| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
fixes regression remaining after #24092
In #24092 `prepareNode` was updated so it wouldn't try to instantiate
generic type symbols (like `Generic` when `type Generic[T] = object`,
and `prepareNode` is what `tyFromExpr` uses in most of the compiler. An
exception is in sigmatch, which is now changed to use `prepareNode` to
make generic type symbols work in the same way as usual. However this
requires another change to work:
Dot fields and matches to `typedesc` on generic types generate
`tyFromExpr` in generic contexts since #24005, including generic type
symbols. But this means when we try to instantiate the `tyFromExpr` in
sigmatch, which increases `c.inGenericContext` for potentially remaining
unresolved expressions, dotcalls stay as `tyFromExpr` and so never
match. To fix this, we change the "generic type" check in dot fields and
`typedesc` matching to an "unresolved type" check which excludes generic
body types; and for generic body types, we only generate `tyFromExpr` if
the dot field is a generic parameter of the generic type (so that it
gets resolved only at instantiation).
Notes for the future:
* Sigmatch shouldn't have to `inc c.inGenericContext`, if a `tyFromExpr`
can't instantiate it's fine if we just fail the match (i.e. redirect the
instantiation errors from `semtypinst` to a match failure). Then again
maybe this is the best way to check for inability to instantiate.
* The `elif c.inGenericContext > 0 and t.containsUnresolvedType` check
in dotfields could maybe be simplified to just checking for `tyFromExpr`
and `tyGenericParam`, but I don't know if this is an exhaustive list.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
fixes #24090
Generic body types are normally a sign of an uninstantiated type, and so
give errors when trying to instantiate them. However when instantiating
free user expressions like the nodes of `tyFromExpr`, generic default
params, static values etc, they can be used as arguments to macros or
templates etc (as in the issue). So, we don't try to instantiate generic
body type symbols at all in free expressions such as these (but not in
for example type nodes), and avoid the error.
In the future there should be a "concrete type" check for generic body
types different from the check in type instantiation to deal with things
like #24091, if we do want to allow this use of them.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
fixes #16700, fixes #20916, refs #24010
Fixes the instantiation issues for proc param default values encountered
in #24010 by:
1. semchecking generic default param values with `inGenericContext` for
#22029 and followups to apply (the bigger change in semtypes),
2. rejecting explicit generic instantiations with unresolved generic
types inside `inGenericContext` (sigmatch change),
3. instantiating the default param values using `prepareNode` rather
than an insufficient manual method (the bigger change in seminst).
This had an important side effect of references to other parameters not
working since they would be resolved as a symbol belonging to the
uninstantiated original generic proc rather than the later instantiated
proc. There is a more radical way to fix this which is generating ident
nodes with `tyFromExpr` in specifically this context, but instead we
just count them as belonging to the same proc in
`hoistParamsUsedInDefault`.
Other minor bugfixes:
* To make the error message in t20883 make sense, we now give a "cannot
instantiate" error when trying to instantiate a proc generic param with
`tyFromExpr`.
* Object constructors as default param values generated default values
of private fields going through `evalConstExpr` more than once, but the
VM doesn't mark the object fields as `nfSkipFieldChecking` which gives a
"cannot access field" error. So the VM now marks object fields it
generates as `nfSkipFieldChecking`. Not sure if this affects VM
performance, don't see why it would.
* The nkRecWhen changes in #24042 didn't cover the case where all
conditions are constantly false correctly, this is fixed with a minor
change. This isn't needed for this PR now but I encountered it after
forgetting to `dec c.inGenericContext`.
|
|
|
|
|
|
|
|
|
|
|
| |
fixes #24048
Generic lambdas get instantiated via `replaceTypesInBody` which calls
`replaceTypeVarsN` on the body of the lambda. This body can contain sym
nodes of gensym symbols generated by macros, which have `nil` type. But
a piece of code in `replaceTypeVarsN` checks whether the type of a
symbol is equal to `void` without checking if it's `nil` first, which
causes a segfault. Now it also checks that the type of the symbol isn't
`nil` for it to be `void`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
fixes #16376
The way the compiler handled generic proc instantiations in calls (like
`foo[int](...)`) up to this point was to instantiate `foo[int]`, create
a symbol for the instantiated proc (or a symchoice for multiple procs
excluding ones with mismatching generic param counts), then perform
overload resolution on this symbol/symchoice. The exception to this was
when the called symbol was already a symchoice node, in which case it
wasn't instantiated and overloading was called directly ([these
lines](https://github.com/nim-lang/Nim/blob/b7b1313d21deb687adab2b4a162e716ba561a26b/compiler/semexprs.nim#L3366-L3371)).
This has several problems:
* Templates and macros can't create instantiated symbols, so they
couldn't participate in overloaded explicit generic instantiations,
causing the issue #16376.
* Every single proc that can be instantiated with the given generic
params is fully instantiated including the body. #9997 is about this but
isn't fixed here since the instantiation isn't in a call.
The way overload resolution handles explicit instantiations by itself is
also buggy:
* It doesn't check constraints.
* It allows only partially providing the generic parameters, which makes
sense for implicit generics, but can cause ambiguity in overloading.
Here is how this PR deals with these problems:
* Overload resolution now always handles explicit generic instantiations
in calls, in `initCandidate`, as long as the symbol resolves to a
routine symbol.
* Overload resolution now checks the generic params for constraints and
correct parameter count (ignoring implicit params). If these don't
match, the entire overload is considered as not matching and not
instantiated.
* Special error messages are added for mismatching/missing/extra generic
params. This is almost all of the diff in `semcall`.
* Procs with matching generic parameters now instantiate only the type
of the signature in overload resolution, not the proc itself, which also
works for templates and macros.
Unfortunately we can't entirely remove instantiations because overload
resolution can't handle some cases with uninstantiated types even though
it's resolved in the binding (see the last 2 blocks in
`texplicitgenerics`). There are also some instantiation issues with
default params that #24005 didn't fix but I didn't want this to become
the 3rd huge generics PR in a row so I didn't dive too deep into trying
to fix them. There is still a minor instantiation fix in `semtypinst`
though for subscripts in calls.
Additional changes:
* Overloading of `[]` wasn't documented properly, it somewhat is now
because we need to mention the limitation that it can't be done for
generic procs/types.
* Tests can now enable the new type mismatch errors with just
`-d:testsConciseTypeMismatch` in the command.
Package PRs:
- using fork for now:
[combparser](https://github.com/PMunch/combparser/pull/7) (partial
generic instantiation)
- merged: [cligen](https://github.com/c-blake/cligen/pull/233) (partial
generic instantiation but non-overloaded + template)
- merged: [neo](https://github.com/andreaferretti/neo/pull/56) (trying
to instantiate template with no generic param)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
(#24005)
fixes #4228, fixes #4990, fixes #7006, fixes #7008, fixes #8406, fixes
#8551, fixes #11112, fixes #20027, fixes #22647, refs #23854 and #23855
(remaining issue fixed), refs #8545 (works properly now with
`cast[static[bool]]` changed to `cast[bool]`), refs #22342 and #22607
(disabled tests added), succeeds #23194
Parameter and return type nodes in generic procs now undergo the same
`inGenericContext` treatment that nodes in generic type bodies do. This
allows many of the fixes in #22029 and followups to also apply to
generic proc signatures. Like #23983 however this needs some more
compiler fixes, but this time mostly in `sigmatch` and type
instantiations.
1. `tryReadingGenericParam` no longer treats `tyCompositeTypeClass` like
a concrete type anymore, so expressions like `Foo.T` where `Foo` is a
generic type don't look for a parameter of `Foo` in non-generic code
anymore. It also doesn't generate `tyFromExpr` in non-generic code for
any generic LHS. This is to handle a very specific case in `asyncmacro`
which used `FutureVar.astToStr` where `FutureVar` is generic.
2. The `tryResolvingStaticExpr` call when matching `tyFromExpr` in
sigmatch now doesn't consider call nodes in general unresolved, only
nodes with `tyFromExpr` type, which is emitted on unresolved expressions
by increasing `c.inGenericContext`. `c.inGenericContext == 0` is also
now required to attempt instantiating `tyFromExpr`. So matching against
`tyFromExpr` in proc signatures works in general now, but I'm
speculating it depends on constant folding in `semExpr` for statics to
match against it properly.
3. `paramTypesMatch` now doesn't try to change nodes with `tyFromExpr`
type into `tyStatic` type when fitting to a static type, because it
doesn't need to, they'll be handled the same way (this was a workaround
in place of the static type instantiation changes, only one of the
fields in the #22647 test doesn't work with it).
4. `tyStatic` matching now uses `inferStaticParam` instead of just range
type matching, so `Foo[N div 2]` can infer `N` in the same way `array[N
div 2, int]` can. `inferStaticParam` also disabled itself if the
inferred static param type already had a node, but `makeStaticExpr`
generates static types with unresolved nodes, so we only disable it if
it also doesn't have a binding. This might not work very well but the
static type instantiation changes should really lower the amount of
cases where it's encountered.
5. Static types now undergo type instantiation. Previously the branch
for `tyStatic` in `semtypinst` was a no-op, now it acts similarly to
instantiating any other type with the following differences:
- Other types only need instantiation if `containsGenericType` is true,
static types also get instantiated if their value node isn't a literal
node. Ideally any value node that is "already evaluated" should be
ignored, but I'm not sure of a better way to check this, maybe if
`evalConstExpr` emitted a flag. This is purely for optimization though.
- After instantiation, `semConstExpr` is called on the value node if
`not cl.allowMetaTypes` and the type isn't literally a `static` type.
Then the type of the node is set to the base type of the static type to
deal with `semConstExpr` stripping abstract types.
We need to do this because calls like `foo(N)` where `N` is `static int`
and `foo`'s first parameter is just `int` do not generate `tyFromExpr`,
they are fully typed and so `makeStaticExpr` is called on them, giving a
static type with an unresolved node.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
fixes #23406, closes #23854, closes #23855 (test code of both compiles
but separate issue exists), refs #23432, follows #23411
In generic bodies, previously all regular `nkCall` nodes like `foo(a,
b)` were directly treated as generic statements and delayed immediately,
but other call kinds like `a.foo(b)`, `foo a, b` etc underwent
typechecking before making sure they have to be delayed, as implemented
in #22029. Since the behavior for `nkCall` was slightly buggy (as in
#23406), the behavior for all call kinds is now to call `semTypeExpr`.
However the vast majority of calls in generic bodies out there are
`nkCall`, and while there isn't a difference in the expected behavior,
this exposes many issues with the implementation started in #22029 given
how much more code uses it now. The portion of these issues that CI has
caught are fixed in this PR but it's possible there are more.
1. Deref expressions, dot expressions and calls to dot expressions now
handle and propagate `tyFromExpr`. This is most of the changes in
`semexprs`.
2. For deref expressions to work in `typeof`, a new type flag
`tfNonConstExpr` is added for `tyFromExpr` that calls `semExprWithType`
with `efInTypeof` on the expression instead of `semConstExpr`. This type
flag is set for every `tyFromExpr` type of a node that `prepareNode`
encounters, so that the node itself isn't evaluated at compile time when
just trying to get the type of the node.
3. Unresolved `static` types matching `static` parameters is now treated
the same as unresolved generic types matching `typedesc` parameters in
generic type bodies, it causes a failed match which delays the call
instantiation.
4. `typedesc` parameters now reject all types containing unresolved
generic types like `seq[T]`, not just generic param types by themselves.
(using `containsGenericType`)
5. `semgnrc` now doesn't leave generic param symbols it encounters in
generic type contexts as just identifiers, and instead turns them into
symbol nodes. Normally in generic procs, this isn't a problem since the
generic param symbols will be provided again at instantiation time (and
in fact creating symbol nodes causes issues since `seminst` doesn't
actually instantiate proc body node types).
But generic types can try to be instantiated early in `sigmatch` which
will give an undeclared identifier error when the param is not provided.
Nodes in generic types (specifically in `tyFromExpr` which should be the
only use for `semGenericStmt`) undergo full generic type instantiation
with `prepareNode`, so there is no issue of these symbols remaining as
uninstantiated generic types.
6. `prepareNode` now has more logic for which nodes to avoid
instantiating.
Subscripts and subscripts turned into calls to `[]` by `semgnrc` need to
avoid instantiating the first operand, since it may be a generic body
type like `Generic` in an expression like `Generic[int]`.
Dot expressions cannot instantiate their RHS as it may be a generic proc
symbol or even an undeclared identifier for generic param fields, but
have to instantiate their LHS, so calls and subscripts need to still
instantiate their first node if it's a dot expression.
This logic still isn't perfect and needs the same level of detail as in
`semexprs` for which nodes can be left as "untyped" for overloading/dot
exprs/subscripts to handle, but should handle the majority of cases.
Also the `efDetermineType` requirement for which calls become
`tyFromExpr` is removed and as a result `efDetermineType` is entirely
unused again.
|
|
|
|
|
|
|
|
| |
fixes #19848
Not sure why this wasn't the case already. The `if cl.allowMetaTypes:
return` line below for `tyFromExpr` [was added 10 years
ago](https://github.com/nim-lang/Nim/commit/d5798b43dec547f372eb49d5a8848a9970b12260).
Hopefully it was just negligence?
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
fixes #23853
Since #22610 generics turns the `Name` in the `GT.Name` expression in
the test code into a sym choice. The problem is when the compiler tries
to instantiate `GT.Name` it also instantiates the sym choice symbols.
`Name` has type `template (E: type ExtensionField)` which contains the
unresolved generic type `ExtensionField`, which the compiler mistakes as
an uninstantiated node, when it's just part of the type of the template.
The compilation of the node itself and hence overloading will handle the
instantiation of the proc, so we avoid instantiating it in `semtypinst`,
similar to how the first nodes of call nodes aren't instantiated.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
fixes #23200, fixes #18866
#21065 made it so `auto` proc return types remained as `tyAnything` and
not turned to `tyUntyped`. This had the side effect that anything
previously bound to `tyAnything` in the proc type match was then bound
to the proc return type, which is wrong since we don't know the proc
return type even if we know the expected parameter types (`tyUntyped`
also [does not care about its previous bindings in
`typeRel`](https://github.com/nim-lang/Nim/blob/ab4278d2179639f19967431a7aa1be858046f7a7/compiler/sigmatch.nim#L1059-L1061)
maybe for this reason).
Now we mark `tyAnything` return types for routines as `tfRetType` [as
done for other meta return
types](https://github.com/nim-lang/Nim/blob/18b5fb256d4647efa6a64df451d37129d36e96f3/compiler/semtypes.nim#L1451),
and ignore bindings to `tyAnything` + `tfRetType` types in `semtypinst`.
On top of this, we reset the type relation in `paramTypesMatch` only
after creating the instantiation (instead of trusting
`isInferred`/`isInferredConvertible` before creating the instantiation),
using the same mechanism that `isBothMetaConvertible` uses.
This fixes the issues as well as making the disabled t15386_2 test
introduced in #21065 work. As seen in the changes for the other tests,
the error messages give an obscure `proc (a: GenericParam): auto` now,
but it does give the correct error that the overload doesn't match
instead of matching the overload pre-emptively and expecting a specific
return type.
tsugar had to be changed due to #16906, which is the problem where
`void` is not inferred in the case where `result` was never touched.
|
| |
|
|
|
| |
fixes https://github.com/nim-lang/Nim/issues/9381
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Close #17509
Current knowledge:
- delaying cache fixes the issue
- changing return of `if inst.len < key.len:` in `searchInstTypes` to
`continue` fixes the issue. With return the broken types are also cached
over and over
Related issues are completely unaffected as of now, so there must be
something deeper.
I am also still trying to find the true cause, so feel free to ignore
for now
---------
Co-authored-by: SirOlaf <>
|
|
|
|
|
|
|
|
|
|
| |
Move `symFromType` and `symNodeFromType` from `sem`, and `isSelf` and
`makeTypeDesc` from `concepts` into `semdata`.
`makeTypeDesc` was moved out from semdata [when the `concepts` module
was
added](https://github.com/nim-lang/Nim/commit/6278b5d89af38e90aa30cfc4c217a2f4b1323339),
so its old position might have been intended. If not, `isSelf` can also
go in `ast`.
|
|
|
|
|
|
|
| |
reverts #22642, reopens #22639, closes #22646, refs #22650, refs
https://github.com/alaviss/union/issues/51, refs #22652
The fallout is too much from #22642, we can come back to it if we can
account for all the affected code.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
fixes #22639
A `tyGenericInst` has its last son as the instantiated body of the
original generic type. However this type keeps its original `sym` field
from the original generic types, which means the sym's type is
uninstantiated. This causes problems in the implementation of `getType`,
where it uses the `sym` fields of types to represent them in AST, the
relevant example for the issue being
[here](https://github.com/nim-lang/Nim/blob/d13aab50cf465a7f2edf9c37a4fa30e128892e72/compiler/vmdeps.nim#L191)
called from
[here](https://github.com/nim-lang/Nim/blob/d13aab50cf465a7f2edf9c37a4fa30e128892e72/compiler/vmdeps.nim#L143).
To fix this, create a new symbol from the original symbol for the
instantiated body during the creation of `tyGenericInst`s with the
appropriate type. Normally `replaceTypeVarsS` would be used for this,
but here it seems to cause some recursion issue (immediately gives an
error like "cannot instantiate HSlice[T, U]"), so we directly set the
symbol's type to the instantiated type.
Avoiding recursion means we also cannot use `replaceTypeVarsN` for the
symbol AST, and the symbol not having any AST crashes the implementation
of `getType` again
[here](https://github.com/nim-lang/Nim/blob/d13aab50cf465a7f2edf9c37a4fa30e128892e72/compiler/vmdeps.nim#L167),
so the symbol AST is set to the original generic type AST for now which
is what it was before anyway.
Not sure about this because not sure why the recursion issue is
happening, putting it at the end of the proc doesn't help either. Also
not sure if the `cl.owner != nil and s.owner != cl.owner` condition from
`replaceTypeVarsS` is relevant here. This might also break some code if
it depended on the original generic type symbol being given.
|
|
|
| |
Ping @narimiran please backport to the 2.0 line.
|
|
|
|
|
|
|
|
|
|
|
| |
* unpublic the sons field of PType
* tiny fixes
* fixes an omittance
* fixes IC
* fixes
|
| |
|
| |
|
|
|
|
|
| |
(#20683)
* fix #18823 Passing Natural to bitops.BitsRange[T] parameter in generic proc is compile error
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* wip; use strictdefs for compiler
* checkpoint
* complete the chores
* more fixes
* first phase cleanup
* Update compiler/bitsets.nim
* cleanup
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* sacrifice "tgenericshardcases" for working statics
* legacy switch for CI, maybe experimental later
* convert to experimental
* apparently untyped needs the experimental switch
* try special case call semcheck
* try fix
* fix compilation
* final cleanup, not experimental, make `when` work
* remove last needed use of untyped
* fix unused warning in test
* remove untyped feature
|
|
|
|
|
|
|
|
|
|
|
| |
(#21667)
* refactoring in preparation for better, simpler name mangling that works with IC flawlessly
* use new disamb field
* see if this makes tests green
* make tests green again
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
| |
compiler" (#21028)
Revert "fixes #20883; Unspecified generic on default value segfaults the compiler (#20917)"
This reverts commit 10b6e4f5b4a119a8fa42f82a24ae7e4b08b2c103.
|
|
|
|
|
| |
(#20917)
test CI
|
|
|
|
|
| |
has been generated by the compiler (#20377)
Fixes #20348
|
| |
|
| |
|
|
|
|
|
| |
* fixed #18841
* Added test
|
| |
|
| |
|
| |
|
| |
|
|
|
|
| |
* ORC: improvements
* ORC: fix .acyclic annotation for ref objects
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* fixes #15210 [backport:1.2]
* make tests green
* make ordinal work
* makes Swapable test compile
* make Indexable example work
* concepts: 'self' is now 'Self'
* concepts: make Dictionary example compile
* document the new concept implementation
* concepts: make typeDesc work properly
* concepts: allow documentation comments (d'oh)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* basic stability improvements; refs nimsuggest
* fixed dot operator recursive loop & macro suggest
* hacky fix for run away dot operator sem check
Committing this mostly to make the issue more clear. Perhaps get better
feedback.
* semExprWithType seems like a better place to check
* fixed error messages const case expressions
* Clean-up test
* stopped the dot operator madness
No longer get infinite recursion when seming broken code with a dot
operator macro like in jsffi.
Co-authored-by: Araq <rumpf_a@web.de>
|
|
|
|
|
|
|
|
| |
* removed dead code
* we need even more laziness for the generic caches
* make it bootstrap on older Nims
* wrote more deserialization code
* IC: replay required methods information
|
|
|
|
|
|
|
|
|
|
|
| |
* IC: dead code elimination pass
* preparations for a different codegen strategy
* added documentation to the newly written code
* IC: backend code
* IC: backend adjustments
* optimized the compiler a bit
* IC: yet another massive refactoring
* fixes regressions
* cleanups
|
|
|
|
|
|
|
|
|
|
|
| |
* code cleanups
* refactorings for IC
* more refactorings for IC
* IC: attach the 'nil' type to its module
* IC: refactorings and improvements
* IC: progress
* IC: more serialization fixes
* IC: embarrassing omission
* code cleanups
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* reworked ID handling
* the packed AST now has its own ID mechanism
* basic serialization code works
* extract rodfiles to its own module
* rodfiles: store and compare configs
* rodfiles: store dependencies
* store config at the end
* precise dependency tracking
* dependency tracking for rodfiles
* completed loading of PSym, PType, etc
* removed dead code
* bugfix: do not realloc seqs when taking addr into an element
* make IC opt-in for now
* makes tcompilerapi green again
* final cleanups
Co-authored-by: Andy Davidoff <github@andy.disruptek.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* refactoring: idents don't need inheritance
* refactoring: adding an IdGenerator (part 1)
* refactoring: adding an IdGenerator (part 2)
* refactoring: adding an IdGenerator (part 3)
* refactoring: adding an IdGenerator (part 4)
* refactoring: adding an IdGenerator (part 5)
* refactoring: adding an IdGenerator (part 5)
* IdGenerator must be a ref type; hello world works again
* make bootstrapping work again
* progress: add back the 'exactReplica' ideas
* added back the missing exactReplica hacks
* make tcompilerapi work again
* make important packages green
* attempt to fix the build for 32 bit machines (probably need a better solution here)
|
|
|
|
|
|
|
|
|
| |
* Expand hoisted default params in sem
Introduce ast.newTree{I,IT}
Add test for default params in procs
* Cleanup
* Simplify hoist transformation and expand test
|