summary refs log tree commit diff stats
path: root/tests/generics/t6137.nim
Commit message (Collapse)AuthorAgeFilesLines
* require errormsg to be specified before file.Arne Döring2018-12-111-2/+1
|
* Tests for v1 closed generics/static issues (#8572)Mamy Ratsimbazafy2018-08-081-0/+29
* Add tests to confirm https://github.com/nim-lang/Nim/issues/7231 is fixed. * Add test for closed https://github.com/nim-lang/Nim/issues/6137 * Add test for https://github.com/nim-lang/Nim/issues/7141
60'>60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
//:: simulated x86 registers

:(before "End Types")
enum {
  EAX,
  ECX,
  EDX,
  EBX,
  ESP,
  EBP,
  ESI,
  EDI,
  NUM_INT_REGISTERS,
};
union reg {
  int32_t i;
  uint32_t u;
};
:(before "End Globals")
reg Reg[NUM_INT_REGISTERS] = { {0} };
uint32_t EIP = 0;
:(before "End Reset")
bzero(Reg, sizeof(Reg));
EIP = 0;

//:: simulated flag registers; just a subset that we care about

:(before "End Globals")
bool SF = false;  // sign flag
bool ZF = false;  // zero flag
bool OF = false;  // overflow flag
:(before "End Reset")
SF = ZF = OF = false;

//: how the flag registers are updated after each instruction

:(before "End Includes")
// beware: no side-effects in args
#define BINARY_ARITHMETIC_OP(op, arg1, arg2) { \
  /* arg1 and arg2 must be signed */ \
  int64_t tmp = arg1 op arg2; \
  arg1 = arg1 op arg2; \
  trace(2, "run") << "storing 0x" << std::hex << arg1 << end(); \
  SF = (arg1 < 0); \
  ZF = (arg1 == 0); \
  OF = (arg1 != tmp); \
}

#define BINARY_BITWISE_OP(op, arg1, arg2) { \
  /* arg1 and arg2 must be unsigned */ \
  arg1 = arg1 op arg2; \
  trace(2, "run") << "storing 0x" << std::hex << arg1 << end(); \
  SF = (arg1 >> 31); \
  ZF = (arg1 == 0); \
  OF = false; \
}

//:: simulated RAM

:(before "End Globals")
vector<uint8_t> Mem;
uint32_t End_of_program = 0;
:(before "End Reset")
Mem.resize(1024);
End_of_program = 0;

//:: core interpreter loop

:(scenario add_imm32_to_eax)
# In scenarios, programs are a series of hex bytes, each (variable-length)
# instruction on one line.
#
# x86 instructions consist of the following parts (see cheatsheet.pdf):
#   opcode        ModR/M                    SIB                   displacement    immediate
#   instruction   mod, reg, Reg/Mem bits    scale, index, base
#   1-3 bytes     0/1 byte                  0/1 byte              0/1/2/4 bytes   0/1/2/4 bytes
    05                                                                            0a 0b 0c 0d  # add 0x0d0c0b0a to EAX
# All hex bytes must be exactly 2 characters each. No '0x' prefixes.
+load: 1 -> 05
+load: 2 -> 0a
+load: 3 -> 0b
+load: 4 -> 0c
+load: 5 -> 0d
+run: add imm32 0x0d0c0b0a to reg EAX
+reg: storing 0x0d0c0b0a in reg EAX

:(code)
// helper for tests: load a program into memory from a textual representation
// of its bytes, and run it
void run(const string& text_bytes) {
  load_program(text_bytes);
  EIP = 1;  // preserve null pointer
  while (EIP < End_of_program)
    run_one_instruction();
}

// skeleton of how x86 instructions are decoded
void run_one_instruction() {
  uint8_t op=0, op2=0, op3=0;
  switch (op = next()) {
  case 0xf4:  // hlt
    EIP = End_of_program;
    break;
  // our first opcode
  case 0x05: {  // add imm32 to EAX
    int32_t arg2 = imm32();
    trace(2, "run") << "add imm32 0x" << HEXWORD << arg2 << " to reg EAX" << end();
    BINARY_ARITHMETIC_OP(+, Reg[EAX].i, arg2);
    trace(98, "reg") << "storing 0x" << HEXWORD << Reg[EAX].i << " in reg EAX" << end();
    break;
  }
  // End Single-Byte Opcodes
  case 0x0f:
    switch(op2 = next()) {
    // End Two-Byte Opcodes Starting With 0f
    default:
      cerr << "unrecognized second opcode after 0f: " << HEXBYTE << NUM(op2) << '\n';
      exit(1);
    }
    break;
  case 0xf3:
    switch(op2 = next()) {
    // End Two-Byte Opcodes Starting With f3
    case 0x0f:
      switch(op3 = next()) {
      // End Three-Byte Opcodes Starting With f3 0f
      default:
        cerr << "unrecognized third opcode after f3 0f: " << HEXBYTE << NUM(op3) << '\n';
        exit(1);
      }
      break;
    default:
      cerr << "unrecognized second opcode after f3: " << HEXBYTE << NUM(op2) << '\n';
      exit(1);
    }
    break;
  default:
    cerr << "unrecognized opcode: " << HEXBYTE << NUM(op) << '\n';
    exit(1);
  }
}

void load_program(const string& text_bytes) {
  uint32_t addr = 1;
  istringstream in(text_bytes);
  in >> std::noskipws;
  while (has_data(in)) {
    char c1 = next_hex_byte(in);
    if (c1 == '\0') break;
    if (!has_data(in)) {
      raise << "input program truncated mid-byte\n" << end();
      return;
    }
    char c2 = next_hex_byte(in);
    if (c2 == '\0') {
      raise << "input program truncated mid-byte\n" << end();
      return;
    }
    Mem.at(addr) = to_byte(c1, c2);
    trace(99, "load") << addr << " -> " << HEXBYTE << NUM(Mem.at(addr)) << end();
    addr++;
  }
  End_of_program = addr;
}

char next_hex_byte(istream& in) {
  while (has_data(in)) {
    char c = '\0';
    in >> c;
    if (c == ' ' || c == '\n') continue;
    while (c == '#') {
      while (has_data(in)) {
        in >> c;
        if (c == '\n') {
          in >> c;
          break;
        }
      }
    }
    if (c >= '0' && c <= '9') return c;
    else if (c >= 'a' && c <= 'f') return c;
    else if (c >= 'A' && c <= 'F') return tolower(c);
    // disallow any non-hex characters, including a '0x' prefix
    if (!isspace(c)) {
      raise << "invalid non-hex character '" << c << "'\n" << end();
      break;
    }
  }
  return '\0';
}

uint8_t to_byte(char hex_byte1, char hex_byte2) {
  return to_hex_num(hex_byte1)*16 + to_hex_num(hex_byte2);
}
uint8_t to_hex_num(char c) {
  if (c >= '0' && c <= '9') return c - '0';
  if (c >= 'a' && c <= 'f') return c - 'a' + 10;
  assert(false);
  return 0;
}

inline uint8_t next() {
  return Mem.at(EIP++);
}

// read a 32-bit immediate in little-endian order from the instruction stream
int32_t imm32() {
  int32_t result = next();
  result |= (next()<<8);
  result |= (next()<<16);
  result |= (next()<<24);
  return result;
}

:(before "End Includes")
#include <iomanip>
#define HEXBYTE  std::hex << std::setw(2) << std::setfill('0')
#define HEXWORD  std::hex << std::setw(8) << std::setfill('0')
// ugly that iostream doesn't print uint8_t as an integer
#define NUM(X) static_cast<int>(X)
#include <stdint.h>