allocated[TREG_EAX] |= reg_mask;
+            regs_allocated[TREG_EDX] |= reg_mask;
+            break;
+        case 'a':
+            reg = TREG_EAX;
+            goto alloc_reg;
+        case 'b':
+            reg = 3;
+            goto alloc_reg;
+        case 'c':
+            reg = TREG_ECX;
+            goto alloc_reg;
+        case 'd':
+            reg = TREG_EDX;
+            goto alloc_reg;
+        case 'S':
+            reg = 6;
+            goto alloc_reg;
+        case 'D':
+            reg = 7;
+        alloc_reg:
+            if (is_reg_allocated(reg))
+                goto try_next;
+            goto reg_found;
+        case 'q':
+            /* eax, ebx, ecx or edx */
+            for(reg = 0; reg < 4; reg++) {
+                if (!is_reg_allocated(reg))
+                    goto reg_found;
+            }
+            goto try_next;
+        case 'r':
+            /* any general register */
+            for(reg = 0; reg < 8; reg++) {
+                if (!is_reg_allocated(reg))
+                    goto reg_found;
+            }
+            goto try_next;
+        reg_found:
+            /* now we can reload in the register */
+            op->is_llong = 0;
+            op->reg = reg;
+            regs_allocated[reg] |= reg_mask;
+            break;
+        case 'i':
+            if (!((op->vt->r & (VT_VALMASK | VT_LVAL)) == VT_CONST))
+                goto try_next;
+            break;
+        case 'I':
+        case 'N':
+        case 'M':
+            if (!((op->vt->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST))
+                goto try_next;
+            break;
+        case 'm':
+        case 'g':
+            /* nothing special to do because the operand is already in
+               memory, except if the pointer itself is stored in a
+               memory variable (VT_LLOCAL case) */
+            /* XXX: fix constant case */
+            /* if it is a reference to a memory zone, it must lie
+               in a register, so we reserve the register in the
+               input registers and a load will be generated
+               later */
+            if (j < nb_outputs || c == 'm') {
+                if ((op->vt->r & VT_VALMASK) == VT_LLOCAL) {
+                    /* any general register */
+                    for(reg = 0; reg < 8; reg++) {
+                        if (!(regs_allocated[reg] & REG_IN_MASK))
+                            goto reg_found1;
+                    }
+                    goto try_next;
+                reg_found1:
+                    /* now we can reload in the register */
+                    regs_allocated[reg] |= REG_IN_MASK;
+                    op->reg = reg;
+                    op->is_memory = 1;
+                }
+            }
+            break;
+        default:
+            error("asm constraint %d ('%s') could not be satisfied", 
+                  j, op->constraint);
+            break;
+        }
+        /* if a reference is present for that operand, we assign it too */
+        if (op->input_index >= 0) {
+            operands[op->input_index].reg = op->reg;
+            operands[op->input_index].is_llong = op->is_llong;
+        }
+    }
+    
+    /* compute out_reg. It is used to store outputs registers to memory
+       locations references by pointers (VT_LLOCAL case) */
+    *pout_reg = -1;
+    for(i=0;i<nb_operands;i++) {
+        op = &operands[i];
+        if (op->reg >= 0 && 
+            (op->vt->r & VT_VALMASK) == VT_LLOCAL  &&
+            !op->is_memory) {
+            for(reg = 0; reg < 8; reg++) {
+                if (!(regs_allocated[reg] & REG_OUT_MASK))
+                    goto reg_found2;
+            }
+            error("could not find free output register for reloading");
+        reg_found2:
+            *pout_reg = reg;
+            break;
+        }
+    }
+    
+    /* print sorted constraints */
+#ifdef ASM_DEBUG
+    for(i=0;i<nb_operands;i++) {
+        j = sorted_op[i];
+        op = &operands[j];
+        printf("%%%d [%s]: \"%s\" r=0x%04x reg=%d\n", 
+               j,                
+               op->id ? get_tok_str(op->id, NULL) : "", 
+               op->constraint,
+               op->vt->r,
+               op->reg);
+    }
+    if (*pout_reg >= 0)
+        printf("out_reg=%d\n", *pout_reg);
+#endif
+}
+
+static void subst_asm_operand(CString *add_str, 
+                              SValue *sv, int modifier)
+{
+    int r, reg, size, val;
+    char buf[64];
+
+    r = sv->r;
+    if ((r & VT_VALMASK) == VT_CONST) {
+        if (!(r & VT_LVAL) && modifier != 'c' && modifier != 'n')
+            cstr_ccat(add_str, '$');
+        if (r & VT_SYM) {
+            cstr_cat(add_str, get_tok_str(sv->sym->v, NULL));
+            if (sv->c.i != 0) {
+                cstr_ccat(add_str, '+');
+            } else {
+                return;
+            }
+        }
+        val = sv->c.i;
+        if (modifier == 'n')
+            val = -val;
+        snprintf(buf, sizeof(buf), "%d", sv->c.i);
+        cstr_cat(add_str, buf);
+    } else if ((r & VT_VALMASK) == VT_LOCAL) {
+        snprintf(buf, sizeof(buf), "%d(%%ebp)", sv->c.i);
+        cstr_cat(add_str, buf);
+    } else if (r & VT_LVAL) {
+        reg = r & VT_VALMASK;
+        if (reg >= VT_CONST)
+            error("internal compiler error");
+        snprintf(buf, sizeof(buf), "(%%%s)", 
+                 get_tok_str(TOK_ASM_eax + reg, NULL));
+        cstr_cat(add_str, buf);
+    } else {
+        /* register case */
+        reg = r & VT_VALMASK;
+        if (reg >= VT_CONST)
+            error("internal compiler error");
+
+        /* choose register operand size */
+        if ((sv->type.t & VT_BTYPE) == VT_BYTE)
+            size = 1;
+        else if ((sv->type.t & VT_BTYPE) == VT_SHORT)
+            size = 2;
+        else
+            size = 4;
+        if (size == 1 && reg >= 4)
+            size = 4;
+
+        if (modifier == 'b') {
+            if (reg >= 4)
+                error("cannot use byte register");
+            size = 1;
+        } else if (modifier == 'h') {
+            if (reg >= 4)
+                error("cannot use byte register");
+            size = -1;
+        } else if (modifier == 'w') {
+            size = 2;
+        }
+
+        switch(size) {
+        case -1:
+            reg = TOK_ASM_ah + reg;
+            break;
+        case 1:
+            reg = TOK_ASM_al + reg;
+            break;
+        case 2:
+            reg = TOK_ASM_ax + reg;
+            break;
+        default:
+            reg = TOK_ASM_eax + reg;
+            break;
+        }
+        snprintf(buf, sizeof(buf), "%%%s", get_tok_str(reg, NULL));
+        cstr_cat(add_str, buf);
+    }
+}
+
+/* generate prolog and epilog code for asm statement */
+static void asm_gen_code(ASMOperand *operands, int nb_operands, 
+                         int nb_outputs, int is_output,
+                         uint8_t *clobber_regs,
+                         int out_reg)
+{
+    uint8_t regs_allocated[NB_ASM_REGS];
+    ASMOperand *op;
+    int i, reg;
+    static uint8_t reg_saved[NB_SAVED_REGS] = { 3, 6, 7 };
+
+    /* mark all used registers */
+    memcpy(regs_allocated, clobber_regs, sizeof(regs_allocated));
+    for(i = 0; i < nb_operands;i++) {
+        op = &operands[i];
+        if (op->reg >= 0)
+            regs_allocated[op->reg] = 1;
+    }
+    if (!is_output) {
+        /* generate reg save code */
+        for(i = 0; i < NB_SAVED_REGS; i++) {
+            reg = reg_saved[i];
+            if (regs_allocated[reg]) 
+                g(0x50 + reg);
+        }
+
+        /* generate load code */
+        for(i = 0; i < nb_operands; i++) {
+            op = &operands[i];
+            if (op->reg >= 0) {
+                if ((op->vt->r & VT_VALMASK) == VT_LLOCAL &&
+                    op->is_memory) {
+                    /* memory reference case (for both input and
+                       output cases) */
+                    SValue sv;
+                    sv = *op->vt;
+                    sv.r = (sv.r & ~VT_VALMASK) | VT_LOCAL;
+                    load(op->reg, &sv);
+                } else if (i >= nb_outputs || op->is_rw) {
+                    /* load value in register */
+                    load(op->reg, op->vt);
+                    if (op->is_llong) {
+                        SValue sv;
+                        sv = *op->vt;
+                        sv.c.ul += 4;
+                        load(TREG_EDX, &sv);
+                    }
+                }
+            }
+        }
+    } else {
+        /* generate save code */
+        for(i = 0 ; i < nb_outputs; i++) {
+            op = &operands[i];
+            if (op->reg >= 0) {
+                if ((op->vt->r & VT_VALMASK) == VT_LLOCAL) {
+                    if (!op->is_memory) {
+                        SValue sv;
+                        sv = *op->vt;
+                        sv.r = (sv.r & ~VT_VALMASK) | VT_LOCAL;
+                        load(out_reg, &sv);
+
+                        sv.r = (sv.r & ~VT_VALMASK) | out_reg;
+                        store(op->reg, &sv);
+                    }
+                } else {
+                    store(op->reg, op->vt);
+                    if (op->is_llong) {
+                        SValue sv;
+                        sv = *op->vt;
+                        sv.c.ul += 4;
+                        store(TREG_EDX, &sv);
+                    }
+                }
+            }
+        }
+        /* generate reg restore code */
+        for(i = NB_SAVED_REGS - 1; i >= 0; i--) {
+            reg = reg_saved[i];
+            if (regs_allocated[reg]) 
+                g(0x58 + reg);
+        }
+    }
+}
+
+static void asm_clobber(uint8_t *clobber_regs, const char *str)
+{
+    int reg;
+    TokenSym *ts;
+
+    if (!strcmp(str, "memory") || 
+        !strcmp(str, "cc"))
+        return;
+    ts = tok_alloc(str, strlen(str));
+    reg = ts->tok;
+    if (reg >= TOK_ASM_eax && reg <= TOK_ASM_edi) {
+        reg -= TOK_ASM_eax;
+    } else if (reg >= TOK_ASM_ax && reg <= TOK_ASM_di) {
+        reg -= TOK_ASM_ax;
+    } else {
+        error("invalid clobber register '%s'", str);
+    }
+    clobber_regs[reg] = 1;
+}