summary refs log tree commit diff stats
Commit message (Expand)AuthorAgeFilesLines
* manual: document the 'unsafeAddr' operator; closes #5038Araq2018-09-031-0/+13
* document 'var T' and 'typedesc' restriction in generics; closes #1156Araq2018-09-031-0/+28
* fixes #8852Araq2018-09-031-5/+5
* fix items for cstring for the JS target; makes tests green againAraq2018-09-032-6/+13
* fixes #5745Araq2018-09-033-7/+11
* closes #5252Araq2018-09-031-0/+19
* closes #4750Araq2018-09-031-0/+19
* document usage of marshal.to; fixes #3150Araq2018-09-031-0/+11
* fixes the remaining fixable Nimrod->Nim renamings; closes #2032Araq2018-09-034-14/+14
* deprecate system.onRaise; fixes #1652Araq2018-09-031-1/+4
* fixes #8797Araq2018-09-031-2/+2
* fixes #8740Araq2018-09-032-1/+16
* fixes #8847Araq2018-09-032-2/+10
* fixes #8028Andreas Rumpf2018-09-031-1/+1
* runnableExample: put each example to its own file; fixes #7285Andreas Rumpf2018-09-032-30/+27
* fixes #8831Andreas Rumpf2018-09-031-1/+1
* Make sure addGotoOut always inserts its node (#8843)LemonBoy2018-09-031-1/+1
* change runnableExamples implementation; fixes #8641; fixes #7135; runnableExa...Andreas Rumpf2018-09-025-42/+70
* fixes #8694Andreas Rumpf2018-09-021-2/+2
* Exports dom.Style (#8444)Dominik Picheta2018-09-011-1/+1
* strutils: don't deprecate escape/unescape, too much code uses itAraq2018-08-311-6/+2
* fixes #8052Araq2018-08-312-1/+24
* Constant folding for integer casts (#8095)LemonBoy2018-08-313-8/+86
* Do not materialize empty varargs[untyped] arrays (#8715)LemonBoy2018-08-312-6/+38
* Update html elements to current html spec (#8791)Nathan Cahill2018-08-311-50/+241
* system/excpt: nil is no longer vaild for seqs (#8825)alaviss2018-08-311-1/+1
* merged #8624 manually; fixes #8442; closes #8575Araq2018-08-312-2/+36
* Improve enumerate macro (#8819)Vindaar2018-08-311-8/+12
* fixes #8066Araq2018-08-314-10/+46
* times.nim: minor code cleanupAraq2018-08-311-3/+2
* Tutorial 1: Simplifiy the discription of enums; it is a tutorial, not a manualAraq2018-08-311-11/+2
* fixes a parseopt regression (#8820)Andreas Rumpf2018-08-301-2/+5
* introduce precise string '[]', '[]=' accessors; fixes #8049 (#8817)Andreas Rumpf2018-08-304-3/+33
* fixes #8768 properlyAraq2018-08-303-17/+18
* fixes #7854Araq2018-08-302-1/+38
* unidecode module: change the default to: embed resource file into the applica...Araq2018-08-301-10/+10
* fixes #8768Araq2018-08-303-430/+430
* fix tests/coroutines/texceptions.nim (#8810)Timothee Cour2018-08-301-1/+6
* make config.nims behave like nim.cfg in terms of where these scripts are sear...Timothee Cour2018-08-307-118/+156
* add nim c -r nimsuggest/tester to travis (#8805)Timothee Cour2018-08-2910-3/+27
* Allow Nimble to override the ``task`` template in nimscript. (#8798)Dominik Picheta2018-08-281-18/+18
* Allow `hint` and `warning` to specify its loc info (#8771)LemonBoy2018-08-284-12/+40
* Net module fixes (#8597)Dominik Picheta2018-08-282-17/+19
* make parseopt work with DLLs on UnixAraq2018-08-281-7/+8
* make parsopt compile under --taintMode:onAraq2018-08-281-6/+6
* parseopt: keep the seq of arguments as given; fixes various command line pars...Araq2018-08-281-34/+75
* fixes #4766Araq2018-08-282-1/+21
* added a test to ensure that for-loop-variables cannot be mutatedAraq2018-08-281-0/+15
* Fix nkImportAs regression (#8796)Oscar NihlgÄrd2018-08-282-9/+19
* show all mismatching overloads againAraq2018-08-271-9/+11
='#n520'>520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
#
#
#           The Nim Compiler
#        (c) Copyright 2013 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## This module implements the signature matching for resolving
## the call to overloaded procs, generic procs and operators.

import
  intsets, ast, astalgo, semdata, types, msgs, renderer, lookups, semtypinst,
  magicsys, condsyms, idents, lexer, options, parampatterns, strutils, trees,
  nimfix.pretty

when not defined(noDocgen):
  import docgen

type
  TCandidateState* = enum
    csEmpty, csMatch, csNoMatch

  CandidateErrors* = seq[PSym]
  TCandidate* = object
    c*: PContext
    exactMatches*: int       # also misused to prefer iters over procs
    genericMatches: int      # also misused to prefer constraints
    subtypeMatches: int
    intConvMatches: int      # conversions to int are not as expensive
    convMatches: int
    state*: TCandidateState
    callee*: PType           # may not be nil!
    calleeSym*: PSym         # may be nil
    calleeScope*: int        # scope depth:
                             # is this a top-level symbol or a nested proc?
    call*: PNode             # modified call
    bindings*: TIdTable      # maps types to types
    magic*: TMagic           # magic of operation
    baseTypeMatch: bool      # needed for conversions from T to openarray[T]
                             # for example
    fauxMatch*: TTypeKind    # the match was successful only due to the use
                             # of error or wildcard (unknown) types.
                             # this is used to prevent instantiations.
    genericConverter*: bool  # true if a generic converter needs to
                             # be instantiated
    coerceDistincts*: bool   # this is an explicit coercion that can strip away
                             # a distrinct type
    typedescMatched*: bool
    isNoCall*: bool          # misused for generic type instantiations C[T]
    inheritancePenalty: int  # to prefer closest father object type
    errors*: CandidateErrors # additional clarifications to be displayed to the
                             # user if overload resolution fails

  TTypeRelation* = enum      # order is important!
    isNone, isConvertible,
    isIntConv,
    isSubtype,
    isSubrange,              # subrange of the wanted type; no type conversion
                             # but apart from that counts as ``isSubtype``
    isBothMetaConvertible    # generic proc parameter was matched against
                             # generic type, e.g., map(mySeq, x=>x+1),
                             # maybe recoverable by rerun if the parameter is
                             # the proc's return value
    isInferred,              # generic proc was matched against a concrete type
    isInferredConvertible,   # same as above, but requiring proc CC conversion
    isGeneric,
    isFromIntLit,            # conversion *from* int literal; proven safe
    isEqual

const
  isNilConversion = isConvertible # maybe 'isIntConv' fits better?

proc markUsed*(info: TLineInfo, s: PSym)

template hasFauxMatch*(c: TCandidate): bool = c.fauxMatch != tyNone

proc initCandidateAux(ctx: PContext,
                      c: var TCandidate, callee: PType) {.inline.} =
  c.c = ctx
  c.exactMatches = 0
  c.subtypeMatches = 0
  c.convMatches = 0
  c.intConvMatches = 0
  c.genericMatches = 0
  c.state = csEmpty
  c.callee = callee
  c.call = nil
  c.baseTypeMatch = false
  c.genericConverter = false
  c.inheritancePenalty = 0

proc initCandidate*(ctx: PContext, c: var TCandidate, callee: PType) =
  initCandidateAux(ctx, c, callee)
  c.calleeSym = nil
  initIdTable(c.bindings)

proc put(t: var TIdTable, key, val: PType) {.inline.} =
  idTablePut(t, key, val.skipIntLit)

proc initCandidate*(ctx: PContext, c: var TCandidate, callee: PSym,
                    binding: PNode, calleeScope = -1) =
  initCandidateAux(ctx, c, callee.typ)
  c.calleeSym = callee
  if callee.kind in skProcKinds and calleeScope == -1:
    if callee.originatingModule == ctx.module:
      c.calleeScope = 2
      var owner = callee
      while true:
        owner = owner.skipGenericOwner
        if owner.kind == skModule: break
        inc c.calleeScope
    else:
      c.calleeScope = 1
  else:
    c.calleeScope = calleeScope
  c.magic = c.calleeSym.magic
  initIdTable(c.bindings)
  c.errors = nil
  if binding != nil and callee.kind in routineKinds:
    var typeParams = callee.ast[genericParamsPos]
    for i in 1..min(sonsLen(typeParams), sonsLen(binding)-1):
      var formalTypeParam = typeParams.sons[i-1].typ
      var bound = binding[i].typ
      internalAssert bound != nil
      if formalTypeParam.kind == tyTypeDesc:
        if bound.kind != tyTypeDesc:
          bound = makeTypeDesc(ctx, bound)
      else:
        bound = bound.skipTypes({tyTypeDesc})
      put(c.bindings, formalTypeParam, bound)

proc newCandidate*(ctx: PContext, callee: PSym,
                   binding: PNode, calleeScope = -1): TCandidate =
  initCandidate(ctx, result, callee, binding, calleeScope)

proc newCandidate*(ctx: PContext, callee: PType): TCandidate =
  initCandidate(ctx, result, callee)

proc copyCandidate(a: var TCandidate, b: TCandidate) =
  a.c = b.c
  a.exactMatches = b.exactMatches
  a.subtypeMatches = b.subtypeMatches
  a.convMatches = b.convMatches
  a.intConvMatches = b.intConvMatches
  a.genericMatches = b.genericMatches
  a.state = b.state
  a.callee = b.callee
  a.calleeSym = b.calleeSym
  a.call = copyTree(b.call)
  a.baseTypeMatch = b.baseTypeMatch
  copyIdTable(a.bindings, b.bindings)

proc sumGeneric(t: PType): int =
  var t = t
  var isvar = 1
  while true:
    case t.kind
    of tyGenericInst, tyArray, tyRef, tyPtr, tyDistinct, tyArrayConstr,
        tyOpenArray, tyVarargs, tySet, tyRange, tySequence, tyGenericBody:
      t = t.lastSon
      inc result
    of tyVar:
      t = t.sons[0]
      inc result
      inc isvar
    of tyTypeDesc:
      t = t.lastSon
      if t.kind == tyEmpty: break
      inc result
    of tyGenericInvocation, tyTuple, tyProc:
      result += ord(t.kind == tyGenericInvocation)
      for i in 0 .. <t.len: result += t.sons[i].sumGeneric
      break
    of tyGenericParam, tyExpr, tyStatic, tyStmt: break
    of tyBool, tyChar, tyEnum, tyObject, tyPointer,
        tyString, tyCString, tyInt..tyInt64, tyFloat..tyFloat128,
        tyUInt..tyUInt64:
      return isvar
    else:
      return 0

#var ggDebug: bool

proc complexDisambiguation(a, b: PType): int =
  # 'a' matches better if *every* argument matches better or equal than 'b'.
  var winner = 0
  for i in 1 .. <min(a.len, b.len):
    let x = a.sons[i].sumGeneric
    let y = b.sons[i].sumGeneric
    #if ggDebug:
    #  echo "came her ", typeToString(a.sons[i]), " ", typeToString(b.sons[i])
    if x != y:
      if winner == 0:
        if x > y: winner = 1
        else: winner = -1
      elif x > y:
        if winner != 1:
          # contradiction
          return 0
      else:
        if winner != -1:
          return 0
  result = winner
  when false:
    var x, y: int
    for i in 1 .. <a.len: x += a.sons[i].sumGeneric
    for i in 1 .. <b.len: y += b.sons[i].sumGeneric
    result = x - y

proc cmpCandidates*(a, b: TCandidate): int =
  result = a.exactMatches - b.exactMatches
  if result != 0: return
  result = a.genericMatches - b.genericMatches
  if result != 0: return
  result = a.subtypeMatches - b.subtypeMatches
  if result != 0: return
  result = a.intConvMatches - b.intConvMatches
  if result != 0: return
  result = a.convMatches - b.convMatches
  if result != 0: return
  result = a.calleeScope - b.calleeScope
  if result != 0: return
  # the other way round because of other semantics:
  result = b.inheritancePenalty - a.inheritancePenalty
  if result != 0: return
  # prefer more specialized generic over more general generic:
  result = complexDisambiguation(a.callee, b.callee)

proc writeMatches*(c: TCandidate) =
  writeLine(stdout, "exact matches: " & $c.exactMatches)
  writeLine(stdout, "generic matches: " & $c.genericMatches)
  writeLine(stdout, "subtype matches: " & $c.subtypeMatches)
  writeLine(stdout, "intconv matches: " & $c.intConvMatches)
  writeLine(stdout, "conv matches: " & $c.convMatches)
  writeLine(stdout, "inheritance: " & $c.inheritancePenalty)

proc argTypeToString(arg: PNode; prefer: TPreferedDesc): string =
  if arg.kind in nkSymChoices:
    result = typeToString(arg[0].typ, prefer)
    for i in 1 .. <arg.len:
      result.add(" | ")
      result.add typeToString(arg[i].typ, prefer)
  else:
    result = arg.typ.typeToString(prefer)

proc describeArgs*(c: PContext, n: PNode, startIdx = 1;
                   prefer: TPreferedDesc = preferName): string =
  result = ""
  for i in countup(startIdx, n.len - 1):
    var arg = n.sons[i]
    if n.sons[i].kind == nkExprEqExpr:
      add(result, renderTree(n.sons[i].sons[0]))
      add(result, ": ")
      if arg.typ.isNil:
        arg = c.semOperand(c, n.sons[i].sons[1])
        n.sons[i].typ = arg.typ
        n.sons[i].sons[1] = arg
    else:
      if arg.typ.isNil:
        arg = c.semOperand(c, n.sons[i])
        n.sons[i] = arg
    if arg.typ.kind == tyError: return
    add(result, argTypeToString(arg, prefer))
    if i != sonsLen(n) - 1: add(result, ", ")

proc typeRel*(c: var TCandidate, f, aOrig: PType, doBind = true): TTypeRelation
proc concreteType(c: TCandidate, t: PType): PType =
  case t.kind
  of tyArrayConstr:
    # make it an array
    result = newType(tyArray, t.owner)
    addSonSkipIntLit(result, t.sons[0]) # XXX: t.owner is wrong for ID!
    addSonSkipIntLit(result, t.sons[1]) # XXX: semantic checking for the type?
  of tyNil:
    result = nil              # what should it be?
  of tyTypeDesc:
    if c.isNoCall: result = t
    else: result = nil
  of tySequence, tySet:
    if t.sons[0].kind == tyEmpty: result = nil
    else: result = t
  of tyGenericParam, tyAnything:
    result = t
    while true:
      result = PType(idTableGet(c.bindings, t))
      if result == nil:
        break # it's ok, no match
        # example code that triggers it:
        # proc sort[T](cmp: proc(a, b: T): int = cmp)
      if result.kind != tyGenericParam: break
  of tyGenericInvocation:
    internalError("cannot resolve type: " & typeToString(t))
    result = t
  else:
    result = t                # Note: empty is valid here

proc handleRange(f, a: PType, min, max: TTypeKind): TTypeRelation =
  if a.kind == f.kind:
    result = isEqual
  else:
    let ab = skipTypes(a, {tyRange})
    let k = ab.kind
    if k == f.kind: result = isSubrange
    elif k == tyInt and f.kind in {tyRange, tyInt8..tyInt64,
                                   tyUInt..tyUInt64} and
        isIntLit(ab) and ab.n.intVal >= firstOrd(f) and
                         ab.n.intVal <= lastOrd(f):
      # integer literal in the proper range; we want ``i16 + 4`` to stay an
      # ``int16`` operation so we declare the ``4`` pseudo-equal to int16
      result = isFromIntLit
    elif f.kind == tyInt and k in {tyInt8..tyInt32}:
      result = isIntConv
    elif k >= min and k <= max:
      result = isConvertible
    elif a.kind == tyRange and a.sons[0].kind in {tyInt..tyInt64,
                                                  tyUInt8..tyUInt32} and
                         a.n[0].intVal >= firstOrd(f) and
                         a.n[1].intVal <= lastOrd(f):
      result = isConvertible
    else: result = isNone
    #elif f.kind == tyInt and k in {tyInt..tyInt32}: result = isIntConv
    #elif f.kind == tyUInt and k in {tyUInt..tyUInt32}: result = isIntConv

proc isConvertibleToRange(f, a: PType): bool =
  # be less picky for tyRange, as that it is used for array indexing:
  if f.kind in {tyInt..tyInt64, tyUInt..tyUInt64} and
     a.kind in {tyInt..tyInt64, tyUInt..tyUInt64}:
    result = true
  elif f.kind in {tyFloat..tyFloat128} and
       a.kind in {tyFloat..tyFloat128}:
    result = true

proc handleFloatRange(f, a: PType): TTypeRelation =
  if a.kind == f.kind:
    result = isEqual
  else:
    let ab = skipTypes(a, {tyRange})
    var k = ab.kind
    if k == f.kind: result = isSubrange
    elif isFloatLit(ab): result = isFromIntLit
    elif isIntLit(ab): result = isConvertible
    elif k >= tyFloat and k <= tyFloat128:
      # conversion to "float32" is not as good:
      if f.kind == tyFloat32: result = isConvertible
      else: result = isIntConv
    else: result = isNone

proc isObjectSubtype(a, f: PType): int =
  var t = a
  assert t.kind == tyObject
  var depth = 0
  while t != nil and not sameObjectTypes(f, t):
    assert t.kind == tyObject
    t = t.sons[0]
    if t == nil: break
    t = skipTypes(t, {tyGenericInst})
    inc depth
  if t != nil:
    result = depth

proc minRel(a, b: TTypeRelation): TTypeRelation =
  if a <= b: result = a
  else: result = b

proc recordRel(c: var TCandidate, f, a: PType): TTypeRelation =
  result = isNone
  if sameType(f, a):
    result = isEqual
  elif sonsLen(a) == sonsLen(f):
    result = isEqual
    let firstField = if f.kind == tyTuple: 0
                     else: 1
    for i in countup(firstField, sonsLen(f) - 1):
      var m = typeRel(c, f.sons[i], a.sons[i])
      if m < isSubtype: return isNone
      result = minRel(result, m)
    if f.n != nil and a.n != nil:
      for i in countup(0, sonsLen(f.n) - 1):
        # check field names:
        if f.n.sons[i].kind != nkSym: internalError(f.n.info, "recordRel")
        elif a.n.sons[i].kind != nkSym: internalError(a.n.info, "recordRel")
        else:
          var x = f.n.sons[i].sym
          var y = a.n.sons[i].sym
          if f.kind == tyObject and typeRel(c, x.typ, y.typ) < isSubtype:
            return isNone
          if x.name.id != y.name.id: return isNone

proc allowsNil(f: PType): TTypeRelation {.inline.} =
  result = if tfNotNil notin f.flags: isSubtype else: isNone

proc inconsistentVarTypes(f, a: PType): bool {.inline.} =
  result = f.kind != a.kind and (f.kind == tyVar or a.kind == tyVar)

proc procParamTypeRel(c: var TCandidate, f, a: PType): TTypeRelation =
  ## For example we have:
  ## .. code-block:: nim
  ##   proc myMap[T,S](sIn: seq[T], f: proc(x: T): S): seq[S] = ...
  ##   proc innerProc[Q,W](q: Q): W = ...
  ## And we want to match: myMap(@[1,2,3], innerProc)
  ## This proc (procParamTypeRel) will do the following steps in
  ## three different calls:
  ## - matches f=T to a=Q. Since f is metatype, we resolve it
  ##    to int (which is already known at this point). So in this case
  ##    Q=int mapping will be saved to c.bindings.
  ## - matches f=S to a=W. Both of these metatypes are unknown, so we
  ##    return with isBothMetaConvertible to ask for rerun.
  ## - matches f=S to a=W. At this point the return type of innerProc
  ##    is known (we get it from c.bindings). We can use that value
  ##    to match with f, and save back to c.bindings.
  var
    f = f
    a = a

  if a.isMetaType:
    let aResolved = PType(idTableGet(c.bindings, a))
    if aResolved != nil:
      a = aResolved
  if a.isMetaType:
    if f.isMetaType:
      # We are matching a generic proc (as proc param)
      # to another generic type appearing in the proc
      # signature. There is a change that the target
      # type is already fully-determined, so we are
      # going to try resolve it
      f = generateTypeInstance(c.c, c.bindings, c.call.info, f)
      if f == nil or f.isMetaType:
        # no luck resolving the type, so the inference fails
        return isBothMetaConvertible
    # Note that this typeRel call will save a's resolved type into c.bindings
    let reverseRel = typeRel(c, a, f)
    if reverseRel >= isGeneric:
      result = isInferred
      #inc c.genericMatches
  else:
    # Note that this typeRel call will save f's resolved type into c.bindings
    # if f is metatype.
    result = typeRel(c, f, a)

  if result <= isSubtype or inconsistentVarTypes(f, a):
    result = isNone

  #if result == isEqual:
  #  inc c.exactMatches

proc procTypeRel(c: var TCandidate, f, a: PType): TTypeRelation =
  case a.kind
  of tyProc:
    if sonsLen(f) != sonsLen(a): return
    result = isEqual      # start with maximum; also correct for no
                          # params at all

    template checkParam(f, a) =
      result = minRel(result, procParamTypeRel(c, f, a))
      if result == isNone: return

    # Note: We have to do unification for the parameters before the
    # return type!
    for i in 1 .. <f.sonsLen:
      checkParam(f.sons[i], a.sons[i])

    if f.sons[0] != nil:
      if a.sons[0] != nil:
        checkParam(f.sons[0], a.sons[0])
      else:
        return isNone
    elif a.sons[0] != nil:
      return isNone

    if tfNoSideEffect in f.flags and tfNoSideEffect notin a.flags:
      return isNone
    elif tfThread in f.flags and a.flags * {tfThread, tfNoSideEffect} == {} and
        optThreadAnalysis in gGlobalOptions:
      # noSideEffect implies ``tfThread``!
      return isNone
    elif f.flags * {tfIterator} != a.flags * {tfIterator}:
      return isNone
    elif f.callConv != a.callConv:
      # valid to pass a 'nimcall' thingie to 'closure':
      if f.callConv == ccClosure and a.callConv == ccDefault:
        result = if result == isInferred: isInferredConvertible
                 elif result == isBothMetaConvertible: isBothMetaConvertible
                 else: isConvertible
      else:
        return isNone
    when useEffectSystem:
      if not compatibleEffects(f, a): return isNone

  of tyNil:
    result = f.allowsNil
  of tyIter:
    if tfIterator in f.flags: result = typeRel(c, f.base, a.base)
  else: discard

proc typeRangeRel(f, a: PType): TTypeRelation {.noinline.} =
  let
    a0 = firstOrd(a)
    a1 = lastOrd(a)
    f0 = firstOrd(f)
    f1 = lastOrd(f)
  if a0 == f0 and a1 == f1:
    result = isEqual
  elif a0 >= f0 and a1 <= f1:
    result = isConvertible
  elif a0 <= f1 and f0 <= a1:
    # X..Y and C..D overlap iff (X <= D and C <= Y)
    result = isConvertible
  else:
    result = isNone

proc matchUserTypeClass*(c: PContext, m: var TCandidate,
                         ff, a: PType): TTypeRelation =
  var body = ff.skipTypes({tyUserTypeClassInst})
  if c.inTypeClass > 20:
    localError(body.n[3].info, $body.n[3] & " too nested for type matching")
    return isNone

  openScope(c)
  inc c.inTypeClass

  defer:
    dec c.inTypeClass
    closeScope(c)

  if ff.kind == tyUserTypeClassInst:
    for i in 1 .. <(ff.len - 1):
      var
        typeParamName = ff.base.sons[i-1].sym.name
        typ = ff.sons[i]
        param: PSym

      template paramSym(kind): expr =
        newSym(kind, typeParamName, body.sym, body.sym.info)

      case typ.kind
      of tyStatic:
        param = paramSym skConst
        param.typ = typ.base
        param.ast = typ.n
      of tyUnknown:
        param = paramSym skVar
        param.typ = typ
      else:
        param = paramSym skType
        param.typ = makeTypeDesc(c, typ)

      addDecl(c, param)
      #echo "A ", param.name.s, " ", typeToString(param.typ), " ", param.kind

  for param in body.n[0]:
    var
      dummyName: PNode
      dummyType: PType

    if param.kind == nkVarTy:
      dummyName = param[0]
      dummyType = if a.kind != tyVar: makeVarType(c, a) else: a
    else:
      dummyName = param
      dummyType = a

    internalAssert dummyName.kind == nkIdent
    var dummyParam = newSym(skVar, dummyName.ident, body.sym, body.sym.info)
    dummyParam.typ = dummyType
    addDecl(c, dummyParam)
    #echo "B ", dummyName.ident.s, " ", typeToString(dummyType), " ", dummyparam.kind

  var checkedBody = c.semTryExpr(c, body.n[3].copyTree)
  if checkedBody == nil: return isNone
  return isGeneric

proc shouldSkipDistinct(rules: PNode, callIdent: PIdent): bool =
  if rules.kind == nkWith:
    for r in rules:
      if r.considerQuotedIdent == callIdent: return true
    return false
  else:
    for r in rules:
      if r.considerQuotedIdent == callIdent: return false
    return true

proc maybeSkipDistinct(t: PType, callee: PSym): PType =
  if t != nil and t.kind == tyDistinct and t.n != nil and
     shouldSkipDistinct(t.n, callee.name):
    result = t.base
  else:
    result = t

proc tryResolvingStaticExpr(c: var TCandidate, n: PNode): PNode =
  # Consider this example:
  #   type Value[N: static[int]] = object
  #   proc foo[N](a: Value[N], r: range[0..(N-1)])
  # Here, N-1 will be initially nkStaticExpr that can be evaluated only after
  # N is bound to a concrete value during the matching of the first param.
  # This proc is used to evaluate such static expressions.
  let instantiated = replaceTypesInBody(c.c, c.bindings, n, nil)
  result = c.c.semExpr(c.c, instantiated)

proc typeRel(c: var TCandidate, f, aOrig: PType, doBind = true): TTypeRelation =
  # typeRel can be used to establish various relationships between types:
  #
  # 1) When used with concrete types, it will check for type equivalence
  # or a subtype relationship.
  #
  # 2) When used with a concrete type against a type class (such as generic
  # signature of a proc), it will check whether the concrete type is a member
  # of the designated type class.
  #
  # 3) When used with two type classes, it will check whether the types
  # matching the first type class are a strict subset of the types matching
  # the other. This allows us to compare the signatures of generic procs in
  # order to give preferrence to the most specific one:
  #
  # seq[seq[any]] is a strict subset of seq[any] and hence more specific.

  result = isNone
  assert(f != nil)

  if f.kind == tyExpr:
    if aOrig != nil: put(c.bindings, f, aOrig)
    return isGeneric

  assert(aOrig != nil)

  # var and static arguments match regular modifier-free types
  let a = aOrig.skipTypes({tyStatic, tyVar}).maybeSkipDistinct(c.calleeSym)
  # XXX: Theoretically, maybeSkipDistinct could be called before we even
  # start the param matching process. This could be done in `prepareOperand`
  # for example, but unfortunately `prepareOperand` is not called in certain
  # situation when nkDotExpr are rotated to nkDotCalls

  if a.kind == tyGenericInst and
      skipTypes(f, {tyVar}).kind notin {
        tyGenericBody, tyGenericInvocation,
        tyGenericInst, tyGenericParam} + tyTypeClasses:
    return typeRel(c, f, lastSon(a))

  template bindingRet(res) =
    if doBind:
      let bound = aOrig.skipTypes({tyRange}).skipIntLit
      if doBind: put(c.bindings, f, bound)
    return res

  template considerPreviousT(body: stmt) {.immediate.} =
    var prev = PType(idTableGet(c.bindings, f))
    if prev == nil: body
    else: return typeRel(c, prev, a)

  case a.kind
  of tyOr:
    # seq[int|string] vs seq[number]
    # both int and string must match against number
    # but ensure that '[T: A|A]' matches as good as '[T: A]' (bug #2219):
    result = isGeneric
    for branch in a.sons:
      let x = typeRel(c, f, branch, false)
      if x == isNone: return isNone
      if x < result: result = x

  of tyAnd:
    # seq[Sortable and Iterable] vs seq[Sortable]
    # only one match is enough
    for branch in a.sons:
      let x = typeRel(c, f, branch, false)
      if x != isNone:
        return if x >= isGeneric: isGeneric else: x
    result = isNone

  of tyNot:
    case f.kind
    of tyNot:
      # seq[!int] vs seq[!number]
      # seq[float] matches the first, but not the second
      # we must turn the problem around:
      # is number a subset of int?
      return typeRel(c, a.lastSon, f.lastSon)

    else:
      # negative type classes are essentially infinite,
      # so only the `any` type class is their superset
      return if f.kind == tyAnything: isGeneric
             else: isNone

  of tyAnything:
    return if f.kind == tyAnything: isGeneric
           else: isNone

  of tyUserTypeClass, tyUserTypeClassInst:
    # consider this: 'var g: Node' *within* a concept where 'Node'
    # is a concept too (tgraph)
    let x = typeRel(c, a, f, false)
    if x >= isGeneric:
      return isGeneric
  else: discard

  case f.kind
  of tyEnum:
    if a.kind == f.kind and sameEnumTypes(f, a): result = isEqual
    elif sameEnumTypes(f, skipTypes(a, {tyRange})): result = isSubtype
  of tyBool, tyChar:
    if a.kind == f.kind: result = isEqual
    elif skipTypes(a, {tyRange}).kind == f.kind: result = isSubtype
  of tyRange:
    if a.kind == f.kind:
      if f.base.kind == tyNone: return isGeneric
      result = typeRel(c, base(f), base(a))
      # bugfix: accept integer conversions here
      #if result < isGeneric: result = isNone
      if result notin {isNone, isGeneric}:
        # resolve any late-bound static expressions
        # that may appear in the range:
        for i in 0..1:
          if f.n[i].kind == nkStaticExpr:
            f.n.sons[i] = tryResolvingStaticExpr(c, f.n[i])
        result = typeRangeRel(f, a)
    else:
      if skipTypes(f, {tyRange}).kind == a.kind:
        result = isIntConv
      elif isConvertibleToRange(skipTypes(f, {tyRange}), a):
        result = isConvertible  # a convertible to f
  of tyInt:      result = handleRange(f, a, tyInt8, tyInt32)
  of tyInt8:     result = handleRange(f, a, tyInt8, tyInt8)
  of tyInt16:    result = handleRange(f, a, tyInt8, tyInt16)
  of tyInt32:    result = handleRange(f, a, tyInt8, tyInt32)
  of tyInt64:    result = handleRange(f, a, tyInt, tyInt64)
  of tyUInt:     result = handleRange(f, a, tyUInt8, tyUInt32)
  of tyUInt8:    result = handleRange(f, a, tyUInt8, tyUInt8)
  of tyUInt16:   result = handleRange(f, a, tyUInt8, tyUInt16)
  of tyUInt32:   result = handleRange(f, a, tyUInt8, tyUInt32)
  of tyUInt64:   result = handleRange(f, a, tyUInt, tyUInt64)
  of tyFloat:    result = handleFloatRange(f, a)
  of tyFloat32:  result = handleFloatRange(f, a)
  of tyFloat64:  result = handleFloatRange(f, a)
  of tyFloat128: result = handleFloatRange(f, a)
  of tyVar:
    if aOrig.kind == tyVar: result = typeRel(c, f.base, aOrig.base)
    else: result = typeRel(c, f.base, aOrig)
  of tyArray, tyArrayConstr:
    # tyArrayConstr cannot happen really, but
    # we wanna be safe here
    case a.kind
    of tyArray, tyArrayConstr:
      var fRange = f.sons[0]
      if fRange.kind == tyGenericParam:
        var prev = PType(idTableGet(c.bindings, fRange))
        if prev == nil:
          put(c.bindings, fRange, a.sons[0])
          fRange = a
        else:
          fRange = prev
      result = typeRel(c, f.sons[1], a.sons[1])
      if result < isGeneric: return isNone
      if rangeHasStaticIf(fRange):
        if tfUnresolved in fRange.flags:
          # This is a range from an array instantiated with a generic
          # static param. We must extract the static param here and bind
          # it to the size of the currently supplied array.
          var
            rangeStaticT = fRange.getStaticTypeFromRange
            replacementT = newTypeWithSons(c.c, tyStatic, @[tyInt.getSysType])
            inputUpperBound = a.sons[0].n[1].intVal
          # we must correct for the off-by-one discrepancy between
          # ranges and static params:
          replacementT.n = newIntNode(nkIntLit, inputUpperBound + 1)
          put(c.bindings, rangeStaticT, replacementT)
          return isGeneric

        let len = tryResolvingStaticExpr(c, fRange.n[1])
        if len.kind == nkIntLit and len.intVal+1 == lengthOrd(a):
          return # if we get this far, the result is already good
        else:
          return isNone
      elif lengthOrd(fRange) != lengthOrd(a):
        result = isNone
    else: discard
  of tyOpenArray, tyVarargs:
    # varargs[expr] is special too but handled earlier. So we only need to
    # handle varargs[stmt] which is the same as varargs[typed]:
    if f.kind == tyVarargs:
      if tfOldSchoolExprStmt in f.sons[0].flags:
        if f.sons[0].kind == tyExpr: return
      elif f.sons[0].kind == tyStmt: return
    case a.kind
    of tyOpenArray, tyVarargs:
      result = typeRel(c, base(f), base(a))
      if result < isGeneric: result = isNone
    of tyArrayConstr:
      if (f.sons[0].kind != tyGenericParam) and (a.sons[1].kind == tyEmpty):
        result = isSubtype    # [] is allowed here
      elif typeRel(c, base(f), a.sons[1]) >= isGeneric:
        result = isSubtype
    of tyArray:
      if (f.sons[0].kind != tyGenericParam) and (a.sons[1].kind == tyEmpty):
        result = isSubtype
      elif typeRel(c, base(f), a.sons[1]) >= isGeneric:
        result = isConvertible
    of tySequence:
      if (f.sons[0].kind != tyGenericParam) and (a.sons[0].kind == tyEmpty):
        result = isConvertible
      elif typeRel(c, base(f), a.sons[0]) >= isGeneric:
        result = isConvertible
    of tyString:
      if f.kind == tyOpenArray:
        if f.sons[0].kind == tyChar:
          result = isConvertible
        elif f.sons[0].kind == tyGenericParam and a.len > 0 and
            typeRel(c, base(f), base(a)) >= isGeneric:
          result = isConvertible
    else: discard
  of tySequence:
    case a.kind
    of tySequence:
      if (f.sons[0].kind != tyGenericParam) and (a.sons[0].kind == tyEmpty):
        result = isSubtype
      else:
        result = typeRel(c, f.sons[0], a.sons[0])
        if result < isGeneric: result = isNone
        elif tfNotNil in f.flags and tfNotNil notin a.flags:
          result = isNilConversion
    of tyNil: result = f.allowsNil
    else: discard
  of tyOrdinal:
    if isOrdinalType(a):
      var x = if a.kind == tyOrdinal: a.sons[0] else: a
      if f.sons[0].kind == tyNone:
        result = isGeneric
      else:
        result = typeRel(c, f.sons[0], x)
        if result < isGeneric: result = isNone
    elif a.kind == tyGenericParam:
      result = isGeneric
  of tyForward: internalError("forward type in typeRel()")
  of tyNil:
    if a.kind == f.kind: result = isEqual
  of tyTuple:
    if a.kind == tyTuple: result = recordRel(c, f, a)
  of tyObject:
    if a.kind == tyObject:
      if sameObjectTypes(f, a):
        result = isEqual
        # elif tfHasMeta in f.flags: result = recordRel(c, f, a)
      else:
        var depth = isObjectSubtype(a, f)
        if depth > 0:
          inc(c.inheritancePenalty, depth)
          result = isSubtype
  of tyDistinct:
    if a.kind == tyDistinct and sameDistinctTypes(f, a): result = isEqual
    elif c.coerceDistincts: result = typeRel(c, f.base, a)
  of tySet:
    if a.kind == tySet:
      if f.sons[0].kind != tyGenericParam and a.sons[0].kind == tyEmpty:
        result = isSubtype
      else:
        result = typeRel(c, f.sons[0], a.sons[0])
        if result <= isConvertible:
          result = isNone     # BUGFIX!
  of tyPtr, tyRef:
    if a.kind == f.kind:
      # ptr[R, T] can be passed to ptr[T], but not the other way round:
      if a.len < f.len: return isNone
      for i in 0..f.len-2:
        if typeRel(c, f.sons[i], a.sons[i]) == isNone: return isNone
      result = typeRel(c, f.lastSon, a.lastSon)
      if result <= isConvertible: result = isNone
      elif tfNotNil in f.flags and tfNotNil notin a.flags:
        result = isNilConversion
    elif a.kind == tyNil: result = f.allowsNil
    else: discard
  of tyProc:
    result = procTypeRel(c, f, a)
    if result != isNone and tfNotNil in f.flags and tfNotNil notin a.flags:
      result = isNilConversion
  of tyPointer:
    case a.kind
    of tyPointer:
      if tfNotNil in f.flags and tfNotNil notin a.flags:
        result = isNilConversion
      else:
        result = isEqual
    of tyNil: result = f.allowsNil
    of tyProc:
      if a.callConv != ccClosure: result = isConvertible
    of tyPtr:
      # 'pointer' is NOT compatible to regionized pointers
      # so 'dealloc(regionPtr)' fails:
      if a.len == 1: result = isConvertible
    of tyCString: result = isConvertible
    else: discard
  of tyString:
    case a.kind
    of tyString:
      if tfNotNil in f.flags and tfNotNil notin a.flags:
        result = isNilConversion
      else:
        result = isEqual
    of tyNil: result = f.allowsNil
    else: discard
  of tyCString:
    # conversion from string to cstring is automatic:
    case a.kind
    of tyCString:
      if tfNotNil in f.flags and tfNotNil notin a.flags:
        result = isNilConversion
      else:
        result = isEqual
    of tyNil: result = f.allowsNil
    of tyString: result = isConvertible
    of tyPtr:
      # ptr[Tag, char] is not convertible to 'cstring' for now:
      if a.len == 1 and a.sons[0].kind == tyChar: result = isConvertible
    of tyArray:
      if (firstOrd(a.sons[0]) == 0) and
          (skipTypes(a.sons[0], {tyRange}).kind in {tyInt..tyInt64}) and
          (a.sons[1].kind == tyChar):
        result = isConvertible
    else: discard

  of tyEmpty:
    if a.kind == tyEmpty: result = isEqual

  of tyGenericInst:
    let roota = a.skipGenericAlias
    let rootf = f.skipGenericAlias
    if a.kind == tyGenericInst and roota.base == rootf.base:
      for i in 1 .. rootf.sonsLen-2:
        let ff = rootf.sons[i]
        let aa = roota.sons[i]
        result = typeRel(c, ff, aa)
        if result == isNone: return
        if ff.kind == tyRange and result != isEqual: return isNone
      #result = isGeneric
      # XXX See bug #2220. A[int] should match A[int] better than some generic X
    else:
      result = typeRel(c, lastSon(f), a)

  of tyGenericBody:
    considerPreviousT:
      if a.kind == tyGenericInst and a.sons[0] == f:
        bindingRet isGeneric
      let ff = lastSon(f)
      if ff != nil: result = typeRel(c, ff, a)

  of tyGenericInvocation:
    var x = a.skipGenericAlias
    if x.kind == tyGenericInvocation or f.sons[0].kind != tyGenericBody:
      #InternalError("typeRel: tyGenericInvocation -> tyGenericInvocation")
      # simply no match for now:
      discard
    elif x.kind == tyGenericInst and
          (f.sons[0] == x.sons[0]) and
          (sonsLen(x) - 1 == sonsLen(f)):
      for i in countup(1, sonsLen(f) - 1):
        if x.sons[i].kind == tyGenericParam:
          internalError("wrong instantiated type!")
        elif typeRel(c, f.sons[i], x.sons[i]) <= isSubtype: return
      result = isGeneric
    else:
      let genericBody = f.sons[0]
      result = typeRel(c, genericBody, x)
      if result != isNone:
        # see tests/generics/tgeneric3.nim for an example that triggers this
        # piece of code:
        #
        # proc internalFind[T,D](n: PNode[T,D], key: T): ref TItem[T,D]
        # proc internalPut[T,D](ANode: ref TNode[T,D], Akey: T, Avalue: D,
        #                       Oldvalue: var D): ref TNode[T,D]
        # var root = internalPut[int, int](nil, 312, 312, oldvalue)
        # var it1 = internalFind(root, 312) # cannot instantiate: 'D'
        #
        # we steal the generic parameters from the tyGenericBody:
        for i in countup(1, sonsLen(f) - 1):
          var x = PType(idTableGet(c.bindings, genericBody.sons[i-1]))
          if x == nil:
            discard "maybe fine (for eg. a==tyNil)"
          elif x.kind in {tyGenericInvocation, tyGenericParam}:
            internalError("wrong instantiated type!")
          else:
            put(c.bindings, f.sons[i], x)

  of tyAnd:
    considerPreviousT:
      result = isEqual
      for branch in f.sons:
        let x = typeRel(c, branch, aOrig)
        if x < isSubtype: return isNone
        # 'and' implies minimum matching result:
        if x < result: result = x
      bindingRet result

  of tyOr:
    considerPreviousT:
      result = isNone
      for branch in f.sons:
        let x = typeRel(c, branch, aOrig)
        # 'or' implies maximum matching result:
        if x > result: result = x
      if result >= isSubtype:
        bindingRet result
      else:
        result = isNone

  of tyNot:
    considerPreviousT:
      for branch in f.sons:
        if typeRel(c, branch, aOrig) != isNone:
          return isNone

      bindingRet isGeneric

  of tyAnything:
    considerPreviousT:
      var concrete = concreteType(c, a)
      if concrete != nil and doBind:
        put(c.bindings, f, concrete)
      return isGeneric

  of tyBuiltInTypeClass:
    considerPreviousT:
      let targetKind = f.sons[0].kind
      if targetKind == a.skipTypes({tyRange, tyGenericInst}).kind or
         (targetKind in {tyProc, tyPointer} and a.kind == tyNil):
        put(c.bindings, f, a)
        return isGeneric
      else:
        return isNone

  of tyUserTypeClass, tyUserTypeClassInst:
    considerPreviousT:
      result = matchUserTypeClass(c.c, c, f, aOrig)
      if result == isGeneric:
        put(c.bindings, f, a)

  of tyCompositeTypeClass:
    considerPreviousT:
      if typeRel(c, f.sons[1], a) != isNone:
        put(c.bindings, f, a)
        return isGeneric
      else:
        return isNone

  of tyGenericParam:
    var x = PType(idTableGet(c.bindings, f))
    if x == nil:
      if c.callee.kind == tyGenericBody and
         f.kind == tyGenericParam and not c.typedescMatched:
        # XXX: The fact that generic types currently use tyGenericParam for
        # their parameters is really a misnomer. tyGenericParam means "match
        # any value" and what we need is "match any type", which can be encoded
        # by a tyTypeDesc params. Unfortunately, this requires more substantial
        # changes in semtypinst and elsewhere.
        if tfWildcard in a.flags:
          result = isGeneric
        elif a.kind == tyTypeDesc:
          if f.sonsLen == 0:
            result = isGeneric
          else:
            internalAssert a.sons != nil and a.sons.len > 0
            c.typedescMatched = true
            var aa = a
            while aa.kind in {tyTypeDesc, tyGenericParam} and
                aa.len > 0:
              aa = lastSon(aa)
            result = typeRel(c, f.base, aa)
            if result > isGeneric: result = isGeneric
        else:
          result = isNone
      else:
        if f.sonsLen > 0 and f.sons[0].kind != tyNone:
          result = typeRel(c, f.lastSon, a)
          if doBind and result notin {isNone, isGeneric}:
            let concrete = concreteType(c, a)
            if concrete == nil: return isNone
            put(c.bindings, f, concrete)
        else:
          result = isGeneric

      if result == isGeneric:
        var concrete = a
        if tfWildcard in a.flags:
          a.sym.kind = skType
          a.flags.excl tfWildcard
        else:
          concrete = concreteType(c, a)
          if concrete == nil:
            return isNone
        if doBind:
          put(c.bindings, f, concrete)
      elif result > isGeneric:
        result = isGeneric
    elif a.kind == tyEmpty:
      result = isGeneric
    elif x.kind == tyGenericParam:
      result = isGeneric
    else:
      result = typeRel(c, x, a) # check if it fits
      if result > isGeneric: result = isGeneric

  of tyStatic:
    let prev = PType(idTableGet(c.bindings, f))
    if prev == nil:
      if aOrig.kind == tyStatic:
        result = typeRel(c, f.lastSon, a)
        if result != isNone and f.n != nil:
          if not exprStructuralEquivalent(f.n, aOrig.n):
            result = isNone
        if result != isNone: put(c.bindings, f, aOrig)
      else:
        result = isNone
    elif prev.kind == tyStatic:
      if aOrig.kind == tyStatic:
        result = typeRel(c, prev.lastSon, a)
        if result != isNone and prev.n != nil:
          if not exprStructuralEquivalent(prev.n, aOrig.n):
            result = isNone
      else: result = isNone
    else:
      # XXX endless recursion?
      #result = typeRel(c, prev, aOrig)
      result = isNone
  of tyTypeDesc:
    var prev = PType(idTableGet(c.bindings, f))
    if prev == nil:
      # proc foo(T: typedesc, x: T)
      # when `f` is an unresolved typedesc, `a` could be any
      # type, so we should not perform this check earlier
      if a.kind != tyTypeDesc: return isNone

      if f.base.kind == tyNone:
        result = isGeneric
      else:
        result = typeRel(c, f.base, a.base)

      if result != isNone:
        put(c.bindings, f, a)
    else:
      if tfUnresolved in f.flags:
        result = typeRel(c, prev.base, a)
      elif a.kind == tyTypeDesc:
        result = typeRel(c, prev.base, a.base)
      else:
        result = isNone

  of tyIter:
    if a.kind == tyIter or
      (a.kind == tyProc and tfIterator in a.flags):
      result = typeRel(c, f.base, a.base)
    else:
      result = isNone

  of tyStmt:
    if aOrig != nil and tfOldSchoolExprStmt notin f.flags:
      put(c.bindings, f, aOrig)
    result = isGeneric

  of tyProxy:
    result = isEqual

  of tyFromExpr:
    # fix the expression, so it contains the already instantiated types
    if f.n == nil or f.n.kind == nkEmpty: return isGeneric
    let reevaluated = tryResolvingStaticExpr(c, f.n)
    case reevaluated.typ.kind
    of tyTypeDesc:
      result = typeRel(c, a, reevaluated.typ.base)
    of tyStatic:
      result = typeRel(c, a, reevaluated.typ.base)
      if result != isNone and reevaluated.typ.n != nil:
        if not exprStructuralEquivalent(aOrig.n, reevaluated.typ.n):
          result = isNone
    else:
      localError(f.n.info, errTypeExpected)
      result = isNone

  of tyNone:
    if a.kind == tyNone: result = isEqual
  else:
    internalError " unknown type kind " & $f.kind

proc cmpTypes*(c: PContext, f, a: PType): TTypeRelation =
  var m: TCandidate
  initCandidate(c, m, f)
  result = typeRel(m, f, a)

proc getInstantiatedType(c: PContext, arg: PNode, m: TCandidate,
                         f: PType): PType =
  result = PType(idTableGet(m.bindings, f))
  if result == nil:
    result = generateTypeInstance(c, m.bindings, arg, f)
  if result == nil:
    internalError(arg.info, "getInstantiatedType")
    result = errorType(c)

proc implicitConv(kind: TNodeKind, f: PType, arg: PNode, m: TCandidate,
                  c: PContext): PNode =
  result = newNodeI(kind, arg.info)
  if containsGenericType(f):
    if not m.hasFauxMatch:
      result.typ = getInstantiatedType(c, arg, m, f)
    else:
      result.typ = errorType(c)
  else:
    result.typ = f
  if result.typ == nil: internalError(arg.info, "implicitConv")
  addSon(result, ast.emptyNode)
  addSon(result, arg)

proc userConvMatch(c: PContext, m: var TCandidate, f, a: PType,
                   arg: PNode): PNode =
  result = nil
  for i in countup(0, len(c.converters) - 1):
    var src = c.converters[i].typ.sons[1]
    var dest = c.converters[i].typ.sons[0]
    # for generic type converters we need to check 'src <- a' before
    # 'f <- dest' in order to not break the unification:
    # see tests/tgenericconverter:
    let srca = typeRel(m, src, a)
    if srca notin {isEqual, isGeneric}: continue

    let destIsGeneric = containsGenericType(dest)
    if destIsGeneric:
      dest = generateTypeInstance(c, m.bindings, arg, dest)
    let fdest = typeRel(m, f, dest)
    if fdest in {isEqual, isGeneric}:
      markUsed(arg.info, c.converters[i])
      var s = newSymNode(c.converters[i])
      s.typ = c.converters[i].typ
      s.info = arg.info
      result = newNodeIT(nkHiddenCallConv, arg.info, dest)
      addSon(result, s)
      addSon(result, copyTree(arg))
      inc(m.convMatches)
      m.genericConverter = srca == isGeneric or destIsGeneric
      return result

proc localConvMatch(c: PContext, m: var TCandidate, f, a: PType,
                    arg: PNode): PNode =
  # arg.typ can be nil in 'suggest':
  if isNil(arg.typ): return nil

  # sem'checking for 'echo' needs to be re-entrant:
  # XXX we will revisit this issue after 0.10.2 is released
  if f == arg.typ and arg.kind == nkHiddenStdConv: return arg

  var call = newNodeI(nkCall, arg.info)
  call.add(f.n.copyTree)
  call.add(arg.copyTree)
  result = c.semOverloadedCall(c, call, call, routineKinds)
  if result != nil:
    # resulting type must be consistent with the other arguments:
    var r = typeRel(m, f.sons[0], result.typ)
    if r < isGeneric: return nil
    if result.kind == nkCall: result.kind = nkHiddenCallConv
    inc(m.convMatches)
    if r == isGeneric:
      result.typ = getInstantiatedType(c, arg, m, base(f))
    m.baseTypeMatch = true

proc incMatches(m: var TCandidate; r: TTypeRelation; convMatch = 1) =
  case r
  of isConvertible, isIntConv: inc(m.convMatches, convMatch)
  of isSubtype, isSubrange: inc(m.subtypeMatches)
  of isGeneric, isInferred, isBothMetaConvertible: inc(m.genericMatches)
  of isFromIntLit: inc(m.intConvMatches, 256)
  of isInferredConvertible:
    inc(m.convMatches)
  of isEqual: inc(m.exactMatches)
  of isNone: discard

proc paramTypesMatchAux(m: var TCandidate, f, argType: PType,
                        argSemantized, argOrig: PNode): PNode =
  var
    fMaybeStatic = f.skipTypes({tyDistinct})
    arg = argSemantized
    argType = argType
    c = m.c

  if tfHasStatic in fMaybeStatic.flags:
    # XXX: When implicit statics are the default
    # this will be done earlier - we just have to
    # make sure that static types enter here

    # XXX: weaken tyGenericParam and call it tyGenericPlaceholder
    # and finally start using tyTypedesc for generic types properly.
    if argType.kind == tyGenericParam and tfWildcard in argType.flags:
      argType.assignType(f)
      # put(m.bindings, f, argType)
      return argSemantized

    if argType.kind == tyStatic:
      if m.callee.kind == tyGenericBody and tfGenericTypeParam notin argType.flags:
        result = newNodeIT(nkType, argOrig.info, makeTypeFromExpr(c, arg))
        return
    else:
      var evaluated = c.semTryConstExpr(c, arg)
      if evaluated != nil:
        arg.typ = newTypeS(tyStatic, c)
        arg.typ.sons = @[evaluated.typ]
        arg.typ.n = evaluated
        argType = arg.typ

  var
    a = if c.inTypeClass > 0: argType.skipTypes({tyTypeDesc, tyFieldAccessor})
        else: argType

    r = typeRel(m, f, a)

  if r != isNone and m.calleeSym != nil and
     m.calleeSym.kind in {skMacro, skTemplate}:
    # XXX: duplicating this is ugly, but we cannot (!) move this
    # directly into typeRel using return-like templates
    incMatches(m, r)
    if f.kind == tyStmt:
      return arg
    elif f.kind == tyTypeDesc:
      return arg
    elif f.kind == tyStatic:
      return arg.typ.n
    else:
      return argSemantized # argOrig

  # If r == isBothMetaConvertible then we rerun typeRel.
  # bothMetaCounter is for safety to avoid any infinite loop,
  #  I don't have any example when it is needed.
  # lastBindingsLenth is used to check whether m.bindings remains the same,
  #  because in that case there is no point in continuing.
  var bothMetaCounter = 0
  var lastBindingsLength = -1
  while r == isBothMetaConvertible and
      lastBindingsLength != m.bindings.counter and
      bothMetaCounter < 100:
    lastBindingsLength = m.bindings.counter
    inc(bothMetaCounter)
    if arg.kind in {nkProcDef, nkIteratorDef} + nkLambdaKinds:
      result = c.semInferredLambda(c, m.bindings, arg)
    elif arg.kind != nkSym:
      return nil
    else:
      let inferred = c.semGenerateInstance(c, arg.sym, m.bindings, arg.info)
      result = newSymNode(inferred, arg.info)
    inc(m.convMatches)
    arg = result
    r = typeRel(m, f, arg.typ)

  case r
  of isConvertible:
    inc(m.convMatches)
    result = implicitConv(nkHiddenStdConv, f, arg, m, c)
  of isIntConv:
    # I'm too lazy to introduce another ``*matches`` field, so we conflate
    # ``isIntConv`` and ``isIntLit`` here:
    inc(m.intConvMatches)
    result = implicitConv(nkHiddenStdConv, f, arg, m, c)
  of isSubtype:
    inc(m.subtypeMatches)
    if f.kind == tyTypeDesc:
      result = arg
    else:
      result = implicitConv(nkHiddenSubConv, f, arg, m, c)
  of isSubrange:
    inc(m.subtypeMatches)
    if f.kind == tyVar:
      result = arg
    else:
      result = implicitConv(nkHiddenStdConv, f, arg, m, c)
  of isInferred, isInferredConvertible:
    if arg.kind in {nkProcDef, nkIteratorDef} + nkLambdaKinds:
      result = c.semInferredLambda(c, m.bindings, arg)
    elif arg.kind != nkSym:
      return nil
    else:
      let inferred = c.semGenerateInstance(c, arg.sym, m.bindings, arg.info)
      result = newSymNode(inferred, arg.info)
    if r == isInferredConvertible:
      inc(m.convMatches)
      result = implicitConv(nkHiddenStdConv, f, result, m, c)
    else:
      inc(m.genericMatches)
  of isGeneric:
    inc(m.genericMatches)
    if arg.typ == nil:
      result = arg
    elif skipTypes(arg.typ, abstractVar-{tyTypeDesc}).kind == tyTuple:
      result = implicitConv(nkHiddenSubConv, f, arg, m, c)
    elif arg.typ.isEmptyContainer:
      result = arg.copyTree
      result.typ = getInstantiatedType(c, arg, m, f)
    else:
      result = arg
  of isBothMetaConvertible:
    # This is the result for the 101th time.
    result = nil
  of isFromIntLit:
    # too lazy to introduce another ``*matches`` field, so we conflate
    # ``isIntConv`` and ``isIntLit`` here:
    inc(m.intConvMatches, 256)
    result = implicitConv(nkHiddenStdConv, f, arg, m, c)
  of isEqual:
    inc(m.exactMatches)
    result = arg
    if skipTypes(f, abstractVar-{tyTypeDesc}).kind in {tyTuple}:
      result = implicitConv(nkHiddenSubConv, f, arg, m, c)
  of isNone:
    # do not do this in ``typeRel`` as it then can't infere T in ``ref T``:
    if a.kind in {tyProxy, tyUnknown}:
      inc(m.genericMatches)
      m.fauxMatch = a.kind
      return arg
    result = userConvMatch(c, m, f, a, arg)
    # check for a base type match, which supports varargs[T] without []
    # constructor in a call:
    if result == nil and f.kind == tyVarargs:
      if f.n != nil:
        result = localConvMatch(c, m, f, a, arg)
      else:
        r = typeRel(m, base(f), a)
        if r >= isGeneric:
          inc(m.convMatches)
          result = copyTree(arg)
          if r == isGeneric:
            result.typ = getInstantiatedType(c, arg, m, base(f))
          m.baseTypeMatch = true
        else:
          result = userConvMatch(c, m, base(f), a, arg)

proc paramTypesMatch*(m: var TCandidate, f, a: PType,
                      arg, argOrig: PNode): PNode =
  if arg == nil or arg.kind notin nkSymChoices:
    result = paramTypesMatchAux(m, f, a, arg, argOrig)
  else:
    # CAUTION: The order depends on the used hashing scheme. Thus it is
    # incorrect to simply use the first fitting match. However, to implement
    # this correctly is inefficient. We have to copy `m` here to be able to
    # roll back the side effects of the unification algorithm.
    let c = m.c
    var x, y, z: TCandidate
    initCandidate(c, x, m.callee)
    initCandidate(c, y, m.callee)
    initCandidate(c, z, m.callee)
    x.calleeSym = m.calleeSym
    y.calleeSym = m.calleeSym
    z.calleeSym = m.calleeSym
    var best = -1
    for i in countup(0, sonsLen(arg) - 1):
      if arg.sons[i].sym.kind in {skProc, skMethod, skConverter, skIterator}:
        copyCandidate(z, m)
        z.callee = arg.sons[i].typ
        z.calleeSym = arg.sons[i].sym
        #if arg.sons[i].sym.name.s == "cmp":
        #  ggDebug = true
        #  echo "CALLLEEEEEEEE A ", typeToString(z.callee)
        # XXX this is still all wrong: (T, T) should be 2 generic matches
        # and  (int, int) 2 exact matches, etc. Essentially you cannot call
        # typeRel here and expect things to work!
        let r = typeRel(z, f, arg.sons[i].typ)
        incMatches(z, r, 2)
        #if arg.sons[i].sym.name.s == "cmp": # and arg.info.line == 606:
        #  echo "M ", r, " ", arg.info, " ", typeToString(arg.sons[i].sym.typ)
        #  writeMatches(z)
        if r != isNone:
          z.state = csMatch
          case x.state
          of csEmpty, csNoMatch:
            x = z
            best = i
          of csMatch:
            let cmp = cmpCandidates(x, z)
            if cmp < 0:
              best = i
              x = z
            elif cmp == 0:
              y = z           # z is as good as x
    if x.state == csEmpty:
      result = nil
    elif y.state == csMatch and cmpCandidates(x, y) == 0:
      if x.state != csMatch:
        internalError(arg.info, "x.state is not csMatch")
      # ambiguous: more than one symbol fits!
      # See tsymchoice_for_expr as an example. 'f.kind == tyExpr' should match
      # anyway:
      if f.kind == tyExpr: result = arg
      else: result = nil
    else:
      # only one valid interpretation found:
      markUsed(arg.info, arg.sons[best].sym)
      styleCheckUse(arg.info, arg.sons[best].sym)
      result = paramTypesMatchAux(m, f, arg.sons[best].typ, arg.sons[best],
                                  argOrig)


proc setSon(father: PNode, at: int, son: PNode) =
  if sonsLen(father) <= at: setLen(father.sons, at + 1)
  father.sons[at] = son

# we are allowed to modify the calling node in the 'prepare*' procs:
proc prepareOperand(c: PContext; formal: PType; a: PNode): PNode =
  if formal.kind == tyExpr and formal.len != 1:
    # {tyTypeDesc, tyExpr, tyStmt, tyProxy}:
    # a.typ == nil is valid
    result = a
  elif a.typ.isNil:
    # XXX This is unsound! 'formal' can differ from overloaded routine to
    # overloaded routine!
    let flags = if formal.kind == tyIter: {efDetermineType, efWantIterator}
                else: {efDetermineType, efAllowStmt}
                #elif formal.kind == tyStmt: {efDetermineType, efWantStmt}
                #else: {efDetermineType}
    result = c.semOperand(c, a, flags)
  else:
    result = a

proc prepareOperand(c: PContext; a: PNode): PNode =
  if a.typ.isNil:
    result = c.semOperand(c, a, {efDetermineType})
  else:
    result = a

proc prepareNamedParam(a: PNode) =
  if a.sons[0].kind != nkIdent:
    var info = a.sons[0].info
    a.sons[0] = newIdentNode(considerQuotedIdent(a.sons[0]), info)

proc arrayConstr(c: PContext, n: PNode): PType =
  result = newTypeS(tyArrayConstr, c)
  rawAddSon(result, makeRangeType(c, 0, 0, n.info))
  addSonSkipIntLit(result, skipTypes(n.typ, {tyGenericInst, tyVar, tyOrdinal}))

proc arrayConstr(c: PContext, info: TLineInfo): PType =
  result = newTypeS(tyArrayConstr, c)
  rawAddSon(result, makeRangeType(c, 0, -1, info))
  rawAddSon(result, newTypeS(tyEmpty, c)) # needs an empty basetype!

proc incrIndexType(t: PType) =
  assert t.kind == tyArrayConstr
  inc t.sons[0].n.sons[1].intVal

template isVarargsUntyped(x): expr =
  x.kind == tyVarargs and x.sons[0].kind == tyExpr and
    tfOldSchoolExprStmt notin x.sons[0].flags

proc matchesAux(c: PContext, n, nOrig: PNode,
                m: var TCandidate, marker: var IntSet) =
  template checkConstraint(n: expr) {.immediate, dirty.} =
    if not formal.constraint.isNil:
      if matchNodeKinds(formal.constraint, n):
        # better match over other routines with no such restriction:
        inc(m.genericMatches, 100)
      else:
        m.state = csNoMatch
        return
    if formal.typ.kind == tyVar:
      if not n.isLValue:
        m.state = csNoMatch
        return

  var
    # iterates over formal parameters
    f = if m.callee.kind != tyGenericBody: 1
        else: 0
    # iterates over the actual given arguments
    a = 1

  m.state = csMatch # until proven otherwise
  m.call = newNodeI(n.kind, n.info)
  m.call.typ = base(m.callee) # may be nil
  var formalLen = m.callee.n.len
  addSon(m.call, copyTree(n.sons[0]))
  var container: PNode = nil # constructed container
  var formal: PSym = if formalLen > 1: m.callee.n.sons[1].sym else: nil

  while a < n.len:
    if a >= formalLen-1 and formal != nil and formal.typ.isVarargsUntyped:
      if container.isNil:
        container = newNodeIT(nkBracket, n.sons[a].info, arrayConstr(c, n.info))
        setSon(m.call, formal.position + 1, container)
      else:
        incrIndexType(container.typ)
      addSon(container, n.sons[a])
    elif n.sons[a].kind == nkExprEqExpr:
      # named param
      # check if m.callee has such a param:
      prepareNamedParam(n.sons[a])
      if n.sons[a].sons[0].kind != nkIdent:
        localError(n.sons[a].info, errNamedParamHasToBeIdent)
        m.state = csNoMatch
        return
      formal = getSymFromList(m.callee.n, n.sons[a].sons[0].ident, 1)
      if formal == nil:
        # no error message!
        m.state = csNoMatch
        return
      if containsOrIncl(marker, formal.position):
        # already in namedParams:
        localError(n.sons[a].info, errCannotBindXTwice, formal.name.s)
        m.state = csNoMatch
        return
      m.baseTypeMatch = false
      n.sons[a].sons[1] = prepareOperand(c, formal.typ, n.sons[a].sons[1])
      n.sons[a].typ = n.sons[a].sons[1].typ
      var arg = paramTypesMatch(m, formal.typ, n.sons[a].typ,
                                n.sons[a].sons[1], n.sons[a].sons[1])
      if arg == nil:
        m.state = csNoMatch
        return
      checkConstraint(n.sons[a].sons[1])
      if m.baseTypeMatch:
        #assert(container == nil)
        container = newNodeIT(nkBracket, n.sons[a].info, arrayConstr(c, arg))
        addSon(container, arg)
        setSon(m.call, formal.position + 1, container)
        if f != formalLen - 1: container = nil
      else:
        setSon(m.call, formal.position + 1, arg)
      inc f
    else:
      # unnamed param
      if f >= formalLen:
        # too many arguments?
        if tfVarargs in m.callee.flags:
          # is ok... but don't increment any counters...
          # we have no formal here to snoop at:
          n.sons[a] = prepareOperand(c, n.sons[a])
          if skipTypes(n.sons[a].typ, abstractVar-{tyTypeDesc}).kind==tyString:
            addSon(m.call, implicitConv(nkHiddenStdConv, getSysType(tyCString),
                                        copyTree(n.sons[a]), m, c))
          else:
            addSon(m.call, copyTree(n.sons[a]))
        elif formal != nil and formal.typ.kind == tyVarargs:
          # beware of the side-effects in 'prepareOperand'! So only do it for
          # varargs matching. See tests/metatype/tstatic_overloading.
          m.baseTypeMatch = false
          n.sons[a] = prepareOperand(c, formal.typ, n.sons[a])
          var arg = paramTypesMatch(m, formal.typ, n.sons[a].typ,
                                    n.sons[a], nOrig.sons[a])
          if arg != nil and m.baseTypeMatch and container != nil:
            addSon(container, arg)
            incrIndexType(container.typ)
            checkConstraint(n.sons[a])
          else:
            m.state = csNoMatch
            return
        else:
          m.state = csNoMatch
          return
      else:
        if m.callee.n.sons[f].kind != nkSym:
          internalError(n.sons[a].info, "matches")
          return
        formal = m.callee.n.sons[f].sym
        if containsOrIncl(marker, formal.position) and container.isNil:
          # already in namedParams:
          localError(n.sons[a].info, errCannotBindXTwice, formal.name.s)
          m.state = csNoMatch
          return
        m.baseTypeMatch = false
        n.sons[a] = prepareOperand(c, formal.typ, n.sons[a])
        var arg = paramTypesMatch(m, formal.typ, n.sons[a].typ,
                                  n.sons[a], nOrig.sons[a])
        if arg == nil:
          m.state = csNoMatch
          return
        if m.baseTypeMatch:
          #assert(container == nil)
          if container.isNil:
            container = newNodeIT(nkBracket, n.sons[a].info, arrayConstr(c, arg))
          else:
            incrIndexType(container.typ)
          addSon(container, arg)
          setSon(m.call, formal.position + 1,
                 implicitConv(nkHiddenStdConv, formal.typ, container, m, c))
          #if f != formalLen - 1: container = nil

          # pick the formal from the end, so that 'x, y, varargs, z' works:
          f = max(f, formalLen - n.len + a + 1)
        else:
          setSon(m.call, formal.position + 1, arg)
          inc(f)
          container = nil
        checkConstraint(n.sons[a])
    inc(a)

proc semFinishOperands*(c: PContext, n: PNode) =
  # this needs to be called to ensure that after overloading resolution every
  # argument has been sem'checked:
  for i in 1 .. <n.len:
    n.sons[i] = prepareOperand(c, n.sons[i])

proc partialMatch*(c: PContext, n, nOrig: PNode, m: var TCandidate) =
  # for 'suggest' support:
  var marker = initIntSet()
  matchesAux(c, n, nOrig, m, marker)

proc matches*(c: PContext, n, nOrig: PNode, m: var TCandidate) =
  if m.magic in {mArrGet, mArrPut}:
    m.state = csMatch
    m.call = n
    return
  var marker = initIntSet()
  matchesAux(c, n, nOrig, m, marker)
  if m.state == csNoMatch: return
  # check that every formal parameter got a value:
  var f = 1
  while f < sonsLen(m.callee.n):
    var formal = m.callee.n.sons[f].sym
    if not containsOrIncl(marker, formal.position):
      if formal.ast == nil:
        if formal.typ.kind == tyVarargs:
          var container = newNodeIT(nkBracket, n.info, arrayConstr(c, n.info))
          addSon(m.call, implicitConv(nkHiddenStdConv, formal.typ,
                                      container, m, c))
        else:
          # no default value
          m.state = csNoMatch
          break
      else:
        # use default value:
        setSon(m.call, formal.position + 1, copyTree(formal.ast))
    inc(f)

proc argtypeMatches*(c: PContext, f, a: PType): bool =
  var m: TCandidate
  initCandidate(c, m, f)
  let res = paramTypesMatch(m, f, a, ast.emptyNode, nil)
  #instantiateGenericConverters(c, res, m)
  # XXX this is used by patterns.nim too; I think it's better to not
  # instantiate generic converters for that
  result = res != nil

proc instTypeBoundOp*(c: PContext; dc: PSym; t: PType; info: TLineInfo;
                      op: TTypeAttachedOp): PSym {.procvar.} =
  var m: TCandidate
  initCandidate(c, m, dc.typ)
  var f = dc.typ.sons[1]
  if op == attachedDeepCopy:
    if f.kind in {tyRef, tyPtr}: f = f.lastSon
  else:
    if f.kind == tyVar: f = f.lastSon
  if typeRel(m, f, t) == isNone:
    localError(info, errGenerated, "cannot instantiate 'deepCopy'")
  else:
    result = c.semGenerateInstance(c, dc, m.bindings, info)
    assert sfFromGeneric in result.flags

include suggest

when not declared(tests):
  template tests(s: stmt) {.immediate.} = discard

tests:
  var dummyOwner = newSym(skModule, getIdent("test_module"), nil, UnknownLineInfo())

  proc `|` (t1, t2: PType): PType =
    result = newType(tyOr, dummyOwner)
    result.rawAddSon(t1)
    result.rawAddSon(t2)

  proc `&` (t1, t2: PType): PType =
    result = newType(tyAnd, dummyOwner)
    result.rawAddSon(t1)
    result.rawAddSon(t2)

  proc `!` (t: PType): PType =
    result = newType(tyNot, dummyOwner)
    result.rawAddSon(t)

  proc seq(t: PType): PType =
    result = newType(tySequence, dummyOwner)
    result.rawAddSon(t)

  proc array(x: int, t: PType): PType =
    result = newType(tyArray, dummyOwner)

    var n = newNodeI(nkRange, UnknownLineInfo())
    addSon(n, newIntNode(nkIntLit, 0))
    addSon(n, newIntNode(nkIntLit, x))
    let range = newType(tyRange, dummyOwner)

    result.rawAddSon(range)
    result.rawAddSon(t)

  suite "type classes":
    let
      int = newType(tyInt, dummyOwner)
      float = newType(tyFloat, dummyOwner)
      string = newType(tyString, dummyOwner)
      ordinal = newType(tyOrdinal, dummyOwner)
      any = newType(tyAnything, dummyOwner)
      number = int | float

    var TFoo = newType(tyObject, dummyOwner)
    TFoo.sym = newSym(skType, getIdent"TFoo", dummyOwner, UnknownLineInfo())

    var T1 = newType(tyGenericParam, dummyOwner)
    T1.sym = newSym(skType, getIdent"T1", dummyOwner, UnknownLineInfo())
    T1.sym.position = 0

    var T2 = newType(tyGenericParam, dummyOwner)
    T2.sym = newSym(skType, getIdent"T2", dummyOwner, UnknownLineInfo())
    T2.sym.position = 1

    setup:
      var c: TCandidate
      initCandidate(nil, c, nil)

    template yes(x, y) =
      test astToStr(x) & " is " & astToStr(y):
        check typeRel(c, y, x) == isGeneric

    template no(x, y) =
      test astToStr(x) & " is not " & astToStr(y):
        check typeRel(c, y, x) == isNone

    yes seq(any), array(10, int) | seq(any)
    # Sure, seq[any] is directly included

    yes seq(int), seq(any)
    yes seq(int), seq(number)
    # Sure, the int sequence is certainly
    # part of the number sequences (and all sequences)

    no seq(any), seq(float)
    # Nope, seq[any] includes types that are not seq[float] (e.g. seq[int])

    yes seq(int|string), seq(any)
    # Sure

    yes seq(int&string), seq(any)
    # Again

    yes seq(int&string), seq(int)
    # A bit more complicated
    # seq[int&string] is not a real type, but it's analogous to
    # seq[Sortable and Iterable], which is certainly a subset of seq[Sortable]

    no seq(int|string), seq(int|float)
    # Nope, seq[string] is not included in not included in
    # the seq[int|float] set

    no seq(!(int|string)), seq(string)
    # A sequence that is neither seq[int] or seq[string]
    # is obviously not seq[string]

    no seq(!int), seq(number)
    # Now your head should start to hurt a bit
    # A sequence that is not seq[int] is not necessarily a number sequence
    # it could well be seq[string] for example

    yes seq(!(int|string)), seq(!string)
    # all sequnece types besides seq[int] and seq[string]
    # are subset of all sequence types that are not seq[string]

    no seq(!(int|string)), seq(!(string|TFoo))
    # Nope, seq[TFoo] is included in the first set, but not in the second

    no seq(!string), seq(!number)
    # Nope, seq[int] in included in the first set, but not in the second

    yes seq(!number), seq(any)
    yes seq(!int), seq(any)
    no seq(any), seq(!any)
    no seq(!int), seq(!any)

    yes int, ordinal
    no  string, ordinal