summary refs log tree commit diff stats
path: root/compiler/nversion.nim
Commit message (Expand)AuthorAgeFilesLines
* minor refactorings for better destructorsAndreas Rumpf2017-10-141-1/+1
* some progress on --symbolfiles:onAndreas Rumpf2016-11-021-1/+1
* tester cleanup; enable some rod testsAraq2016-08-271-1/+1
* next steps in getting symbol files to work againAraq2016-08-161-1/+1
* some attempts to make symbolfiles work againAraq2016-08-131-1/+1
* compiler: Trim .nim files trailing whitespaceAdam Strzelecki2015-09-041-1/+1
* Happy new year!Guillaume Gelin2015-01-061-1/+1
* implemented procCall builtinAraq2014-11-281-5/+1
* proper development version numberAraq2014-11-041-1/+1
* documentation updatesAraq2014-10-111-2/+2
* Merge branch 'devel' of https://github.com/Araq/Nimrod into bigbreakAraq2014-10-041-1/+1
|\
| * Updated Version NumberVarriount2014-09-281-1/+1
* | Nimrod renamed to NimAraq2014-08-281-2/+2
|/
* devel is version 0.9.5Araq2014-04-221-2/+1
* version 0.9.4Araq2014-04-211-3/+3
* the compiler can now deal with multiple modules of the same nameAraq2013-09-261-1/+1
* preparations for version 0.9.4Araq2013-05-251-1/+1
* version 0.9.2Araq2013-05-201-1/+1
* use file IDs consistently instead of file paths in the rod files handlingZahary Karadjov2013-04-071-1/+1
* rod file viewer for easier debugging of rod filesAraq2013-04-041-1/+1
* Removes executable bit for text files.Grzegorz Adam Hankiewicz2013-03-161-0/+0
* bugfix: c2nim and pas2nim work againAraq2012-09-261-1/+1
* preparations for 0.9.0Araq2012-09-231-3/+3
* added 'system.shallow'Araq2012-02-091-1/+1
* version 0.8.14Araq2012-02-091-2/+2
* year 2012 for most copyright headersAraq2012-01-021-1/+1
* implemented 'let' statementAraq2011-11-291-1/+1
* compilation cache: fixed recently introduced bug (lazy loading of bodies)Araq2011-11-061-1/+1
* lazy loading of body ast implementedAraq2011-10-301-1/+1
* compilation cache: various bugfixes; works for the compiler itselfAraq2011-10-271-0/+2
* first steps to explicit channels for thread communication; added mainThreadIdAraq2011-07-161-1/+1
* preparations for 0.8.12Araq2011-07-101-2/+2
* big repo cleanupAraq2011-04-121-0/+20
='#n374'>374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
#
#
#            Nim's Runtime Library
#        (c) Copyright 2012 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## Implementation of:
## * `singly linked lists <#SinglyLinkedList>`_
## * `doubly linked lists <#DoublyLinkedList>`_
## * `singly linked rings <#SinglyLinkedRing>`_ (circular lists)
## * `doubly linked rings <#DoublyLinkedRing>`_ (circular lists)
##
## # Basic Usage
## Because it makes no sense to do otherwise, the `next` and `prev` pointers
## are not hidden from you and can be manipulated directly for efficiency.
##
## ## Lists
runnableExamples:
  var list = initDoublyLinkedList[int]()
  let
    a = newDoublyLinkedNode[int](3)
    b = newDoublyLinkedNode[int](7)
    c = newDoublyLinkedNode[int](9)

  list.add(a)
  list.add(b)
  list.prepend(c)

  assert a.next == b
  assert a.prev == c
  assert c.next == a
  assert c.next.next == b
  assert c.prev == nil
  assert b.next == nil

## ## Rings
runnableExamples:
  var ring = initSinglyLinkedRing[int]()
  let
    a = newSinglyLinkedNode[int](3)
    b = newSinglyLinkedNode[int](7)
    c = newSinglyLinkedNode[int](9)

  ring.add(a)
  ring.add(b)
  ring.prepend(c)

  assert c.next == a
  assert a.next == b
  assert c.next.next == b
  assert b.next == c
  assert c.next.next.next == c

## # See also
## * `deques module <deques.html>`_ for double-ended queues

import std/private/since

when defined(nimPreviewSlimSystem):
  import std/assertions

type
  DoublyLinkedNodeObj*[T] = object
    ## A node of a doubly linked list.
    ##
    ## It consists of a `value` field, and pointers to `next` and `prev`.
    next*: DoublyLinkedNode[T]
    prev* {.cursor.}: DoublyLinkedNode[T]
    value*: T
  DoublyLinkedNode*[T] = ref DoublyLinkedNodeObj[T]

  SinglyLinkedNodeObj*[T] = object
    ## A node of a singly linked list.
    ##
    ## It consists of a `value` field, and a pointer to `next`.
    next*: SinglyLinkedNode[T]
    value*: T
  SinglyLinkedNode*[T] = ref SinglyLinkedNodeObj[T]

  SinglyLinkedList*[T] = object
    ## A singly linked list.
    head*: SinglyLinkedNode[T]
    tail* {.cursor.}: SinglyLinkedNode[T]

  DoublyLinkedList*[T] = object
    ## A doubly linked list.
    head*: DoublyLinkedNode[T]
    tail* {.cursor.}: DoublyLinkedNode[T]

  SinglyLinkedRing*[T] = object
    ## A singly linked ring.
    head*: SinglyLinkedNode[T]
    tail* {.cursor.}: SinglyLinkedNode[T]

  DoublyLinkedRing*[T] = object
    ## A doubly linked ring.
    head*: DoublyLinkedNode[T]

  SomeLinkedList*[T] = SinglyLinkedList[T] | DoublyLinkedList[T]

  SomeLinkedRing*[T] = SinglyLinkedRing[T] | DoublyLinkedRing[T]

  SomeLinkedCollection*[T] = SomeLinkedList[T] | SomeLinkedRing[T]

  SomeLinkedNode*[T] = SinglyLinkedNode[T] | DoublyLinkedNode[T]

proc initSinglyLinkedList*[T](): SinglyLinkedList[T] =
  ## Creates a new singly linked list that is empty.
  ##
  ## Singly linked lists are initialized by default, so it is not necessary to
  ## call this function explicitly.
  runnableExamples:
    let a = initSinglyLinkedList[int]()

  discard

proc initDoublyLinkedList*[T](): DoublyLinkedList[T] =
  ## Creates a new doubly linked list that is empty.
  ##
  ## Doubly linked lists are initialized by default, so it is not necessary to
  ## call this function explicitly.
  runnableExamples:
    let a = initDoublyLinkedList[int]()

  discard

proc initSinglyLinkedRing*[T](): SinglyLinkedRing[T] =
  ## Creates a new singly linked ring that is empty.
  ##
  ## Singly linked rings are initialized by default, so it is not necessary to
  ## call this function explicitly.
  runnableExamples:
    let a = initSinglyLinkedRing[int]()

  discard

proc initDoublyLinkedRing*[T](): DoublyLinkedRing[T] =
  ## Creates a new doubly linked ring that is empty.
  ##
  ## Doubly linked rings are initialized by default, so it is not necessary to
  ## call this function explicitly.
  runnableExamples:
    let a = initDoublyLinkedRing[int]()

  discard

proc newDoublyLinkedNode*[T](value: T): DoublyLinkedNode[T] =
  ## Creates a new doubly linked node with the given `value`.
  runnableExamples:
    let n = newDoublyLinkedNode[int](5)
    assert n.value == 5

  new(result)
  result.value = value

proc newSinglyLinkedNode*[T](value: T): SinglyLinkedNode[T] =
  ## Creates a new singly linked node with the given `value`.
  runnableExamples:
    let n = newSinglyLinkedNode[int](5)
    assert n.value == 5

  new(result)
  result.value = value

func toSinglyLinkedList*[T](elems: openArray[T]): SinglyLinkedList[T] {.since: (1, 5, 1).} =
  ## Creates a new `SinglyLinkedList` from the members of `elems`.
  runnableExamples:
    from std/sequtils import toSeq
    let a = [1, 2, 3, 4, 5].toSinglyLinkedList
    assert a.toSeq == [1, 2, 3, 4, 5]

  result = initSinglyLinkedList[T]()
  for elem in elems.items:
    result.add(elem)

func toDoublyLinkedList*[T](elems: openArray[T]): DoublyLinkedList[T] {.since: (1, 5, 1).} =
  ## Creates a new `DoublyLinkedList` from the members of `elems`.
  runnableExamples:
    from std/sequtils import toSeq
    let a = [1, 2, 3, 4, 5].toDoublyLinkedList
    assert a.toSeq == [1, 2, 3, 4, 5]

  result = initDoublyLinkedList[T]()
  for elem in elems.items:
    result.add(elem)

template itemsListImpl() {.dirty.} =
  var it {.cursor.} = L.head
  while it != nil:
    yield it.value
    it = it.next

template itemsRingImpl() {.dirty.} =
  var it {.cursor.} = L.head
  if it != nil:
    while true:
      yield it.value
      it = it.next
      if it == L.head: break

iterator items*[T](L: SomeLinkedList[T]): T =
  ## Yields every value of `L`.
  ##
  ## **See also:**
  ## * `mitems iterator <#mitems.i,SomeLinkedList[T]>`_
  ## * `nodes iterator <#nodes.i,SomeLinkedList[T]>`_
  runnableExamples:
    from std/sugar import collect
    from std/sequtils import toSeq
    let a = collect(initSinglyLinkedList):
      for i in 1..3: 10 * i
    assert toSeq(items(a)) == toSeq(a)
    assert toSeq(a) == @[10, 20, 30]

  itemsListImpl()

iterator items*[T](L: SomeLinkedRing[T]): T =
  ## Yields every value of `L`.
  ##
  ## **See also:**
  ## * `mitems iterator <#mitems.i,SomeLinkedRing[T]>`_
  ## * `nodes iterator <#nodes.i,SomeLinkedRing[T]>`_
  runnableExamples:
    from std/sugar import collect
    from std/sequtils import toSeq
    let a = collect(initSinglyLinkedRing):
      for i in 1..3: 10 * i
    assert toSeq(items(a)) == toSeq(a)
    assert toSeq(a) == @[10, 20, 30]

  itemsRingImpl()

iterator mitems*[T](L: var SomeLinkedList[T]): var T =
  ## Yields every value of `L` so that you can modify it.
  ##
  ## **See also:**
  ## * `items iterator <#items.i,SomeLinkedList[T]>`_
  ## * `nodes iterator <#nodes.i,SomeLinkedList[T]>`_
  runnableExamples:
    var a = initSinglyLinkedList[int]()
    for i in 1..5:
      a.add(10 * i)
    assert $a == "[10, 20, 30, 40, 50]"
    for x in mitems(a):
      x = 5 * x - 1
    assert $a == "[49, 99, 149, 199, 249]"

  itemsListImpl()

iterator mitems*[T](L: var SomeLinkedRing[T]): var T =
  ## Yields every value of `L` so that you can modify it.
  ##
  ## **See also:**
  ## * `items iterator <#items.i,SomeLinkedRing[T]>`_
  ## * `nodes iterator <#nodes.i,SomeLinkedRing[T]>`_
  runnableExamples:
    var a = initSinglyLinkedRing[int]()
    for i in 1..5:
      a.add(10 * i)
    assert $a == "[10, 20, 30, 40, 50]"
    for x in mitems(a):
      x = 5 * x - 1
    assert $a == "[49, 99, 149, 199, 249]"

  itemsRingImpl()

iterator nodes*[T](L: SomeLinkedList[T]): SomeLinkedNode[T] =
  ## Iterates over every node of `x`. Removing the current node from the
  ## list during traversal is supported.
  ##
  ## **See also:**
  ## * `items iterator <#items.i,SomeLinkedList[T]>`_
  ## * `mitems iterator <#mitems.i,SomeLinkedList[T]>`_
  runnableExamples:
    var a = initDoublyLinkedList[int]()
    for i in 1..5:
      a.add(10 * i)
    assert $a == "[10, 20, 30, 40, 50]"
    for x in nodes(a):
      if x.value == 30:
        a.remove(x)
      else:
        x.value = 5 * x.value - 1
    assert $a == "[49, 99, 199, 249]"

  var it {.cursor.} = L.head
  while it != nil:
    let nxt = it.next
    yield it
    it = nxt

iterator nodes*[T](L: SomeLinkedRing[T]): SomeLinkedNode[T] =
  ## Iterates over every node of `x`. Removing the current node from the
  ## list during traversal is supported.
  ##
  ## **See also:**
  ## * `items iterator <#items.i,SomeLinkedRing[T]>`_
  ## * `mitems iterator <#mitems.i,SomeLinkedRing[T]>`_
  runnableExamples:
    var a = initDoublyLinkedRing[int]()
    for i in 1..5:
      a.add(10 * i)
    assert $a == "[10, 20, 30, 40, 50]"
    for x in nodes(a):
      if x.value == 30:
        a.remove(x)
      else:
        x.value = 5 * x.value - 1
    assert $a == "[49, 99, 199, 249]"

  var it {.cursor.} = L.head
  if it != nil:
    while true:
      let nxt = it.next
      yield it
      it = nxt
      if it == L.head: break

proc `$`*[T](L: SomeLinkedCollection[T]): string =
  ## Turns a list into its string representation for logging and printing.
  runnableExamples:
    let a = [1, 2, 3, 4].toSinglyLinkedList
    assert $a == "[1, 2, 3, 4]"

  result = "["
  for x in nodes(L):
    if result.len > 1: result.add(", ")
    result.addQuoted(x.value)
  result.add("]")

proc find*[T](L: SomeLinkedCollection[T], value: T): SomeLinkedNode[T] =
  ## Searches in the list for a value. Returns `nil` if the value does not
  ## exist.
  ##
  ## **See also:**
  ## * `contains proc <#contains,SomeLinkedCollection[T],T>`_
  runnableExamples:
    let a = [9, 8].toSinglyLinkedList
    assert a.find(9).value == 9
    assert a.find(1) == nil

  for x in nodes(L):
    if x.value == value: return x

proc contains*[T](L: SomeLinkedCollection[T], value: T): bool {.inline.} =
  ## Searches in the list for a value. Returns `false` if the value does not
  ## exist, `true` otherwise. This allows the usage of the `in` and `notin`
  ## operators.
  ##
  ## **See also:**
  ## * `find proc <#find,SomeLinkedCollection[T],T>`_
  runnableExamples:
    let a = [9, 8].toSinglyLinkedList
    assert a.contains(9)
    assert 8 in a
    assert(not a.contains(1))
    assert 2 notin a

  result = find(L, value) != nil

proc prepend*[T: SomeLinkedList](a: var T, b: T) {.since: (1, 5, 1).} =
  ## Prepends a shallow copy of `b` to the beginning of `a`.
  ##
  ## **See also:**
  ## * `prependMoved proc <#prependMoved,T,T>`_
  ##   for moving the second list instead of copying
  runnableExamples:
    from std/sequtils import toSeq
    var a = [4, 5].toSinglyLinkedList
    let b = [1, 2, 3].toSinglyLinkedList
    a.prepend(b)
    assert a.toSeq == [1, 2, 3, 4, 5]
    assert b.toSeq == [1, 2, 3]
    a.prepend(a)
    assert a.toSeq == [1, 2, 3, 4, 5, 1, 2, 3, 4, 5]

  var tmp = b.copy
  tmp.addMoved(a)
  a = tmp

proc prependMoved*[T: SomeLinkedList](a, b: var T) {.since: (1, 5, 1).} =
  ## Moves `b` before the head of `a`. Efficiency: O(1).
  ## Note that `b` becomes empty after the operation unless it has the same address as `a`.
  ## Self-prepending results in a cycle.
  ##
  ## **See also:**
  ## * `prepend proc <#prepend,T,T>`_
  ##   for prepending a copy of a list
  runnableExamples:
    import std/[sequtils, enumerate, sugar]
    var
      a = [4, 5].toSinglyLinkedList
      b = [1, 2, 3].toSinglyLinkedList
      c = [0, 1].toSinglyLinkedList
    a.prependMoved(b)
    assert a.toSeq == [1, 2, 3, 4, 5]
    assert b.toSeq == []
    c.prependMoved(c)
    let s = collect:
      for i, ci in enumerate(c):
        if i == 6: break
        ci
    assert s == [0, 1, 0, 1, 0, 1]

  b.addMoved(a)
  when defined(js): # XXX: swap broken in js; bug #16771
    (b, a) = (a, b)
  else: swap a, b

proc add*[T](L: var SinglyLinkedList[T], n: SinglyLinkedNode[T]) {.inline.} =
  ## Appends (adds to the end) a node `n` to `L`. Efficiency: O(1).
  ##
  ## **See also:**
  ## * `add proc <#add,SinglyLinkedList[T],T>`_ for appending a value
  ## * `prepend proc <#prepend,SinglyLinkedList[T],SinglyLinkedNode[T]>`_
  ##   for prepending a node
  ## * `prepend proc <#prepend,SinglyLinkedList[T],T>`_ for prepending a value
  runnableExamples:
    var a = initSinglyLinkedList[int]()
    let n = newSinglyLinkedNode[int](9)
    a.add(n)
    assert a.contains(9)

  n.next = nil
  if L.tail != nil:
    assert(L.tail.next == nil)
    L.tail.next = n
  L.tail = n
  if L.head == nil: L.head = n

proc add*[T](L: var SinglyLinkedList[T], value: T) {.inline.} =
  ## Appends (adds to the end) a value to `L`. Efficiency: O(1).
  ##
  ## **See also:**
  ## * `add proc <#add,SinglyLinkedList[T],T>`_ for appending a value
  ## * `prepend proc <#prepend,SinglyLinkedList[T],SinglyLinkedNode[T]>`_
  ##   for prepending a node
  ## * `prepend proc <#prepend,SinglyLinkedList[T],T>`_ for prepending a value
  runnableExamples:
    var a = initSinglyLinkedList[int]()
    a.add(9)
    a.add(8)
    assert a.contains(9)

  add(L, newSinglyLinkedNode(value))

proc prepend*[T](L: var SinglyLinkedList[T],
                 n: SinglyLinkedNode[T]) {.inline.} =
  ## Prepends (adds to the beginning) a node to `L`. Efficiency: O(1).
  ##
  ## **See also:**
  ## * `add proc <#add,SinglyLinkedList[T],SinglyLinkedNode[T]>`_
  ##   for appending a node
  ## * `add proc <#add,SinglyLinkedList[T],T>`_ for appending a value
  ## * `prepend proc <#prepend,SinglyLinkedList[T],T>`_ for prepending a value
  runnableExamples:
    var a = initSinglyLinkedList[int]()
    let n = newSinglyLinkedNode[int](9)
    a.prepend(n)
    assert a.contains(9)

  n.next = L.head
  L.head = n
  if L.tail == nil: L.tail = n

proc prepend*[T](L: var SinglyLinkedList[T], value: T) {.inline.} =
  ## Prepends (adds to the beginning) a node to `L`. Efficiency: O(1).
  ##
  ## **See also:**
  ## * `add proc <#add,SinglyLinkedList[T],SinglyLinkedNode[T]>`_
  ##   for appending a node
  ## * `add proc <#add,SinglyLinkedList[T],T>`_ for appending a value
  ## * `prepend proc <#prepend,SinglyLinkedList[T],SinglyLinkedNode[T]>`_
  ##   for prepending a node
  runnableExamples:
    var a = initSinglyLinkedList[int]()
    a.prepend(9)
    a.prepend(8)
    assert a.contains(9)

  prepend(L, newSinglyLinkedNode(value))

func copy*[T](a: SinglyLinkedList[T]): SinglyLinkedList[T] {.since: (1, 5, 1).} =
  ## Creates a shallow copy of `a`.
  runnableExamples:
    from std/sequtils import toSeq
    type Foo = ref object
      x: int
    var
      f = Foo(x: 1)
      a = [f].toSinglyLinkedList
    let b = a.copy
    a.add([f].toSinglyLinkedList)
    assert a.toSeq == [f, f]
    assert b.toSeq == [f] # b isn't modified...
    f.x = 42
    assert a.head.value.x == 42
    assert b.head.value.x == 42 # ... but the elements are not deep copied

    let c = [1, 2, 3].toSinglyLinkedList
    assert $c == $c.copy

  result = initSinglyLinkedList[T]()
  for x in a.items:
    result.add(x)

proc addMoved*[T](a, b: var SinglyLinkedList[T]) {.since: (1, 5, 1).} =
  ## Moves `b` to the end of `a`. Efficiency: O(1).
  ## Note that `b` becomes empty after the operation unless it has the same address as `a`.
  ## Self-adding results in a cycle.
  ##
  ## **See also:**
  ## * `add proc <#add,T,T>`_ for adding a copy of a list
  runnableExamples:
    import std/[sequtils, enumerate, sugar]
    var
      a = [1, 2, 3].toSinglyLinkedList
      b = [4, 5].toSinglyLinkedList
      c = [0, 1].toSinglyLinkedList
    a.addMoved(b)
    assert a.toSeq == [1, 2, 3, 4, 5]
    assert b.toSeq == []
    c.addMoved(c)
    let s = collect:
      for i, ci in enumerate(c):
        if i == 6: break
        ci
    assert s == [0, 1, 0, 1, 0, 1]

  if b.head != nil:
    if a.head == nil:
      a.head = b.head
    else:
      a.tail.next = b.head
    a.tail = b.tail
  if a.addr != b.addr:
    b.head = nil
    b.tail = nil

proc add*[T](L: var DoublyLinkedList[T], n: DoublyLinkedNode[T]) =
  ## Appends (adds to the end) a node `n` to `L`. Efficiency: O(1).
  ##
  ## **See also:**
  ## * `add proc <#add,DoublyLinkedList[T],T>`_ for appending a value
  ## * `prepend proc <#prepend,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
  ##   for prepending a node
  ## * `prepend proc <#prepend,DoublyLinkedList[T],T>`_ for prepending a value
  ## * `remove proc <#remove,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
  ##   for removing a node
  runnableExamples:
    var a = initDoublyLinkedList[int]()
    let n = newDoublyLinkedNode[int](9)
    a.add(n)
    assert a.contains(9)

  n.next = nil
  n.prev = L.tail
  if L.tail != nil:
    assert(L.tail.next == nil)
    L.tail.next = n
  L.tail = n
  if L.head == nil: L.head = n

proc add*[T](L: var DoublyLinkedList[T], value: T) =
  ## Appends (adds to the end) a value to `L`. Efficiency: O(1).
  ##
  ## **See also:**
  ## * `add proc <#add,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
  ##   for appending a node
  ## * `prepend proc <#prepend,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
  ##   for prepending a node
  ## * `prepend proc <#prepend,DoublyLinkedList[T],T>`_ for prepending a value
  ## * `remove proc <#remove,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
  ##   for removing a node
  runnableExamples:
    var a = initDoublyLinkedList[int]()
    a.add(9)
    a.add(8)
    assert a.contains(9)

  add(L, newDoublyLinkedNode(value))

proc prepend*[T](L: var DoublyLinkedList[T], n: DoublyLinkedNode[T]) =
  ## Prepends (adds to the beginning) a node `n` to `L`. Efficiency: O(1).
  ##
  ## **See also:**
  ## * `add proc <#add,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
  ##   for appending a node
  ## * `add proc <#add,DoublyLinkedList[T],T>`_ for appending a value
  ## * `prepend proc <#prepend,DoublyLinkedList[T],T>`_ for prepending a value
  ## * `remove proc <#remove,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
  ##   for removing a node
  runnableExamples:
    var a = initDoublyLinkedList[int]()
    let n = newDoublyLinkedNode[int](9)
    a.prepend(n)
    assert a.contains(9)

  n.prev = nil
  n.next = L.head
  if L.head != nil:
    assert(L.head.prev == nil)
    L.head.prev = n
  L.head = n
  if L.tail == nil: L.tail = n

proc prepend*[T](L: var DoublyLinkedList[T], value: T) =
  ## Prepends (adds to the beginning) a value to `L`. Efficiency: O(1).
  ##
  ## **See also:**
  ## * `add proc <#add,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
  ##   for appending a node
  ## * `add proc <#add,DoublyLinkedList[T],T>`_ for appending a value
  ## * `prepend proc <#prepend,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
  ##   for prepending a node
  ## * `remove proc <#remove,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
  ##   for removing a node
  runnableExamples:
    var a = initDoublyLinkedList[int]()
    a.prepend(9)
    a.prepend(8)
    assert a.contains(9)

  prepend(L, newDoublyLinkedNode(value))

func copy*[T](a: DoublyLinkedList[T]): DoublyLinkedList[T] {.since: (1, 5, 1).} =
  ## Creates a shallow copy of `a`.
  runnableExamples:
    from std/sequtils import toSeq
    type Foo = ref object
      x: int
    var
      f = Foo(x: 1)
      a = [f].toDoublyLinkedList
    let b = a.copy
    a.add([f].toDoublyLinkedList)
    assert a.toSeq == [f, f]
    assert b.toSeq == [f] # b isn't modified...
    f.x = 42
    assert a.head.value.x == 42
    assert b.head.value.x == 42 # ... but the elements are not deep copied

    let c = [1, 2, 3].toDoublyLinkedList
    assert $c == $c.copy

  result = initDoublyLinkedList[T]()
  for x in a.items:
    result.add(x)

proc addMoved*[T](a, b: var DoublyLinkedList[T]) {.since: (1, 5, 1).} =
  ## Moves `b` to the end of `a`. Efficiency: O(1).
  ## Note that `b` becomes empty after the operation unless it has the same address as `a`.
  ## Self-adding results in a cycle.
  ##
  ## **See also:**
  ## * `add proc <#add,T,T>`_
  ##   for adding a copy of a list
  runnableExamples:
    import std/[sequtils, enumerate, sugar]
    var
      a = [1, 2, 3].toDoublyLinkedList
      b = [4, 5].toDoublyLinkedList
      c = [0, 1].toDoublyLinkedList
    a.addMoved(b)
    assert a.toSeq == [1, 2, 3, 4, 5]
    assert b.toSeq == []
    c.addMoved(c)
    let s = collect:
      for i, ci in enumerate(c):
        if i == 6: break
        ci
    assert s == [0, 1, 0, 1, 0, 1]

  if b.head != nil:
    if a.head == nil:
      a.head = b.head
    else:
      b.head.prev = a.tail
      a.tail.next = b.head
    a.tail = b.tail
  if a.addr != b.addr:
    b.head = nil
    b.tail = nil

proc add*[T: SomeLinkedList](a: var T, b: T) {.since: (1, 5, 1).} =
  ## Appends a shallow copy of `b` to the end of `a`.
  ##
  ## **See also:**
  ## * `addMoved proc <#addMoved,SinglyLinkedList[T],SinglyLinkedList[T]>`_
  ## * `addMoved proc <#addMoved,DoublyLinkedList[T],DoublyLinkedList[T]>`_
  ##   for moving the second list instead of copying
  runnableExamples:
    from std/sequtils import toSeq
    var a = [1, 2, 3].toSinglyLinkedList
    let b = [4, 5].toSinglyLinkedList
    a.add(b)
    assert a.toSeq == [1, 2, 3, 4, 5]
    assert b.toSeq == [4, 5]
    a.add(a)
    assert a.toSeq == [1, 2, 3, 4, 5, 1, 2, 3, 4, 5]

  var tmp = b.copy
  a.addMoved(tmp)

proc remove*[T](L: var SinglyLinkedList[T], n: SinglyLinkedNode[T]): bool {.discardable.} =
  ## Removes a node `n` from `L`.
  ## Returns `true` if `n` was found in `L`.
  ## Efficiency: O(n); the list is traversed until `n` is found.
  ## Attempting to remove an element not contained in the list is a no-op.
  ## When the list is cyclic, the cycle is preserved after removal.
  runnableExamples:
    import std/[sequtils, enumerate, sugar]
    var a = [0, 1, 2].toSinglyLinkedList
    let n = a.head.next
    assert n.value == 1
    assert a.remove(n) == true
    assert a.toSeq == [0, 2]
    assert a.remove(n) == false
    assert a.toSeq == [0, 2]
    a.addMoved(a) # cycle: [0, 2, 0, 2, ...]
    a.remove(a.head)
    let s = collect:
      for i, ai in enumerate(a):
        if i == 4: break
        ai
    assert s == [2, 2, 2, 2]

  if n == L.head:
    L.head = n.next
    if L.tail.next == n:
      L.tail.next = L.head # restore cycle
  else:
    var prev {.cursor.} = L.head
    while prev.next != n and prev.next != nil:
      prev = prev.next
    if prev.next == nil:
      return false
    prev.next = n.next
    if L.tail == n:
      L.tail = prev # update tail if we removed the last node
  true

proc remove*[T](L: var DoublyLinkedList[T], n: DoublyLinkedNode[T]) =
  ## Removes a node `n` from `L`. Efficiency: O(1).
  ## This function assumes, for the sake of efficiency, that `n` is contained in `L`,
  ## otherwise the effects are undefined.
  ## When the list is cyclic, the cycle is preserved after removal.
  runnableExamples:
    import std/[sequtils, enumerate, sugar]
    var a = [0, 1, 2].toSinglyLinkedList
    let n = a.head.next
    assert n.value == 1
    a.remove(n)
    assert a.toSeq == [0, 2]
    a.remove(n)
    assert a.toSeq == [0, 2]
    a.addMoved(a) # cycle: [0, 2, 0, 2, ...]
    a.remove(a.head)
    let s = collect:
      for i, ai in enumerate(a):
        if i == 4: break
        ai
    assert s == [2, 2, 2, 2]

  if n == L.tail: L.tail = n.prev
  if n == L.head: L.head = n.next
  if n.next != nil: n.next.prev = n.prev
  if n.prev != nil: n.prev.next = n.next



proc add*[T](L: var SinglyLinkedRing[T], n: SinglyLinkedNode[T]) =
  ## Appends (adds to the end) a node `n` to `L`. Efficiency: O(1).
  ##
  ## **See also:**
  ## * `add proc <#add,SinglyLinkedRing[T],T>`_ for appending a value
  ## * `prepend proc <#prepend,SinglyLinkedRing[T],SinglyLinkedNode[T]>`_
  ##   for prepending a node
  ## * `prepend proc <#prepend,SinglyLinkedRing[T],T>`_ for prepending a value
  runnableExamples:
    var a = initSinglyLinkedRing[int]()
    let n = newSinglyLinkedNode[int](9)
    a.add(n)
    assert a.contains(9)

  if L.head != nil:
    n.next = L.head
    assert(L.tail != nil)
    L.tail.next = n
  else:
    n.next = n
    L.head = n
  L.tail = n

proc add*[T](L: var SinglyLinkedRing[T], value: T) =
  ## Appends (adds to the end) a value to `L`. Efficiency: O(1).
  ##
  ## **See also:**
  ## * `add proc <#add,SinglyLinkedRing[T],SinglyLinkedNode[T]>`_
  ##   for appending a node
  ## * `prepend proc <#prepend,SinglyLinkedRing[T],SinglyLinkedNode[T]>`_
  ##   for prepending a node
  ## * `prepend proc <#prepend,SinglyLinkedRing[T],T>`_ for prepending a value
  runnableExamples:
    var a = initSinglyLinkedRing[int]()
    a.add(9)
    a.add(8)
    assert a.contains(9)

  add(L, newSinglyLinkedNode(value))

proc prepend*[T](L: var SinglyLinkedRing[T], n: SinglyLinkedNode[T]) =
  ## Prepends (adds to the beginning) a node `n` to `L`. Efficiency: O(1).
  ##
  ## **See also:**
  ## * `add proc <#add,SinglyLinkedRing[T],SinglyLinkedNode[T]>`_
  ##   for appending a node
  ## * `add proc <#add,SinglyLinkedRing[T],T>`_ for appending a value
  ## * `prepend proc <#prepend,SinglyLinkedRing[T],T>`_ for prepending a value
  runnableExamples:
    var a = initSinglyLinkedRing[int]()
    let n = newSinglyLinkedNode[int](9)
    a.prepend(n)
    assert a.contains(9)

  if L.head != nil:
    n.next = L.head
    assert(L.tail != nil)
    L.tail.next = n
  else:
    n.next = n
    L.tail = n
  L.head = n

proc prepend*[T](L: var SinglyLinkedRing[T], value: T) =
  ## Prepends (adds to the beginning) a value to `L`. Efficiency: O(1).
  ##
  ## **See also:**
  ## * `add proc <#add,SinglyLinkedRing[T],SinglyLinkedNode[T]>`_
  ##   for appending a node
  ## * `add proc <#add,SinglyLinkedRing[T],T>`_ for appending a value
  ## * `prepend proc <#prepend,SinglyLinkedRing[T],SinglyLinkedNode[T]>`_
  ##   for prepending a node
  runnableExamples:
    var a = initSinglyLinkedRing[int]()
    a.prepend(9)
    a.prepend(8)
    assert a.contains(9)

  prepend(L, newSinglyLinkedNode(value))



proc add*[T](L: var DoublyLinkedRing[T], n: DoublyLinkedNode[T]) =
  ## Appends (adds to the end) a node `n` to `L`. Efficiency: O(1).
  ##
  ## **See also:**
  ## * `add proc <#add,DoublyLinkedRing[T],T>`_ for appending a value
  ## * `prepend proc <#prepend,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
  ##   for prepending a node
  ## * `prepend proc <#prepend,DoublyLinkedRing[T],T>`_ for prepending a value
  ## * `remove proc <#remove,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
  ##   for removing a node
  runnableExamples:
    var a = initDoublyLinkedRing[int]()
    let n = newDoublyLinkedNode[int](9)
    a.add(n)
    assert a.contains(9)

  if L.head != nil:
    n.next = L.head
    n.prev = L.head.prev
    L.head.prev.next = n
    L.head.prev = n
  else:
    n.prev = n
    n.next = n
    L.head = n

proc add*[T](L: var DoublyLinkedRing[T], value: T) =
  ## Appends (adds to the end) a value to `L`. Efficiency: O(1).
  ##
  ## **See also:**
  ## * `add proc <#add,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
  ##   for appending a node
  ## * `prepend proc <#prepend,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
  ##   for prepending a node
  ## * `prepend proc <#prepend,DoublyLinkedRing[T],T>`_ for prepending a value
  ## * `remove proc <#remove,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
  ##   for removing a node
  runnableExamples:
    var a = initDoublyLinkedRing[int]()
    a.add(9)
    a.add(8)
    assert a.contains(9)

  add(L, newDoublyLinkedNode(value))

proc prepend*[T](L: var DoublyLinkedRing[T], n: DoublyLinkedNode[T]) =
  ## Prepends (adds to the beginning) a node `n` to `L`. Efficiency: O(1).
  ##
  ## **See also:**
  ## * `add proc <#add,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
  ##   for appending a node
  ## * `add proc <#add,DoublyLinkedRing[T],T>`_ for appending a value
  ## * `prepend proc <#prepend,DoublyLinkedRing[T],T>`_ for prepending a value
  ## * `remove proc <#remove,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
  ##   for removing a node
  runnableExamples:
    var a = initDoublyLinkedRing[int]()
    let n = newDoublyLinkedNode[int](9)
    a.prepend(n)
    assert a.contains(9)

  if L.head != nil:
    n.next = L.head
    n.prev = L.head.prev
    L.head.prev.next = n
    L.head.prev = n
  else:
    n.prev = n
    n.next = n
  L.head = n

proc prepend*[T](L: var DoublyLinkedRing[T], value: T) =
  ## Prepends (adds to the beginning) a value to `L`. Efficiency: O(1).
  ##
  ## **See also:**
  ## * `add proc <#add,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
  ##   for appending a node
  ## * `add proc <#add,DoublyLinkedRing[T],T>`_ for appending a value
  ## * `prepend proc <#prepend,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
  ##   for prepending a node
  ## * `remove proc <#remove,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
  ##   for removing a node
  runnableExamples:
    var a = initDoublyLinkedRing[int]()
    a.prepend(9)
    a.prepend(8)
    assert a.contains(9)

  prepend(L, newDoublyLinkedNode(value))

proc remove*[T](L: var DoublyLinkedRing[T], n: DoublyLinkedNode[T]) =
  ## Removes `n` from `L`. Efficiency: O(1).
  ## This function assumes, for the sake of efficiency, that `n` is contained in `L`,
  ## otherwise the effects are undefined.
  runnableExamples:
    var a = initDoublyLinkedRing[int]()
    let n = newDoublyLinkedNode[int](5)
    a.add(n)
    assert 5 in a
    a.remove(n)
    assert 5 notin a

  n.next.prev = n.prev
  n.prev.next = n.next
  if n == L.head:
    let p = L.head.prev
    if p == L.head:
      # only one element left:
      L.head = nil
    else:
      L.head = p

proc append*[T](a: var (SinglyLinkedList[T] | SinglyLinkedRing[T]),
                b: SinglyLinkedList[T] | SinglyLinkedNode[T] | T) =
  ## Alias for `a.add(b)`.
  ##
  ## **See also:**
  ## * `add proc <#add,SinglyLinkedList[T],SinglyLinkedNode[T]>`_
  ## * `add proc <#add,SinglyLinkedList[T],T>`_
  ## * `add proc <#add,T,T>`_
  a.add(b)

proc append*[T](a: var (DoublyLinkedList[T] | DoublyLinkedRing[T]),
                b: DoublyLinkedList[T] | DoublyLinkedNode[T] | T) =
  ## Alias for `a.add(b)`.
  ##
  ## **See also:**
  ## * `add proc <#add,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
  ## * `add proc <#add,DoublyLinkedList[T],T>`_
  ## * `add proc <#add,T,T>`_
  a.add(b)

proc appendMoved*[T: SomeLinkedList](a, b: var T) {.since: (1, 5, 1).} =
  ## Alias for `a.addMoved(b)`.
  ##
  ## **See also:**
  ## * `addMoved proc <#addMoved,SinglyLinkedList[T],SinglyLinkedList[T]>`_
  ## * `addMoved proc <#addMoved,DoublyLinkedList[T],DoublyLinkedList[T]>`_
  a.addMoved(b)