summary refs log tree commit diff stats
path: root/lib
Commit message (Expand)AuthorAgeFilesLines
* Add sym owner to macros (#8253)cooldome2018-09-031-0/+6
* fix items for cstring for the JS target; makes tests green againAraq2018-09-031-4/+11
* document usage of marshal.to; fixes #3150Araq2018-09-031-0/+11
* deprecate system.onRaise; fixes #1652Araq2018-09-031-1/+4
* fixes #8847Araq2018-09-031-1/+1
* Exports dom.Style (#8444)Dominik Picheta2018-09-011-1/+1
* strutils: don't deprecate escape/unescape, too much code uses itAraq2018-08-311-6/+2
* Constant folding for integer casts (#8095)LemonBoy2018-08-311-1/+1
* Update html elements to current html spec (#8791)Nathan Cahill2018-08-311-50/+241
* system/excpt: nil is no longer vaild for seqs (#8825)alaviss2018-08-311-1/+1
* merged #8624 manually; fixes #8442; closes #8575Araq2018-08-311-2/+4
* times.nim: minor code cleanupAraq2018-08-311-3/+2
* fixes a parseopt regression (#8820)Andreas Rumpf2018-08-301-2/+5
* introduce precise string '[]', '[]=' accessors; fixes #8049 (#8817)Andreas Rumpf2018-08-301-0/+9
* fixes #8768 properlyAraq2018-08-303-17/+18
* unidecode module: change the default to: embed resource file into the applica...Araq2018-08-301-10/+10
* fixes #8768Araq2018-08-303-430/+430
* fix tests/coroutines/texceptions.nim (#8810)Timothee Cour2018-08-301-1/+6
* Allow Nimble to override the ``task`` template in nimscript. (#8798)Dominik Picheta2018-08-281-18/+18
* Allow `hint` and `warning` to specify its loc info (#8771)LemonBoy2018-08-281-2/+2
* Net module fixes (#8597)Dominik Picheta2018-08-281-17/+16
* make parseopt work with DLLs on UnixAraq2018-08-281-7/+8
* make parsopt compile under --taintMode:onAraq2018-08-281-6/+6
* parseopt: keep the seq of arguments as given; fixes various command line pars...Araq2018-08-281-34/+75
* Add escapeJsonUnquoted for json escaped strings without quotes (#8785)hlaaf2018-08-271-4/+16
* Update html attrs to current html specNathan Cahill2018-08-261-4/+12
* [ospaths] simplify getConfigDir and introduce normalizePathEnd to make (#8680)Timothee Cour2018-08-261-4/+50
* Deprecate xlen() for strings and seqs (#8782)awr12018-08-261-2/+7
* doAssert, assert now print full path of failing line on error (#8555)Timothee Cour2018-08-253-16/+27
* Process timers before and after `select`. Fixes flaky #7758 test. (#8750)Dominik Picheta2018-08-251-19/+24
* fixes #8739; allow --hint:foo:on --warning:bar:off (#8757)Timothee Cour2018-08-251-2/+2
* Add interpreting event parser proc to pegs module. (#8075)gemath2018-08-241-211/+519
* Don't assume utcOffset == +0 for old dates on Windows (#8744)Oscar Nihlgård2018-08-231-0/+11
* Don't skip poll() when no handles are present. (#8727)Dominik Picheta2018-08-231-74/+72
* make ospaths compile; fixes ospaths.getConfigDir for PosixAndreas Rumpf2018-08-231-3/+5
* fixes merge conflictAraq2018-08-235-1486/+1487
|\
| * Decrease source code size in `htmlparser` and add one check (#8690)Tim2018-08-231-1461/+1465
| * Fixes #8719 (onFailedAssert now works for doAssert) (#8731)awr12018-08-231-8/+8
| * Cleanup ttimes (#8714)Oscar Nihlgård2018-08-221-7/+3
| * fixes 8594 (#8721)cooldome2018-08-221-1/+1
| * Fixes #8716. (#8717)Dominik Picheta2018-08-221-1/+0
| * Fixes ropes regressions due to the not-nil strings (#8687)Dmitry Atamanov2018-08-201-9/+10
| * exploit nil seqs for performance (#8688)Andreas Rumpf2018-08-202-5/+1
* | make highlite.nim compile againAraq2018-08-231-1/+1
* | make sequtils compileAraq2018-08-221-1/+0
* | make more tests green; system.repr does not produce 'nil' for strings and seq...Araq2018-08-221-3/+6
* | make more things compile without isNilAraq2018-08-221-1/+1
* | make tio test green againAraq2018-08-221-3/+7
* | even more strict isNil handling for strings/seqs in order to detect bugsAraq2018-08-2218-173/+125
* | make tests green againAraq2018-08-212-4/+2
ef='#n561'>561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
#
#
#           The Nim Compiler
#        (c) Copyright 2013 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

# this module contains routines for accessing and iterating over types

import
  intsets, ast, astalgo, trees, msgs, strutils, platform, renderer, options,
  lineinfos, int128

type
  TPreferedDesc* = enum
    preferName, # default
    preferDesc, # probably should become what preferResolved is
    preferExported,
    preferModuleInfo, # fully qualified
    preferGenericArg,
    preferTypeName,
    preferResolved, # fully resolved symbols
    preferMixed, # show symbol + resolved symbols if it differs, eg: seq[cint{int32}, float]

proc typeToString*(typ: PType; prefer: TPreferedDesc = preferName): string
template `$`*(typ: PType): string = typeToString(typ)

proc base*(t: PType): PType =
  result = t.sons[0]

# ------------------- type iterator: ----------------------------------------
type
  TTypeIter* = proc (t: PType, closure: RootRef): bool {.nimcall.} # true if iteration should stop
  TTypeMutator* = proc (t: PType, closure: RootRef): PType {.nimcall.} # copy t and mutate it
  TTypePredicate* = proc (t: PType): bool {.nimcall.}

proc iterOverType*(t: PType, iter: TTypeIter, closure: RootRef): bool
  # Returns result of `iter`.
proc mutateType*(t: PType, iter: TTypeMutator, closure: RootRef): PType
  # Returns result of `iter`.

type
  TParamsEquality* = enum     # they are equal, but their
                              # identifiers or their return
                              # type differ (i.e. they cannot be
                              # overloaded)
                              # this used to provide better error messages
    paramsNotEqual,           # parameters are not equal
    paramsEqual,              # parameters are equal
    paramsIncompatible

proc equalParams*(a, b: PNode): TParamsEquality
  # returns whether the parameter lists of the procs a, b are exactly the same

const
  # TODO: Remove tyTypeDesc from each abstractX and (where necessary)
  # replace with typedescX
  abstractPtrs* = {tyVar, tyPtr, tyRef, tyGenericInst, tyDistinct, tyOrdinal,
                   tyTypeDesc, tyAlias, tyInferred, tySink, tyLent, tyOwned}
  abstractVar* = {tyVar, tyGenericInst, tyDistinct, tyOrdinal, tyTypeDesc,
                  tyAlias, tyInferred, tySink, tyLent, tyOwned}
  abstractRange* = {tyGenericInst, tyRange, tyDistinct, tyOrdinal, tyTypeDesc,
                    tyAlias, tyInferred, tySink, tyOwned}
  abstractVarRange* = {tyGenericInst, tyRange, tyVar, tyDistinct, tyOrdinal,
                       tyTypeDesc, tyAlias, tyInferred, tySink, tyOwned}
  abstractInst* = {tyGenericInst, tyDistinct, tyOrdinal, tyTypeDesc, tyAlias,
                   tyInferred, tySink, tyOwned}
  abstractInstOwned* = abstractInst + {tyOwned}
  skipPtrs* = {tyVar, tyPtr, tyRef, tyGenericInst, tyTypeDesc, tyAlias,
               tyInferred, tySink, tyLent, tyOwned}
  # typedescX is used if we're sure tyTypeDesc should be included (or skipped)
  typedescPtrs* = abstractPtrs + {tyTypeDesc}
  typedescInst* = abstractInst + {tyTypeDesc, tyOwned}

proc invalidGenericInst*(f: PType): bool =
  result = f.kind == tyGenericInst and lastSon(f) == nil

proc isPureObject*(typ: PType): bool =
  var t = typ
  while t.kind == tyObject and t.sons[0] != nil:
    t = t.sons[0].skipTypes(skipPtrs)
  result = t.sym != nil and sfPure in t.sym.flags

proc isUnsigned*(t: PType): bool =
  t.skipTypes(abstractInst).kind in {tyChar, tyUInt..tyUInt64}

proc getOrdValue*(n: PNode; onError = high(Int128)): Int128 =
  case n.kind
  of nkCharLit, nkUIntLit..nkUInt64Lit:
    # XXX: enable this assert
    #assert n.typ == nil or isUnsigned(n.typ), $n.typ
    toInt128(cast[uint64](n.intVal))
  of nkIntLit..nkInt64Lit:
    # XXX: enable this assert
    #assert n.typ == nil or not isUnsigned(n.typ), $n.typ.kind
    toInt128(n.intVal)
  of nkNilLit:
    int128.Zero
  of nkHiddenStdConv: getOrdValue(n.sons[1], onError)
  else:
    # XXX: The idea behind the introduction of int128 was to finally
    # have all calculations numerically far away from any
    # overflows. This command just introduces such overflows and
    # should therefore really be revisited.
    onError

proc getOrdValue64*(n: PNode): BiggestInt {.deprecated: "use getOrdvalue".} =
  case n.kind
  of nkCharLit..nkUInt64Lit: n.intVal
  of nkNilLit: 0
  of nkHiddenStdConv: getOrdValue64(n.sons[1])
  else: high(BiggestInt)

proc getFloatValue*(n: PNode): BiggestFloat =
  case n.kind
  of nkFloatLiterals: n.floatVal
  of nkHiddenStdConv: getFloatValue(n.sons[1])
  else: NaN

proc isIntLit*(t: PType): bool {.inline.} =
  result = t.kind == tyInt and t.n != nil and t.n.kind == nkIntLit

proc isFloatLit*(t: PType): bool {.inline.} =
  result = t.kind == tyFloat and t.n != nil and t.n.kind == nkFloatLit

proc getProcHeader*(conf: ConfigRef; sym: PSym; prefer: TPreferedDesc = preferName; getDeclarationPath = true): string =
  assert sym != nil
  # consider using `skipGenericOwner` to avoid fun2.fun2 when fun2 is generic
  result = sym.owner.name.s & '.' & sym.name.s
  if sym.kind in routineKinds:
    result.add '('
    var n = sym.typ.n
    for i in 1 ..< len(n):
      let p = n.sons[i]
      if p.kind == nkSym:
        add(result, p.sym.name.s)
        add(result, ": ")
        add(result, typeToString(p.sym.typ, prefer))
        if i != len(n)-1: add(result, ", ")
      else:
        result.add renderTree(p)
    add(result, ')')
    if n.sons[0].typ != nil:
      result.add(": " & typeToString(n.sons[0].typ, prefer))
  if getDeclarationPath:
    result.add " [declared in "
    result.add(conf$sym.info)
    result.add "]"

proc elemType*(t: PType): PType =
  assert(t != nil)
  case t.kind
  of tyGenericInst, tyDistinct, tyAlias, tySink: result = elemType(lastSon(t))
  of tyArray: result = t.sons[1]
  of tyError: result = t
  else: result = t.lastSon
  assert(result != nil)

proc enumHasHoles*(t: PType): bool =
  var b = t.skipTypes({tyRange, tyGenericInst, tyAlias, tySink})
  result = b.kind == tyEnum and tfEnumHasHoles in b.flags

proc isOrdinalType*(t: PType, allowEnumWithHoles: bool = false): bool =
  assert(t != nil)
  const
    baseKinds = {tyChar,tyInt..tyInt64,tyUInt..tyUInt64,tyBool,tyEnum}
    parentKinds = {tyRange, tyOrdinal, tyGenericInst, tyAlias, tySink, tyDistinct}
  result = (t.kind in baseKinds and (not t.enumHasHoles or allowEnumWithHoles)) or
    (t.kind in parentKinds and isOrdinalType(t.lastSon, allowEnumWithHoles))

proc iterOverTypeAux(marker: var IntSet, t: PType, iter: TTypeIter,
                     closure: RootRef): bool
proc iterOverNode(marker: var IntSet, n: PNode, iter: TTypeIter,
                  closure: RootRef): bool =
  if n != nil:
    case n.kind
    of nkNone..nkNilLit:
      # a leaf
      result = iterOverTypeAux(marker, n.typ, iter, closure)
    else:
      for i in 0 ..< len(n):
        result = iterOverNode(marker, n.sons[i], iter, closure)
        if result: return

proc iterOverTypeAux(marker: var IntSet, t: PType, iter: TTypeIter,
                     closure: RootRef): bool =
  result = false
  if t == nil: return
  result = iter(t, closure)
  if result: return
  if not containsOrIncl(marker, t.id):
    case t.kind
    of tyGenericInst, tyGenericBody, tyAlias, tySink, tyInferred:
      result = iterOverTypeAux(marker, lastSon(t), iter, closure)
    else:
      for i in 0 ..< len(t):
        result = iterOverTypeAux(marker, t.sons[i], iter, closure)
        if result: return
      if t.n != nil and t.kind != tyProc: result = iterOverNode(marker, t.n, iter, closure)

proc iterOverType(t: PType, iter: TTypeIter, closure: RootRef): bool =
  var marker = initIntSet()
  result = iterOverTypeAux(marker, t, iter, closure)

proc searchTypeForAux(t: PType, predicate: TTypePredicate,
                      marker: var IntSet): bool

proc searchTypeNodeForAux(n: PNode, p: TTypePredicate,
                          marker: var IntSet): bool =
  result = false
  case n.kind
  of nkRecList:
    for i in 0 ..< len(n):
      result = searchTypeNodeForAux(n.sons[i], p, marker)
      if result: return
  of nkRecCase:
    assert(n.sons[0].kind == nkSym)
    result = searchTypeNodeForAux(n.sons[0], p, marker)
    if result: return
    for i in 1 ..< len(n):
      case n.sons[i].kind
      of nkOfBranch, nkElse:
        result = searchTypeNodeForAux(lastSon(n.sons[i]), p, marker)
        if result: return
      else: discard
  of nkSym:
    result = searchTypeForAux(n.sym.typ, p, marker)
  else: discard

proc searchTypeForAux(t: PType, predicate: TTypePredicate,
                      marker: var IntSet): bool =
  # iterates over VALUE types!
  result = false
  if t == nil: return
  if containsOrIncl(marker, t.id): return
  result = predicate(t)
  if result: return
  case t.kind
  of tyObject:
    if t.sons[0] != nil:
      result = searchTypeForAux(t.sons[0].skipTypes(skipPtrs), predicate, marker)
    if not result: result = searchTypeNodeForAux(t.n, predicate, marker)
  of tyGenericInst, tyDistinct, tyAlias, tySink:
    result = searchTypeForAux(lastSon(t), predicate, marker)
  of tyArray, tySet, tyTuple:
    for i in 0 ..< len(t):
      result = searchTypeForAux(t.sons[i], predicate, marker)
      if result: return
  else:
    discard

proc searchTypeFor(t: PType, predicate: TTypePredicate): bool =
  var marker = initIntSet()
  result = searchTypeForAux(t, predicate, marker)

proc isObjectPredicate(t: PType): bool =
  result = t.kind == tyObject

proc containsObject*(t: PType): bool =
  result = searchTypeFor(t, isObjectPredicate)

proc isObjectWithTypeFieldPredicate(t: PType): bool =
  result = t.kind == tyObject and t.sons[0] == nil and
      not (t.sym != nil and {sfPure, sfInfixCall} * t.sym.flags != {}) and
      tfFinal notin t.flags

type
  TTypeFieldResult* = enum
    frNone,                   # type has no object type field
    frHeader,                 # type has an object type field only in the header
    frEmbedded                # type has an object type field somewhere embedded

proc analyseObjectWithTypeFieldAux(t: PType,
                                   marker: var IntSet): TTypeFieldResult =
  var res: TTypeFieldResult
  result = frNone
  if t == nil: return
  case t.kind
  of tyObject:
    if t.n != nil:
      if searchTypeNodeForAux(t.n, isObjectWithTypeFieldPredicate, marker):
        return frEmbedded
    for i in 0 ..< len(t):
      var x = t.sons[i]
      if x != nil: x = x.skipTypes(skipPtrs)
      res = analyseObjectWithTypeFieldAux(x, marker)
      if res == frEmbedded:
        return frEmbedded
      if res == frHeader: result = frHeader
    if result == frNone:
      if isObjectWithTypeFieldPredicate(t): result = frHeader
  of tyGenericInst, tyDistinct, tyAlias, tySink:
    result = analyseObjectWithTypeFieldAux(lastSon(t), marker)
  of tyArray, tyTuple:
    for i in 0 ..< len(t):
      res = analyseObjectWithTypeFieldAux(t.sons[i], marker)
      if res != frNone:
        return frEmbedded
  else:
    discard

proc analyseObjectWithTypeField*(t: PType): TTypeFieldResult =
  # this does a complex analysis whether a call to ``objectInit`` needs to be
  # made or initializing of the type field suffices or if there is no type field
  # at all in this type.
  var marker = initIntSet()
  result = analyseObjectWithTypeFieldAux(t, marker)

proc isGCRef(t: PType): bool =
  result = t.kind in GcTypeKinds or
    (t.kind == tyProc and t.callConv == ccClosure)
  if result and t.kind in {tyString, tySequence} and tfHasAsgn in t.flags:
    result = false

proc containsGarbageCollectedRef*(typ: PType): bool =
  # returns true if typ contains a reference, sequence or string (all the
  # things that are garbage-collected)
  result = searchTypeFor(typ, isGCRef)

proc isTyRef(t: PType): bool =
  result = t.kind == tyRef or (t.kind == tyProc and t.callConv == ccClosure)

proc containsTyRef*(typ: PType): bool =
  # returns true if typ contains a 'ref'
  result = searchTypeFor(typ, isTyRef)

proc isHiddenPointer(t: PType): bool =
  result = t.kind in {tyString, tySequence}

proc containsHiddenPointer*(typ: PType): bool =
  # returns true if typ contains a string, table or sequence (all the things
  # that need to be copied deeply)
  result = searchTypeFor(typ, isHiddenPointer)

proc canFormAcycleAux(marker: var IntSet, typ: PType, startId: int): bool
proc canFormAcycleNode(marker: var IntSet, n: PNode, startId: int): bool =
  result = false
  if n != nil:
    result = canFormAcycleAux(marker, n.typ, startId)
    if not result:
      case n.kind
      of nkNone..nkNilLit:
        discard
      else:
        for i in 0 ..< len(n):
          result = canFormAcycleNode(marker, n.sons[i], startId)
          if result: return

proc canFormAcycleAux(marker: var IntSet, typ: PType, startId: int): bool =
  result = false
  if typ == nil: return
  var t = skipTypes(typ, abstractInst+{tyOwned}-{tyTypeDesc})
  case t.kind
  of tyTuple, tyObject, tyRef, tySequence, tyArray, tyOpenArray, tyVarargs:
    if not containsOrIncl(marker, t.id):
      for i in 0 ..< len(t):
        result = canFormAcycleAux(marker, t.sons[i], startId)
        if result: return
      if t.n != nil: result = canFormAcycleNode(marker, t.n, startId)
    else:
      result = t.id == startId
    # Inheritance can introduce cyclic types, however this is not relevant
    # as the type that is passed to 'new' is statically known!
    # er but we use it also for the write barrier ...
    if t.kind == tyObject and tfFinal notin t.flags:
      # damn inheritance may introduce cycles:
      result = true
  of tyProc: result = typ.callConv == ccClosure
  else: discard

proc isFinal*(t: PType): bool =
  var t = t.skipTypes(abstractInst)
  result = t.kind != tyObject or tfFinal in t.flags

proc canFormAcycle*(typ: PType): bool =
  var marker = initIntSet()
  result = canFormAcycleAux(marker, typ, typ.id)

proc mutateTypeAux(marker: var IntSet, t: PType, iter: TTypeMutator,
                   closure: RootRef): PType
proc mutateNode(marker: var IntSet, n: PNode, iter: TTypeMutator,
                closure: RootRef): PNode =
  result = nil
  if n != nil:
    result = copyNode(n)
    result.typ = mutateTypeAux(marker, n.typ, iter, closure)
    case n.kind
    of nkNone..nkNilLit:
      # a leaf
      discard
    else:
      for i in 0 ..< len(n):
        addSon(result, mutateNode(marker, n.sons[i], iter, closure))

proc mutateTypeAux(marker: var IntSet, t: PType, iter: TTypeMutator,
                   closure: RootRef): PType =
  result = nil
  if t == nil: return
  result = iter(t, closure)
  if not containsOrIncl(marker, t.id):
    for i in 0 ..< len(t):
      result.sons[i] = mutateTypeAux(marker, result.sons[i], iter, closure)
    if t.n != nil: result.n = mutateNode(marker, t.n, iter, closure)
  assert(result != nil)

proc mutateType(t: PType, iter: TTypeMutator, closure: RootRef): PType =
  var marker = initIntSet()
  result = mutateTypeAux(marker, t, iter, closure)

proc valueToString(a: PNode): string =
  case a.kind
  of nkCharLit..nkUInt64Lit: result = $a.intVal
  of nkFloatLit..nkFloat128Lit: result = $a.floatVal
  of nkStrLit..nkTripleStrLit: result = a.strVal
  else: result = "<invalid value>"

proc rangeToStr(n: PNode): string =
  assert(n.kind == nkRange)
  result = valueToString(n.sons[0]) & ".." & valueToString(n.sons[1])

const
  typeToStr: array[TTypeKind, string] = ["None", "bool", "char", "empty",
    "Alias", "typeof(nil)", "untyped", "typed", "typeDesc",
    "GenericInvocation", "GenericBody", "GenericInst", "GenericParam",
    "distinct $1", "enum", "ordinal[$1]", "array[$1, $2]", "object", "tuple",
    "set[$1]", "range[$1]", "ptr ", "ref ", "var ", "seq[$1]", "proc",
    "pointer", "OpenArray[$1]", "string", "cstring", "Forward",
    "int", "int8", "int16", "int32", "int64",
    "float", "float32", "float64", "float128",
    "uint", "uint8", "uint16", "uint32", "uint64",
    "owned", "sink",
    "lent ", "varargs[$1]", "UncheckedArray[$1]", "Error Type",
    "BuiltInTypeClass", "UserTypeClass",
    "UserTypeClassInst", "CompositeTypeClass", "inferred",
    "and", "or", "not", "any", "static", "TypeFromExpr", "FieldAccessor",
    "void"]

const preferToResolveSymbols = {preferName, preferTypeName, preferModuleInfo,
  preferGenericArg, preferResolved, preferMixed}

template bindConcreteTypeToUserTypeClass*(tc, concrete: PType) =
  tc.sons.add concrete
  tc.flags.incl tfResolved

# TODO: It would be a good idea to kill the special state of a resolved
# concept by switching to tyAlias within the instantiated procs.
# Currently, tyAlias is always skipped with lastSon, which means that
# we can store information about the matched concept in another position.
# Then builtInFieldAccess can be modified to properly read the derived
# consts and types stored within the concept.
template isResolvedUserTypeClass*(t: PType): bool =
  tfResolved in t.flags

proc addTypeFlags(name: var string, typ: PType) {.inline.} =
  if tfNotNil in typ.flags: name.add(" not nil")

proc typeToString(typ: PType, prefer: TPreferedDesc = preferName): string =
  let preferToplevel = prefer
  proc getPrefer(prefer: TPreferedDesc): TPreferedDesc =
    if preferToplevel in {preferResolved, preferMixed}:
      preferToplevel # sticky option
    else:
      prefer

  proc typeToString(typ: PType, prefer: TPreferedDesc = preferName): string =
    let prefer = getPrefer(prefer)
    let t = typ
    result = ""
    if t == nil: return
    if prefer in preferToResolveSymbols and t.sym != nil and
         sfAnon notin t.sym.flags and t.kind != tySequence:
      if t.kind == tyInt and isIntLit(t):
        result = t.sym.name.s & " literal(" & $t.n.intVal & ")"
      elif t.kind == tyAlias and t.sons[0].kind != tyAlias:
        result = typeToString(t.sons[0])
      elif prefer in {preferResolved, preferMixed}:
        case t.kind
        of IntegralTypes + {tyFloat..tyFloat128} + {tyString, tyCString}:
          result = typeToStr[t.kind]
        of tyGenericBody:
          result = typeToString(t.lastSon)
        of tyCompositeTypeClass:
          # avoids showing `A[any]` in `proc fun(a: A)` with `A = object[T]`
          result = typeToString(t.lastSon.lastSon)
        else:
          result = t.sym.name.s
        if prefer == preferMixed and result != t.sym.name.s:
          result = t.sym.name.s & "{" & result & "}"
      elif prefer in {preferName, preferTypeName} or t.sym.owner.isNil:
        # note: should probably be: {preferName, preferTypeName, preferGenericArg}
        result = t.sym.name.s
        if t.kind == tyGenericParam and t.len > 0:
          result.add ": "
          var first = true
          for son in t.sons:
            if not first: result.add " or "
            result.add son.typeToString
            first = false
      else:
        result = t.sym.owner.name.s & '.' & t.sym.name.s
      result.addTypeFlags(t)
      return
    case t.kind
    of tyInt:
      if not isIntLit(t) or prefer == preferExported:
        result = typeToStr[t.kind]
      else:
        if prefer == preferGenericArg:
          result = $t.n.intVal
        else:
          result = "int literal(" & $t.n.intVal & ")"
    of tyGenericInst, tyGenericInvocation:
      result = typeToString(t.sons[0]) & '['
      for i in 1 ..< len(t)-ord(t.kind != tyGenericInvocation):
        if i > 1: add(result, ", ")
        add(result, typeToString(t.sons[i], preferGenericArg))
      add(result, ']')
    of tyGenericBody:
      result = typeToString(t.lastSon) & '['
      for i in 0 .. len(t)-2:
        if i > 0: add(result, ", ")
        add(result, typeToString(t.sons[i], preferTypeName))
      add(result, ']')
    of tyTypeDesc:
      if t.sons[0].kind == tyNone: result = "typedesc"
      else: result = "type " & typeToString(t.sons[0])
    of tyStatic:
      if prefer == preferGenericArg and t.n != nil:
        result = t.n.renderTree
      else:
        result = "static[" & (if t.len > 0: typeToString(t.sons[0]) else: "") & "]"
        if t.n != nil: result.add "(" & renderTree(t.n) & ")"
    of tyUserTypeClass:
      if t.sym != nil and t.sym.owner != nil:
        if t.isResolvedUserTypeClass: return typeToString(t.lastSon)
        return t.sym.owner.name.s
      else:
        result = "<invalid tyUserTypeClass>"
    of tyBuiltInTypeClass:
      result = case t.base.kind:
        of tyVar: "var"
        of tyRef: "ref"
        of tyPtr: "ptr"
        of tySequence: "seq"
        of tyArray: "array"
        of tySet: "set"
        of tyRange: "range"
        of tyDistinct: "distinct"
        of tyProc: "proc"
        of tyObject: "object"
        of tyTuple: "tuple"
        of tyOpenArray: "openArray"
        else: typeToStr[t.base.kind]
    of tyInferred:
      let concrete = t.previouslyInferred
      if concrete != nil: result = typeToString(concrete)
      else: result = "inferred[" & typeToString(t.base) & "]"
    of tyUserTypeClassInst:
      let body = t.base
      result = body.sym.name.s & "["
      for i in 1 .. len(t) - 2:
        if i > 1: add(result, ", ")
        add(result, typeToString(t.sons[i]))
      result.add "]"
    of tyAnd:
      for i, son in t.sons:
        result.add(typeToString(son))
        if i < t.sons.high:
          result.add(" and ")
    of tyOr:
      for i, son in t.sons:
        result.add(typeToString(son))
        if i < t.sons.high:
          result.add(" or ")
    of tyNot:
      result = "not " & typeToString(t.sons[0])
    of tyUntyped:
      #internalAssert t.len == 0
      result = "untyped"
    of tyFromExpr:
      if t.n == nil:
        result = "unknown"
      else:
        result = "type(" & renderTree(t.n) & ")"
    of tyArray:
      if t.sons[0].kind == tyRange:
        result = "array[" & rangeToStr(t.sons[0].n) & ", " &
            typeToString(t.sons[1]) & ']'
      else:
        result = "array[" & typeToString(t.sons[0]) & ", " &
            typeToString(t.sons[1]) & ']'
    of tyUncheckedArray:
      result = "UncheckedArray[" & typeToString(t.sons[0]) & ']'
    of tySequence:
      result = "seq[" & typeToString(t.sons[0]) & ']'
    of tyOpt:
      result = "opt[" & typeToString(t.sons[0]) & ']'
    of tyOrdinal:
      result = "ordinal[" & typeToString(t.sons[0]) & ']'
    of tySet:
      result = "set[" & typeToString(t.sons[0]) & ']'
    of tyOpenArray:
      result = "openArray[" & typeToString(t.sons[0]) & ']'
    of tyDistinct:
      result = "distinct " & typeToString(t.sons[0],
        if prefer == preferModuleInfo: preferModuleInfo else: preferTypeName)
    of tyTuple:
      # we iterate over t.sons here, because t.n may be nil
      if t.n != nil:
        result = "tuple["
        assert(len(t.n) == len(t))
        for i in 0 ..< len(t.n):
          assert(t.n.sons[i].kind == nkSym)
          add(result, t.n.sons[i].sym.name.s & ": " & typeToString(t.sons[i]))
          if i < len(t.n) - 1: add(result, ", ")
        add(result, ']')
      elif len(t) == 0:
        result = "tuple[]"
      else:
        if prefer == preferTypeName: result = "("
        else: result = "tuple of ("
        for i in 0 ..< len(t):
          add(result, typeToString(t.sons[i]))
          if i < len(t) - 1: add(result, ", ")
        add(result, ')')
    of tyPtr, tyRef, tyVar, tyLent:
      result = typeToStr[t.kind]
      if t.len >= 2:
        setLen(result, result.len-1)
        result.add '['
        for i in 0 ..< len(t):
          add(result, typeToString(t.sons[i]))
          if i < len(t) - 1: add(result, ", ")
        result.add ']'
      else:
        result.add typeToString(t.sons[0])
    of tyRange:
      result = "range "
      if t.n != nil and t.n.kind == nkRange:
        result.add rangeToStr(t.n)
      if prefer != preferExported:
        result.add("(" & typeToString(t.sons[0]) & ")")
    of tyProc:
      result = if tfIterator in t.flags: "iterator "
               elif t.owner != nil:
                 case t.owner.kind
                 of skTemplate: "template "
                 of skMacro: "macro "
                 of skConverter: "converter "
                 else: "proc "
              else:
                "proc "
      if tfUnresolved in t.flags: result.add "[*missing parameters*]"
      result.add "("
      for i in 1 ..< len(t):
        if t.n != nil and i < t.n.len and t.n[i].kind == nkSym:
          add(result, t.n[i].sym.name.s)
          add(result, ": ")
        add(result, typeToString(t.sons[i]))
        if i < len(t) - 1: add(result, ", ")
      add(result, ')')
      if t.len > 0 and t.sons[0] != nil: add(result, ": " & typeToString(t.sons[0]))
      var prag = if t.callConv == ccDefault: "" else: CallingConvToStr[t.callConv]
      if tfNoSideEffect in t.flags:
        addSep(prag)
        add(prag, "noSideEffect")
      if tfThread in t.flags:
        addSep(prag)
        add(prag, "gcsafe")
      if t.lockLevel.ord != UnspecifiedLockLevel.ord:
        addSep(prag)
        add(prag, "locks: " & $t.lockLevel)
      if len(prag) != 0: add(result, "{." & prag & ".}")
    of tyVarargs:
      result = typeToStr[t.kind] % typeToString(t.sons[0])
    of tySink:
      result = "sink " & typeToString(t.sons[0])
    of tyOwned:
      result = "owned " & typeToString(t.sons[0])
    else:
      result = typeToStr[t.kind]
    result.addTypeFlags(t)
  result = typeToString(typ, prefer)

proc firstOrd*(conf: ConfigRef; t: PType): Int128 =
  case t.kind
  of tyBool, tyChar, tySequence, tyOpenArray, tyString, tyVarargs, tyProxy:
    result = Zero
  of tySet, tyVar: result = firstOrd(conf, t.sons[0])
  of tyArray: result = firstOrd(conf, t.sons[0])
  of tyRange:
    assert(t.n != nil)        # range directly given:
    assert(t.n.kind == nkRange)
    result = getOrdValue(t.n.sons[0])
  of tyInt:
    if conf != nil and conf.target.intSize == 4:
      result = toInt128(-2147483648)
    else:
      result = toInt128(0x8000000000000000'i64)
  of tyInt8: result =  toInt128(-128)
  of tyInt16: result = toInt128(-32768)
  of tyInt32: result = toInt128(-2147483648)
  of tyInt64: result = toInt128(0x8000000000000000'i64)
  of tyUInt..tyUInt64: result = Zero
  of tyEnum:
    # if basetype <> nil then return firstOrd of basetype
    if len(t) > 0 and t.sons[0] != nil:
      result = firstOrd(conf, t.sons[0])
    else:
      assert(t.n.sons[0].kind == nkSym)
      result = toInt128(t.n.sons[0].sym.position)
  of tyGenericInst, tyDistinct, tyTypeDesc, tyAlias, tySink,
     tyStatic, tyInferred, tyUserTypeClasses:
    result = firstOrd(conf, lastSon(t))
  of tyOrdinal:
    if t.len > 0: result = firstOrd(conf, lastSon(t))
    else: internalError(conf, "invalid kind for firstOrd(" & $t.kind & ')')
  of tyUncheckedArray:
    result = Zero
  else:
    internalError(conf, "invalid kind for firstOrd(" & $t.kind & ')')
    result = Zero

proc firstFloat*(t: PType): BiggestFloat =
  case t.kind
  of tyFloat..tyFloat128: -Inf
  of tyRange:
    assert(t.n != nil)        # range directly given:
    assert(t.n.kind == nkRange)
    getFloatValue(t.n.sons[0])
  of tyVar: firstFloat(t.sons[0])
  of tyGenericInst, tyDistinct, tyTypeDesc, tyAlias, tySink,
     tyStatic, tyInferred, tyUserTypeClasses:
    firstFloat(lastSon(t))
  else:
    internalError(newPartialConfigRef(), "invalid kind for firstFloat(" & $t.kind & ')')
    NaN

proc lastOrd*(conf: ConfigRef; t: PType): Int128 =
  case t.kind
  of tyBool: result = toInt128(1'u)
  of tyChar: result = toInt128(255'u)
  of tySet, tyVar: result = lastOrd(conf, t.sons[0])
  of tyArray: result = lastOrd(conf, t.sons[0])
  of tyRange:
    assert(t.n != nil)        # range directly given:
    assert(t.n.kind == nkRange)
    result = getOrdValue(t.n.sons[1])
  of tyInt:
    if conf != nil and conf.target.intSize == 4: result = toInt128(0x7FFFFFFF)
    else: result = toInt128(0x7FFFFFFFFFFFFFFF'u64)
  of tyInt8: result = toInt128(0x0000007F)
  of tyInt16: result = toInt128(0x00007FFF)
  of tyInt32: result = toInt128(0x7FFFFFFF)
  of tyInt64: result = toInt128(0x7FFFFFFFFFFFFFFF'u64)
  of tyUInt:
    if conf != nil and conf.target.intSize == 4:
      result = toInt128(0xFFFFFFFF)
    else:
      result = toInt128(0xFFFFFFFFFFFFFFFF'u64)
  of tyUInt8: result = toInt128(0xFF)
  of tyUInt16: result = toInt128(0xFFFF)
  of tyUInt32: result = toInt128(0xFFFFFFFF)
  of tyUInt64:
    result = toInt128(0xFFFFFFFFFFFFFFFF'u64)
  of tyEnum:
    assert(t.n.sons[len(t.n) - 1].kind == nkSym)
    result = toInt128(t.n.sons[len(t.n) - 1].sym.position)
  of tyGenericInst, tyDistinct, tyTypeDesc, tyAlias, tySink,
     tyStatic, tyInferred, tyUserTypeClasses:
    result = lastOrd(conf, lastSon(t))
  of tyProxy: result = Zero
  of tyOrdinal:
    if t.len > 0: result = lastOrd(conf, lastSon(t))
    else: internalError(conf, "invalid kind for lastOrd(" & $t.kind & ')')
  of tyUncheckedArray:
    result = Zero
  else:
    internalError(conf, "invalid kind for lastOrd(" & $t.kind & ')')
    result = Zero

proc lastFloat*(t: PType): BiggestFloat =
  case t.kind
  of tyFloat..tyFloat128: Inf
  of tyVar: lastFloat(t.sons[0])
  of tyRange:
    assert(t.n != nil)        # range directly given:
    assert(t.n.kind == nkRange)
    getFloatValue(t.n.sons[1])
  of tyGenericInst, tyDistinct, tyTypeDesc, tyAlias, tySink,
     tyStatic, tyInferred, tyUserTypeClasses:
    lastFloat(lastSon(t))
  else:
    internalError(newPartialConfigRef(), "invalid kind for lastFloat(" & $t.kind & ')')
    NaN

proc floatRangeCheck*(x: BiggestFloat, t: PType): bool =
  case t.kind
  # This needs to be special cased since NaN is never
  # part of firstFloat(t) .. lastFloat(t)
  of tyFloat..tyFloat128:
    true
  of tyRange:
    x in firstFloat(t) .. lastFloat(t)
  of tyVar:
    floatRangeCheck(x, t.sons[0])
  of tyGenericInst, tyDistinct, tyTypeDesc, tyAlias, tySink,
     tyStatic, tyInferred, tyUserTypeClasses:
    floatRangeCheck(x, lastSon(t))
  else:
    internalError(newPartialConfigRef(), "invalid kind for floatRangeCheck:" & $t.kind)
    false

proc lengthOrd*(conf: ConfigRef; t: PType): Int128 =
  if t.skipTypes(tyUserTypeClasses).kind == tyDistinct:
    result = lengthOrd(conf, t.sons[0])
  else:
    let last = lastOrd(conf, t)
    let first = firstOrd(conf, t)
    result = last - first + One

# -------------- type equality -----------------------------------------------

type
  TDistinctCompare* = enum ## how distinct types are to be compared
    dcEq,                  ## a and b should be the same type
    dcEqIgnoreDistinct,    ## compare symmetrically: (distinct a) == b, a == b
                           ## or a == (distinct b)
    dcEqOrDistinctOf       ## a equals b or a is distinct of b

  TTypeCmpFlag* = enum
    IgnoreTupleFields      ## NOTE: Only set this flag for backends!
    IgnoreCC
    ExactTypeDescValues
    ExactGenericParams
    ExactConstraints
    ExactGcSafety
    AllowCommonBase

  TTypeCmpFlags* = set[TTypeCmpFlag]

  TSameTypeClosure = object
    cmp: TDistinctCompare
    recCheck: int
    flags: TTypeCmpFlags
    s: seq[tuple[a,b: int]] # seq for a set as it's hopefully faster
                            # (few elements expected)

proc initSameTypeClosure: TSameTypeClosure =
  # we do the initialization lazily for performance (avoids memory allocations)
  discard

proc containsOrIncl(c: var TSameTypeClosure, a, b: PType): bool =
  result = c.s.len > 0 and c.s.contains((a.id, b.id))
  if not result:
    when not defined(nimNoNilSeqs):
      if isNil(c.s): c.s = @[]
    c.s.add((a.id, b.id))

proc sameTypeAux(x, y: PType, c: var TSameTypeClosure): bool
proc sameTypeOrNilAux(a, b: PType, c: var TSameTypeClosure): bool =
  if a == b:
    result = true
  else:
    if a == nil or b == nil: result = false
    else: result = sameTypeAux(a, b, c)

proc sameType*(a, b: PType, flags: TTypeCmpFlags = {}): bool =
  var c = initSameTypeClosure()
  c.flags = flags
  result = sameTypeAux(a, b, c)

proc sameTypeOrNil*(a, b: PType, flags: TTypeCmpFlags = {}): bool =
  if a == b:
    result = true
  else:
    if a == nil or b == nil: result = false
    else: result = sameType(a, b, flags)

proc equalParam(a, b: PSym): TParamsEquality =
  if sameTypeOrNil(a.typ, b.typ, {ExactTypeDescValues}) and
      exprStructuralEquivalent(a.constraint, b.constraint):
    if a.ast == b.ast:
      result = paramsEqual
    elif a.ast != nil and b.ast != nil:
      if exprStructuralEquivalent(a.ast, b.ast): result = paramsEqual
      else: result = paramsIncompatible
    elif a.ast != nil:
      result = paramsEqual
    elif b.ast != nil:
      result = paramsIncompatible
  else:
    result = paramsNotEqual

proc sameConstraints(a, b: PNode): bool =
  if isNil(a) and isNil(b): return true
  if a.len != b.len: return false
  for i in 1 ..< a.len:
    if not exprStructuralEquivalent(a[i].sym.constraint,
                                    b[i].sym.constraint):
      return false
  return true

proc equalParams(a, b: PNode): TParamsEquality =
  result = paramsEqual
  var length = len(a)
  if length != len(b):
    result = paramsNotEqual
  else:
    for i in 1 ..< length:
      var m = a.sons[i].sym
      var n = b.sons[i].sym
      assert((m.kind == skParam) and (n.kind == skParam))
      case equalParam(m, n)
      of paramsNotEqual:
        return paramsNotEqual
      of paramsEqual:
        discard
      of paramsIncompatible:
        result = paramsIncompatible
      if (m.name.id != n.name.id):
        # BUGFIX
        return paramsNotEqual # paramsIncompatible;
      # continue traversal! If not equal, we can return immediately; else
      # it stays incompatible
    if not sameTypeOrNil(a.typ, b.typ, {ExactTypeDescValues}):
      if (a.typ == nil) or (b.typ == nil):
        result = paramsNotEqual # one proc has a result, the other not is OK
      else:
        result = paramsIncompatible # overloading by different
                                    # result types does not work

proc sameTuple(a, b: PType, c: var TSameTypeClosure): bool =
  # two tuples are equivalent iff the names, types and positions are the same;
  # however, both types may not have any field names (t.n may be nil) which
  # complicates the matter a bit.
  if len(a) == len(b):
    result = true
    for i in 0 ..< len(a):
      var x = a.sons[i]
      var y = b.sons[i]
      if IgnoreTupleFields in c.flags:
        x = skipTypes(x, {tyRange, tyGenericInst, tyAlias})
        y = skipTypes(y, {tyRange, tyGenericInst, tyAlias})

      result = sameTypeAux(x, y, c)
      if not result: return
    if a.n != nil and b.n != nil and IgnoreTupleFields notin c.flags:
      for i in 0 ..< len(a.n):
        # check field names:
        if a.n.sons[i].kind == nkSym and b.n.sons[i].kind == nkSym:
          var x = a.n.sons[i].sym
          var y = b.n.sons[i].sym
          result = x.name.id == y.name.id
          if not result: break
        else:
          return false
    elif a.n != b.n and (a.n == nil or b.n == nil) and IgnoreTupleFields notin c.flags:
      result = false

template ifFastObjectTypeCheckFailed(a, b: PType, body: untyped) =
  if tfFromGeneric notin a.flags + b.flags:
    # fast case: id comparison suffices:
    result = a.id == b.id
  else:
    # expensive structural equality test; however due to the way generic and
    # objects work, if one of the types does **not** contain tfFromGeneric,
    # they cannot be equal. The check ``a.sym.id == b.sym.id`` checks
    # for the same origin and is essential because we don't want "pure"
    # structural type equivalence:
    #
    # type
    #   TA[T] = object
    #   TB[T] = object
    # --> TA[int] != TB[int]
    if tfFromGeneric in a.flags * b.flags and a.sym.id == b.sym.id:
      # ok, we need the expensive structural check
      body

proc sameObjectTypes*(a, b: PType): bool =
  # specialized for efficiency (sigmatch uses it)
  ifFastObjectTypeCheckFailed(a, b):
    var c = initSameTypeClosure()
    result = sameTypeAux(a, b, c)

proc sameDistinctTypes*(a, b: PType): bool {.inline.} =
  result = sameObjectTypes(a, b)

proc sameEnumTypes*(a, b: PType): bool {.inline.} =
  result = a.id == b.id

proc sameObjectTree(a, b: PNode, c: var TSameTypeClosure): bool =
  if a == b:
    result = true
  elif a != nil and b != nil and a.kind == b.kind:
    var x = a.typ
    var y = b.typ
    if IgnoreTupleFields in c.flags:
      if x != nil: x = skipTypes(x, {tyRange, tyGenericInst, tyAlias})
      if y != nil: y = skipTypes(y, {tyRange, tyGenericInst, tyAlias})
    if sameTypeOrNilAux(x, y, c):
      case a.kind
      of nkSym:
        # same symbol as string is enough:
        result = a.sym.name.id == b.sym.name.id
      of nkIdent: result = a.ident.id == b.ident.id
      of nkCharLit..nkInt64Lit: result = a.intVal == b.intVal
      of nkFloatLit..nkFloat64Lit: result = a.floatVal == b.floatVal
      of nkStrLit..nkTripleStrLit: result = a.strVal == b.strVal
      of nkEmpty, nkNilLit, nkType: result = true
      else:
        if len(a) == len(b):
          for i in 0 ..< len(a):
            if not sameObjectTree(a.sons[i], b.sons[i], c): return
          result = true

proc sameObjectStructures(a, b: PType, c: var TSameTypeClosure): bool =
  # check base types:
  if len(a) != len(b): return
  for i in 0 ..< len(a):
    if not sameTypeOrNilAux(a.sons[i], b.sons[i], c): return
  if not sameObjectTree(a.n, b.n, c): return
  result = true

proc sameChildrenAux(a, b: PType, c: var TSameTypeClosure): bool =
  if len(a) != len(b): return false
  result = true
  for i in 0 ..< len(a):
    result = sameTypeOrNilAux(a.sons[i], b.sons[i], c)
    if not result: return

proc isGenericAlias*(t: PType): bool =
  return t.kind == tyGenericInst and t.lastSon.kind == tyGenericInst

proc skipGenericAlias*(t: PType): PType =
  return if t.isGenericAlias: t.lastSon else: t

proc sameFlags*(a, b: PType): bool {.inline.} =
  result = eqTypeFlags*a.flags == eqTypeFlags*b.flags

proc sameTypeAux(x, y: PType, c: var TSameTypeClosure): bool =
  template cycleCheck() =
    # believe it or not, the direct check for ``containsOrIncl(c, a, b)``
    # increases bootstrapping time from 2.4s to 3.3s on my laptop! So we cheat
    # again: Since the recursion check is only to not get caught in an endless
    # recursion, we use a counter and only if it's value is over some
    # threshold we perform the expensive exact cycle check:
    if c.recCheck < 3:
      inc c.recCheck
    else:
      if containsOrIncl(c, a, b): return true

  if x == y: return true
  var a = skipTypes(x, {tyGenericInst, tyAlias})
  var b = skipTypes(y, {tyGenericInst, tyAlias})
  assert(a != nil)
  assert(b != nil)
  if a.kind != b.kind:
    case c.cmp
    of dcEq: return false
    of dcEqIgnoreDistinct:
      while a.kind == tyDistinct: a = a.sons[0]
      while b.kind == tyDistinct: b = b.sons[0]
      if a.kind != b.kind: return false
    of dcEqOrDistinctOf:
      while a.kind == tyDistinct: a = a.sons[0]
      if a.kind != b.kind: return false

  # this is required by tunique_type but makes no sense really:
  if x.kind == tyGenericInst and IgnoreTupleFields notin c.flags:
    let
      lhs = x.skipGenericAlias
      rhs = y.skipGenericAlias
    if rhs.kind != tyGenericInst or lhs.base != rhs.base:
      return false
    for i in 1 .. lhs.len - 2:
      let ff = rhs.sons[i]
      let aa = lhs.sons[i]
      if not sameTypeAux(ff, aa, c): return false
    return true

  case a.kind
  of tyEmpty, tyChar, tyBool, tyNil, tyPointer, tyString, tyCString,
     tyInt..tyUInt64, tyTyped, tyUntyped, tyVoid:
    result = sameFlags(a, b)
  of tyStatic, tyFromExpr:
    result = exprStructuralEquivalent(a.n, b.n) and sameFlags(a, b)
    if result and a.len == b.len and a.len == 1:
      cycleCheck()
      result = sameTypeAux(a.sons[0], b.sons[0], c)
  of tyObject:
    ifFastObjectTypeCheckFailed(a, b):
      cycleCheck()
      result = sameObjectStructures(a, b, c) and sameFlags(a, b)
  of tyDistinct:
    cycleCheck()
    if c.cmp == dcEq:
      if sameFlags(a, b):
        ifFastObjectTypeCheckFailed(a, b):
          result = sameTypeAux(a.sons[0], b.sons[0], c)
    else:
      result = sameTypeAux(a.sons[0], b.sons[0], c) and sameFlags(a, b)
  of tyEnum, tyForward:
    # XXX generic enums do not make much sense, but require structural checking
    result = a.id == b.id and sameFlags(a, b)
  of tyError:
    result = b.kind == tyError
  of tyTuple:
    cycleCheck()
    result = sameTuple(a, b, c) and sameFlags(a, b)
  of tyTypeDesc:
    if c.cmp == dcEqIgnoreDistinct: result = false
    elif ExactTypeDescValues in c.flags:
      cycleCheck()
      result = sameChildrenAux(x, y, c) and sameFlags(a, b)
    else:
      result = sameFlags(a, b)
  of tyGenericParam:
    result = sameChildrenAux(a, b, c) and sameFlags(a, b)
    if result and {ExactGenericParams, ExactTypeDescValues} * c.flags != {}:
      result = a.sym.position == b.sym.position
  of tyBuiltInTypeClass:
    assert a.len == 1
    assert a[0].len == 0
    assert b.len == 1
    assert b[0].len == 0
    result = a[0].kind == b[0].kind
  of tyGenericInvocation, tyGenericBody, tySequence, tyOpenArray, tySet, tyRef,
     tyPtr, tyVar, tyLent, tySink, tyUncheckedArray, tyArray, tyProc, tyVarargs,
     tyOrdinal, tyCompositeTypeClass, tyUserTypeClass, tyUserTypeClassInst,
     tyAnd, tyOr, tyNot, tyAnything, tyOpt, tyOwned:
    cycleCheck()
    if a.kind == tyUserTypeClass and a.n != nil: return a.n == b.n
    result = sameChildrenAux(a, b, c)
    if result:
      if IgnoreTupleFields in c.flags:
        result = a.flags * {tfVarIsPtr} == b.flags * {tfVarIsPtr}
      else:
        result = sameFlags(a, b)
    if result and ExactGcSafety in c.flags:
      result = a.flags * {tfThread} == b.flags * {tfThread}
    if result and a.kind == tyProc:
      result = ((IgnoreCC in c.flags) or a.callConv == b.callConv) and
               ((ExactConstraints notin c.flags) or sameConstraints(a.n, b.n))
  of tyRange:
    cycleCheck()
    result = sameTypeOrNilAux(a.sons[0], b.sons[0], c) and
        sameValue(a.n.sons[0], b.n.sons[0]) and
        sameValue(a.n.sons[1], b.n.sons[1])
  of tyGenericInst, tyAlias, tyInferred:
    cycleCheck()
    result = sameTypeAux(a.lastSon, b.lastSon, c)
  of tyNone: result = false

proc sameBackendType*(x, y: PType): bool =
  var c = initSameTypeClosure()
  c.flags.incl IgnoreTupleFields
  c.cmp = dcEqIgnoreDistinct
  result = sameTypeAux(x, y, c)

proc compareTypes*(x, y: PType,
                   cmp: TDistinctCompare = dcEq,
                   flags: TTypeCmpFlags = {}): bool =
  ## compares two type for equality (modulo type distinction)
  var c = initSameTypeClosure()
  c.cmp = cmp
  c.flags = flags
  if x == y: result = true
  elif x.isNil or y.isNil: result = false
  else: result = sameTypeAux(x, y, c)

proc inheritanceDiff*(a, b: PType): int =
  # | returns: 0 iff `a` == `b`
  # | returns: -x iff `a` is the x'th direct superclass of `b`
  # | returns: +x iff `a` is the x'th direct subclass of `b`
  # | returns: `maxint` iff `a` and `b` are not compatible at all
  if a == b or a.kind == tyError or b.kind == tyError: return 0
  assert a.kind in {tyObject} + skipPtrs
  assert b.kind in {tyObject} + skipPtrs
  var x = a
  result = 0
  while x != nil:
    x = skipTypes(x, skipPtrs)
    if sameObjectTypes(x, b): return
    x = x.sons[0]
    dec(result)
  var y = b
  result = 0
  while y != nil:
    y = skipTypes(y, skipPtrs)
    if sameObjectTypes(y, a): return
    y = y.sons[0]
    inc(result)
  result = high(int)

proc commonSuperclass*(a, b: PType): PType =
  # quick check: are they the same?
  if sameObjectTypes(a, b): return a

  # simple algorithm: we store all ancestors of 'a' in a ID-set and walk 'b'
  # up until the ID is found:
  assert a.kind == tyObject
  assert b.kind == tyObject
  var x = a
  var ancestors = initIntSet()
  while x != nil:
    x = skipTypes(x, skipPtrs)
    ancestors.incl(x.id)
    x = x.sons[0]
  var y = b
  while y != nil:
    var t = y # bug #7818, save type before skip
    y = skipTypes(y, skipPtrs)
    if ancestors.contains(y.id):
      # bug #7818, defer the previous skipTypes
      if t.kind != tyGenericInst: t = y
      return t
    y = y.sons[0]

type
  TTypeAllowedFlag* = enum
    taField,
    taHeap,
    taConcept,
    taIsOpenArray,
    taNoUntyped

  TTypeAllowedFlags* = set[TTypeAllowedFlag]

proc typeAllowedAux(marker: var IntSet, typ: PType, kind: TSymKind,
                    flags: TTypeAllowedFlags = {}): PType

proc typeAllowedNode(marker: var IntSet, n: PNode, kind: TSymKind,
                     flags: TTypeAllowedFlags = {}): PType =
  if n != nil:
    result = typeAllowedAux(marker, n.typ, kind, flags)
    if result == nil:
      case n.kind
      of nkNone..nkNilLit:
        discard
      else:
        #if n.kind == nkRecCase and kind in {skProc, skFunc, skConst}:
        #  return n[0].typ
        for i in 0 ..< len(n):
          let it = n.sons[i]
          result = typeAllowedNode(marker, it, kind, flags)
          if result != nil: break

proc matchType*(a: PType, pattern: openArray[tuple[k:TTypeKind, i:int]],
                last: TTypeKind): bool =
  var a = a
  for k, i in pattern.items:
    if a.kind != k: return false
    if i >= a.len or a.sons[i] == nil: return false
    a = a.sons[i]
  result = a.kind == last

proc typeAllowedAux(marker: var IntSet, typ: PType, kind: TSymKind,
                    flags: TTypeAllowedFlags = {}): PType =
  assert(kind in {skVar, skLet, skConst, skProc, skFunc, skParam, skResult})
  # if we have already checked the type, return true, because we stop the
  # evaluation if something is wrong:
  result = nil
  if typ == nil: return nil
  if containsOrIncl(marker, typ.id): return nil
  var t = skipTypes(typ, abstractInst-{tyTypeDesc})
  case t.kind
  of tyVar, tyLent:
    if kind in {skProc, skFunc, skConst}:
      result = t
    elif t.kind == tyLent and kind != skResult:
      result = t
    else:
      var t2 = skipTypes(t.sons[0], abstractInst-{tyTypeDesc})
      case t2.kind
      of tyVar, tyLent:
        if taHeap notin flags: result = t2 # ``var var`` is illegal on the heap
      of tyOpenArray:
        if kind != skParam or taIsOpenArray in flags: result = t
        else: result = typeAllowedAux(marker, t2.sons[0], kind, flags+{taIsOpenArray})
      of tyUncheckedArray:
        if kind != skParam: result = t
        else: result = typeAllowedAux(marker, t2.sons[0], kind, flags)
      else:
        if kind notin {skParam, skResult}: result = t
        else: result = typeAllowedAux(marker, t2, kind, flags)
  of tyProc:
    if isInlineIterator(typ) and kind in {skVar, skLet, skConst, skParam, skResult}:
      # only closure iterators my be assigned to anything.
      result = t
    let f = if kind in {skProc, skFunc}: flags+{taNoUntyped} else: flags
    for i in 1 ..< len(t):
      if result != nil: break
      result = typeAllowedAux(marker, t.sons[i], skParam, f-{taIsOpenArray})
    if result.isNil and t.sons[0] != nil:
      result = typeAllowedAux(marker, t.sons[0], skResult, flags)
  of tyTypeDesc:
    # XXX: This is still a horrible idea...
    result = nil
  of tyUntyped, tyTyped:
    if kind notin {skParam, skResult} or taNoUntyped in flags: result = t
  of tyStatic:
    if kind notin {skParam}: result = t
  of tyVoid:
    if taField notin flags: result = t
  of tyTypeClasses:
    if tfGenericTypeParam in t.flags or taConcept in flags: #or taField notin flags:
      discard
    elif t.isResolvedUserTypeClass:
      result = typeAllowedAux(marker, t.lastSon, kind, flags)
    elif kind notin {skParam, skResult}:
      result = t
  of tyGenericBody, tyGenericParam, tyGenericInvocation,
     tyNone, tyForward, tyFromExpr:
    result = t
  of tyNil:
    if kind != skConst and kind != skParam: result = t
  of tyString, tyBool, tyChar, tyEnum, tyInt..tyUInt64, tyCString, tyPointer:
    result = nil
  of tyOrdinal:
    if kind != skParam: result = t
  of tyGenericInst, tyDistinct, tyAlias, tyInferred:
    result = typeAllowedAux(marker, lastSon(t), kind, flags)
  of tyRange:
    if skipTypes(t.sons[0], abstractInst-{tyTypeDesc}).kind notin
      {tyChar, tyEnum, tyInt..tyFloat128, tyInt..tyUInt64}: result = t
  of tyOpenArray, tyVarargs, tySink:
    # you cannot nest openArrays/sinks/etc.
    if kind != skParam or taIsOpenArray in flags:
      result = t
    else:
      result = typeAllowedAux(marker, t.sons[0], kind, flags+{taIsOpenArray})
  of tyUncheckedArray:
    if kind != skParam and taHeap notin flags:
      result = t
    else:
      result = typeAllowedAux(marker, lastSon(t), kind, flags-{taHeap})
  of tySequence, tyOpt:
    if t.sons[0].kind != tyEmpty:
      result = typeAllowedAux(marker, t.sons[0], kind, flags+{taHeap})
    elif kind in {skVar, skLet}:
      result = t.sons[0]
  of tyArray:
    if t.sons[1].kind != tyEmpty:
      result = typeAllowedAux(marker, t.sons[1], kind, flags)
    elif kind in {skVar, skLet}:
      result = t.sons[1]
  of tyRef:
    if kind == skConst: result = t
    else: result = typeAllowedAux(marker, t.lastSon, kind, flags+{taHeap})
  of tyPtr:
    result = typeAllowedAux(marker, t.lastSon, kind, flags+{taHeap})
  of tySet:
    for i in 0 ..< len(t):
      result = typeAllowedAux(marker, t.sons[i], kind, flags)
      if result != nil: break
  of tyObject, tyTuple:
    if kind in {skProc, skFunc, skConst} and
        t.kind == tyObject and t.sons[0] != nil:
      result = t
    else:
      let flags = flags+{taField}
      for i in 0 ..< len(t):
        result = typeAllowedAux(marker, t.sons[i], kind, flags)
        if result != nil: break
      if result.isNil and t.n != nil:
        result = typeAllowedNode(marker, t.n, kind, flags)
  of tyEmpty:
    if kind in {skVar, skLet}: result = t
  of tyProxy:
    # for now same as error node; we say it's a valid type as it should
    # prevent cascading errors:
    result = nil
  of tyOwned:
    if t.len == 1 and t.sons[0].skipTypes(abstractInst).kind in {tyRef, tyPtr, tyProc}:
      result = typeAllowedAux(marker, t.lastSon, kind, flags+{taHeap})
    else:
      result = t

proc typeAllowed*(t: PType, kind: TSymKind; flags: TTypeAllowedFlags = {}): PType =
  # returns 'nil' on success and otherwise the part of the type that is
  # wrong!
  var marker = initIntSet()
  result = typeAllowedAux(marker, t, kind, flags)

include sizealignoffsetimpl

proc computeSize*(conf: ConfigRef; typ: PType): BiggestInt =
  computeSizeAlign(conf, typ)
  result = typ.size

proc getReturnType*(s: PSym): PType =
  # Obtains the return type of a iterator/proc/macro/template
  assert s.kind in skProcKinds
  result = s.typ.sons[0]

proc getAlign*(conf: ConfigRef; typ: PType): BiggestInt =
  computeSizeAlign(conf, typ)
  result = typ.align

proc getSize*(conf: ConfigRef; typ: PType): BiggestInt =
  computeSizeAlign(conf, typ)
  result = typ.size

proc containsGenericTypeIter(t: PType, closure: RootRef): bool =
  case t.kind
  of tyStatic:
    return t.n == nil
  of tyTypeDesc:
    if t.base.kind == tyNone: return true
    if containsGenericTypeIter(t.base, closure): return true
    return false
  of GenericTypes + tyTypeClasses + {tyFromExpr}:
    return true
  else:
    return false

proc containsGenericType*(t: PType): bool =
  result = iterOverType(t, containsGenericTypeIter, nil)

proc baseOfDistinct*(t: PType): PType =
  if t.kind == tyDistinct:
    result = t.sons[0]
  else:
    result = copyType(t, t.owner, false)
    var parent: PType = nil
    var it = result
    while it.kind in {tyPtr, tyRef, tyOwned}:
      parent = it
      it = it.lastSon
    if it.kind == tyDistinct and parent != nil:
      parent.sons[0] = it.sons[0]

proc safeInheritanceDiff*(a, b: PType): int =
  # same as inheritanceDiff but checks for tyError:
  if a.kind == tyError or b.kind == tyError:
    result = -1
  else:
    result = inheritanceDiff(a.skipTypes(skipPtrs), b.skipTypes(skipPtrs))

proc compatibleEffectsAux(se, re: PNode): bool =
  if re.isNil: return false
  for r in items(re):
    block search:
      for s in items(se):
        if safeInheritanceDiff(r.typ, s.typ) <= 0:
          break search
      return false
  result = true

type
  EffectsCompat* = enum
    efCompat
    efRaisesDiffer
    efRaisesUnknown
    efTagsDiffer
    efTagsUnknown
    efLockLevelsDiffer

proc compatibleEffects*(formal, actual: PType): EffectsCompat =
  # for proc type compatibility checking:
  assert formal.kind == tyProc and actual.kind == tyProc
  if formal.n.sons[0].kind != nkEffectList or
     actual.n.sons[0].kind != nkEffectList:
    return efTagsUnknown

  var spec = formal.n.sons[0]
  if spec.len != 0:
    var real = actual.n.sons[0]

    let se = spec.sons[exceptionEffects]
    # if 'se.kind == nkArgList' it is no formal type really, but a
    # computed effect and as such no spec:
    # 'r.msgHandler = if isNil(msgHandler): defaultMsgHandler else: msgHandler'
    if not isNil(se) and se.kind != nkArgList:
      # spec requires some exception or tag, but we don't know anything:
      if real.len == 0: return efRaisesUnknown
      let res = compatibleEffectsAux(se, real.sons[exceptionEffects])
      if not res: return efRaisesDiffer

    let st = spec.sons[tagEffects]
    if not isNil(st) and st.kind != nkArgList:
      # spec requires some exception or tag, but we don't know anything:
      if real.len == 0: return efTagsUnknown
      let res = compatibleEffectsAux(st, real.sons[tagEffects])
      if not res: return efTagsDiffer
  if formal.lockLevel.ord < 0 or
      actual.lockLevel.ord <= formal.lockLevel.ord:
    result = efCompat
  else:
    result = efLockLevelsDiffer

proc isCompileTimeOnly*(t: PType): bool {.inline.} =
  result = t.kind in {tyTypeDesc, tyStatic}

proc containsCompileTimeOnly*(t: PType): bool =
  if isCompileTimeOnly(t): return true
  for i in 0 ..< t.len:
    if t.sons[i] != nil and isCompileTimeOnly(t.sons[i]):
      return true
  return false

type
  OrdinalType* = enum
    NoneLike, IntLike, FloatLike

proc classify*(t: PType): OrdinalType =
  ## for convenient type checking:
  if t == nil:
    result = NoneLike
  else:
    case skipTypes(t, abstractVarRange).kind
    of tyFloat..tyFloat128: result = FloatLike
    of tyInt..tyInt64, tyUInt..tyUInt64, tyBool, tyChar, tyEnum:
      result = IntLike
    else: result = NoneLike

proc skipConv*(n: PNode): PNode =
  result = n
  case n.kind
  of nkObjUpConv, nkObjDownConv, nkChckRange, nkChckRangeF, nkChckRange64:
    # only skip the conversion if it doesn't lose too important information
    # (see bug #1334)
    if n.sons[0].typ.classify == n.typ.classify:
      result = n.sons[0]
  of nkHiddenStdConv, nkHiddenSubConv, nkConv:
    if n.sons[1].typ.classify == n.typ.classify:
      result = n.sons[1]
  else: discard

proc skipHidden*(n: PNode): PNode =
  result = n
  while true:
    case result.kind
    of nkHiddenStdConv, nkHiddenSubConv:
      if result.sons[1].typ.classify == result.typ.classify:
        result = result.sons[1]
      else: break
    of nkHiddenDeref, nkHiddenAddr:
      result = result.sons[0]
    else: break

proc skipConvTakeType*(n: PNode): PNode =
  result = n.skipConv
  result.typ = n.typ

proc isEmptyContainer*(t: PType): bool =
  case t.kind
  of tyUntyped, tyNil: result = true
  of tyArray: result = t.sons[1].kind == tyEmpty
  of tySet, tySequence, tyOpenArray, tyVarargs:
    result = t.sons[0].kind == tyEmpty
  of tyGenericInst, tyAlias, tySink: result = isEmptyContainer(t.lastSon)
  else: result = false

proc takeType*(formal, arg: PType): PType =
  # param: openArray[string] = []
  # [] is an array constructor of length 0 of type string!
  if arg.kind == tyNil:
    # and not (formal.kind == tyProc and formal.callConv == ccClosure):
    result = formal
  elif formal.kind in {tyOpenArray, tyVarargs, tySequence} and
      arg.isEmptyContainer:
    let a = copyType(arg.skipTypes({tyGenericInst, tyAlias}), arg.owner, keepId=false)
    a.sons[ord(arg.kind == tyArray)] = formal.sons[0]
    result = a
  elif formal.kind in {tyTuple, tySet} and arg.kind == formal.kind:
    result = formal
  else:
    result = arg

proc skipHiddenSubConv*(n: PNode): PNode =
  if n.kind == nkHiddenSubConv:
    # param: openArray[string] = []
    # [] is an array constructor of length 0 of type string!
    let formal = n.typ
    result = n.sons[1]
    let arg = result.typ
    let dest = takeType(formal, arg)
    if dest == arg and formal.kind != tyUntyped:
      #echo n.info, " came here for ", formal.typeToString
      result = n
    else:
      result = copyTree(result)
      result.typ = dest
  else:
    result = n

proc typeMismatch*(conf: ConfigRef; info: TLineInfo, formal, actual: PType) =
  if formal.kind != tyError and actual.kind != tyError:
    let named = typeToString(formal)
    let desc = typeToString(formal, preferDesc)
    let x = if named == desc: named else: named & " = " & desc
    var msg = "type mismatch: got <" &
              typeToString(actual) & "> " &
              "but expected '" & x & "'"

    if formal.kind == tyProc and actual.kind == tyProc:
      case compatibleEffects(formal, actual)
      of efCompat: discard
      of efRaisesDiffer:
        msg.add "\n.raise effects differ"
      of efRaisesUnknown:
        msg.add "\n.raise effect is 'can raise any'"
      of efTagsDiffer:
        msg.add "\n.tag effects differ"
      of efTagsUnknown:
        msg.add "\n.tag effect is 'any tag allowed'"
      of efLockLevelsDiffer:
        msg.add "\nlock levels differ"
    localError(conf, info, msg)

proc isTupleRecursive(t: PType, cycleDetector: var IntSet): bool =
  if t == nil:
    return false
  if cycleDetector.containsOrIncl(t.id):
    return true
  case t.kind:
    of tyTuple:
      var cycleDetectorCopy: IntSet
      for i in  0..<t.len:
        assign(cycleDetectorCopy, cycleDetector)
        if isTupleRecursive(t[i], cycleDetectorCopy):
          return true
    of tyAlias, tyRef, tyPtr, tyGenericInst, tyVar, tyLent, tySink, tyArray, tyUncheckedArray, tySequence:
      return isTupleRecursive(t.lastSon, cycleDetector)
    else:
      return false

proc isTupleRecursive*(t: PType): bool =
  var cycleDetector = initIntSet()
  isTupleRecursive(t, cycleDetector)

proc isException*(t: PType): bool =
  # check if `y` is object type and it inherits from Exception
  assert(t != nil)

  var t = t.skipTypes(abstractInst)
  while t.kind == tyObject:
    if t.sym != nil and t.sym.magic == mException: return true
    if t.sons[0] == nil: break
    t = skipTypes(t.sons[0], abstractPtrs)
  return false

proc isSinkTypeForParam*(t: PType): bool =
  # a parameter like 'seq[owned T]' must not be used only once, but its
  # elements must, so we detect this case here:
  result = t.skipTypes({tyGenericInst, tyAlias}).kind in {tySink, tyOwned}
  when false:
    if isSinkType(t):
      if t.skipTypes({tyGenericInst, tyAlias}).kind in {tyArray, tyVarargs, tyOpenArray, tySequence}:
        result = false
      else:
        result = true