summary refs log tree commit diff stats
path: root/tests/ic
Commit message (Expand)AuthorAgeFilesLines
* IC exposes typedesc implementation shenanigans (#17759)Andreas Rumpf2021-04-181-0/+15
* `import foo {.all.}` reboot (#17706)Timothee Cour2021-04-163-0/+42
* IC: added tcompiletime_counter test case (#17698)Andreas Rumpf2021-04-112-0/+39
* IC: added converter test case (#17688)Andreas Rumpf2021-04-092-0/+20
* IC: added basic test case for methods (#17679)Andreas Rumpf2021-04-092-0/+35
* added a 'koch ic' command for easier adhoc testing of IC (#17508)Andreas Rumpf2021-03-261-1/+0
* IC: green tests (#17311)Andreas Rumpf2021-03-191-1/+0
* IC: bugfixes (WIP) (#16836)Andreas Rumpf2021-02-021-0/+29
* Testament small fixes (#16788)Juan Carlos2021-01-221-28/+0
* Incremental compilation (IC): Improvements (#11881)Andreas Rumpf2019-08-082-0/+67
'n120' href='#n120'>120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
#
#
#            Nim's Runtime Library
#        (c) Copyright 2014 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

##   Constructive mathematics is naturally typed. -- Simon Thompson
## 
## Basic math routines for Nim.
## This module is available for the `JavaScript target
## <backends.html#the-javascript-target>`_.

include "system/inclrtl"
{.push debugger:off .} # the user does not want to trace a part
                       # of the standard library!

{.push checks:off, line_dir:off, stack_trace:off.}

when defined(Posix) and not defined(haiku):
  {.passl: "-lm".}
when not defined(js):
  import times

const
  PI* = 3.1415926535897932384626433 ## the circle constant PI (Ludolph's number)
  E* = 2.71828182845904523536028747 ## Euler's number

  MaxFloat64Precision* = 16 ## maximum number of meaningful digits
                            ## after the decimal point for Nim's
                            ## ``float64`` type.
  MaxFloat32Precision* = 8  ## maximum number of meaningful digits
                            ## after the decimal point for Nim's
                            ## ``float32`` type.
  MaxFloatPrecision* = MaxFloat64Precision ## maximum number of 
                                           ## meaningful digits
                                           ## after the decimal point 
                                           ## for Nim's ``float`` type.

type
  FloatClass* = enum ## describes the class a floating point value belongs to.
                     ## This is the type that is returned by `classify`.
    fcNormal,    ## value is an ordinary nonzero floating point value
    fcSubnormal, ## value is a subnormal (a very small) floating point value
    fcZero,      ## value is zero
    fcNegZero,   ## value is the negative zero
    fcNan,       ## value is Not-A-Number (NAN)
    fcInf,       ## value is positive infinity
    fcNegInf     ## value is negative infinity

proc classify*(x: float): FloatClass = 
  ## classifies a floating point value. Returns `x`'s class as specified by
  ## `FloatClass`.
  
  # JavaScript and most C compilers have no classify:
  if x == 0.0:
    if 1.0/x == Inf:
      return fcZero
    else:
      return fcNegZero
  if x*0.5 == x:
    if x > 0.0: return fcInf
    else: return fcNegInf
  if x != x: return fcNan
  return fcNormal
  # XXX: fcSubnormal is not detected!


proc binom*(n, k: int): int {.noSideEffect.} = 
  ## computes the binomial coefficient
  if k <= 0: return 1
  if 2*k > n: return binom(n, n-k)
  result = n
  for i in countup(2, k):
    result = (result * (n + 1 - i)) div i
    
proc fac*(n: int): int {.noSideEffect.} = 
  ## computes the faculty/factorial function.
  result = 1
  for i in countup(2, n):
    result = result * i

proc isPowerOfTwo*(x: int): bool {.noSideEffect.} =
  ## returns true, if `x` is a power of two, false otherwise.
  ## Zero and negative numbers are not a power of two.
  return (x != 0) and ((x and (x - 1)) == 0)

proc nextPowerOfTwo*(x: int): int {.noSideEffect.} =
  ## returns `x` rounded up to the nearest power of two.
  ## Zero and negative numbers get rounded up to 1.
  result = x - 1 
  when defined(cpu64):
    result = result or (result shr 32)
  when sizeof(int) > 16:
    result = result or (result shr 16)
  when sizeof(int) > 8:
    result = result or (result shr 8)
  result = result or (result shr 4)
  result = result or (result shr 2)
  result = result or (result shr 1)
  result += 1 + ord(x<=0)

proc countBits32*(n: int32): int {.noSideEffect.} =
  ## counts the set bits in `n`.
  var v = n
  v = v -% ((v shr 1'i32) and 0x55555555'i32)
  v = (v and 0x33333333'i32) +% ((v shr 2'i32) and 0x33333333'i32)
  result = ((v +% (v shr 4'i32) and 0xF0F0F0F'i32) *% 0x1010101'i32) shr 24'i32

proc sum*[T](x: openArray[T]): T {.noSideEffect.} = 
  ## computes the sum of the elements in `x`. 
  ## If `x` is empty, 0 is returned.
  for i in items(x): result = result + i

proc mean*(x: openArray[float]): float {.noSideEffect.} = 
  ## computes the mean of the elements in `x`. 
  ## If `x` is empty, NaN is returned.
  result = sum(x) / toFloat(len(x))

proc variance*(x: openArray[float]): float {.noSideEffect.} = 
  ## computes the variance of the elements in `x`. 
  ## If `x` is empty, NaN is returned.
  result = 0.0
  var m = mean(x)
  for i in 0 .. high(x):
    var diff = x[i] - m
    result = result + diff*diff
  result = result / toFloat(len(x))

proc random*(max: int): int {.gcsafe.}
  ## returns a random number in the range 0..max-1. The sequence of
  ## random number is always the same, unless `randomize` is called
  ## which initializes the random number generator with a "random"
  ## number, i.e. a tickcount.

proc random*(max: float): float {.gcsafe.}
  ## returns a random number in the range 0..<max. The sequence of
  ## random number is always the same, unless `randomize` is called
  ## which initializes the random number generator with a "random"
  ## number, i.e. a tickcount. This has a 16-bit resolution on windows
  ## and a 48-bit resolution on other platforms.

proc randomize*() {.gcsafe.}
  ## initializes the random number generator with a "random"
  ## number, i.e. a tickcount. Note: Does nothing for the JavaScript target,
  ## as JavaScript does not support this.
  
proc randomize*(seed: int) {.gcsafe.}
  ## initializes the random number generator with a specific seed.
  ## Note: Does nothing for the JavaScript target,
  ## as JavaScript does not support this.

when not defined(JS):
  proc sqrt*(x: float): float {.importc: "sqrt", header: "<math.h>".}
    ## computes the square root of `x`.
  
  proc ln*(x: float): float {.importc: "log", header: "<math.h>".}
    ## computes ln(x).
  proc log10*(x: float): float {.importc: "log10", header: "<math.h>".}
  proc log2*(x: float): float = return ln(x) / ln(2.0)
  proc exp*(x: float): float {.importc: "exp", header: "<math.h>".}
    ## computes e**x.
  
  proc frexp*(x: float, exponent: var int): float {.
    importc: "frexp", header: "<math.h>".}
    ## Split a number into mantissa and exponent.
    ## `frexp` calculates the mantissa m (a float greater than or equal to 0.5
    ## and less than 1) and the integer value n such that `x` (the original
    ## float value) equals m * 2**n. frexp stores n in `exponent` and returns
    ## m.
  
  proc round*(x: float): int {.importc: "lrint", header: "<math.h>".}
    ## converts a float to an int by rounding.  
  
  proc arccos*(x: float): float {.importc: "acos", header: "<math.h>".}
  proc arcsin*(x: float): float {.importc: "asin", header: "<math.h>".}
  proc arctan*(x: float): float {.importc: "atan", header: "<math.h>".}
  proc arctan2*(y, x: float): float {.importc: "atan2", header: "<math.h>".}
    ## Calculate the arc tangent of `y` / `x`.
    ## `atan2` returns the arc tangent of `y` / `x`; it produces correct
    ## results even when the resulting angle is near pi/2 or -pi/2
    ## (`x` near 0).
  
  proc cos*(x: float): float {.importc: "cos", header: "<math.h>".}
  proc cosh*(x: float): float {.importc: "cosh", header: "<math.h>".}
  proc hypot*(x, y: float): float {.importc: "hypot", header: "<math.h>".}
    ## same as ``sqrt(x*x + y*y)``.
  
  proc sinh*(x: float): float {.importc: "sinh", header: "<math.h>".}
  proc sin*(x: float): float {.importc: "sin", header: "<math.h>".}
  proc tan*(x: float): float {.importc: "tan", header: "<math.h>".}
  proc tanh*(x: float): float {.importc: "tanh", header: "<math.h>".}
  proc pow*(x, y: float): float {.importc: "pow", header: "<math.h>".}
    ## computes x to power raised of y.
    
  # C procs:
  proc gettime(dummy: ptr cint): cint {.importc: "time", header: "<time.h>".}
  proc srand(seed: cint) {.importc: "srand", header: "<stdlib.h>".}
  proc rand(): cint {.importc: "rand", header: "<stdlib.h>".}
  
  when not defined(windows):
    proc srand48(seed: clong) {.importc: "srand48", header: "<stdlib.h>".}
    proc drand48(): float {.importc: "drand48", header: "<stdlib.h>".}
    proc random(max: float): float =
      result = drand48() * max
  when defined(windows):
    proc random(max: float): float =
      # we are hardcodeing this because
      # importcing macros is extremely problematic
      # and because the value is publicly documented
      # on MSDN and very unlikely to change
      const rand_max = 32767
      result = (float(rand()) / float(rand_max)) * max
  proc randomize() =
    randomize(cast[int](epochTime()))

  proc randomize(seed: int) =
    srand(cint(seed))
    when declared(srand48): srand48(seed)
  proc random(max: int): int =
    result = int(rand()) mod max

  proc trunc*(x: float): float {.importc: "trunc", header: "<math.h>".}
  proc floor*(x: float): float {.importc: "floor", header: "<math.h>".}
  proc ceil*(x: float): float {.importc: "ceil", header: "<math.h>".}

  proc fmod*(x, y: float): float {.importc: "fmod", header: "<math.h>".}

else:
  proc mathrandom(): float {.importc: "Math.random", nodecl.}
  proc floor*(x: float): float {.importc: "Math.floor", nodecl.}
  proc ceil*(x: float): float {.importc: "Math.ceil", nodecl.}
  proc random(max: int): int =
    result = int(floor(mathrandom() * float(max)))
  proc random(max: float): float =
    result = float(mathrandom() * float(max))
  proc randomize() = discard
  proc randomize(seed: int) = discard
  
  proc sqrt*(x: float): float {.importc: "Math.sqrt", nodecl.}
  proc ln*(x: float): float {.importc: "Math.log", nodecl.}
  proc log10*(x: float): float = return ln(x) / ln(10.0)
  proc log2*(x: float): float = return ln(x) / ln(2.0)

  proc exp*(x: float): float {.importc: "Math.exp", nodecl.}
  proc round*(x: float): int {.importc: "Math.round", nodecl.}
  proc pow*(x, y: float): float {.importc: "Math.pow", nodecl.}
  
  proc frexp*(x: float, exponent: var int): float =
    if x == 0.0:
      exponent = 0
      result = 0.0
    elif x < 0.0:
      result = -frexp(-x, exponent)
    else:
      var ex = floor(log2(x))
      exponent = round(ex)
      result = x / pow(2.0, ex)

  proc arccos*(x: float): float {.importc: "Math.acos", nodecl.}
  proc arcsin*(x: float): float {.importc: "Math.asin", nodecl.}
  proc arctan*(x: float): float {.importc: "Math.atan", nodecl.}
  proc arctan2*(y, x: float): float {.importc: "Math.atan2", nodecl.}
  
  proc cos*(x: float): float {.importc: "Math.cos", nodecl.}
  proc cosh*(x: float): float = return (exp(x)+exp(-x))*0.5
  proc hypot*(x, y: float): float = return sqrt(x*x + y*y)
  proc sinh*(x: float): float = return (exp(x)-exp(-x))*0.5
  proc sin*(x: float): float {.importc: "Math.sin", nodecl.}
  proc tan*(x: float): float {.importc: "Math.tan", nodecl.}
  proc tanh*(x: float): float =
    var y = exp(2.0*x)
    return (y-1.0)/(y+1.0)

proc `mod`*(x, y: float): float =
  result = if y == 0.0: x else: x - y * (x/y).floor

proc random*[T](x: Slice[T]): T =
  ## For a slice `a .. b` returns a value in the range `a .. b-1`.
  result = random(x.b - x.a) + x.a

proc random[T](a: openArray[T]): T =
  ## returns a random element from the openarray `a`.
  result = a[random(a.low..a.len)]

type
  RunningStat* = object                 ## an accumulator for statistical data
    n*: int                             ## number of pushed data
    sum*, min*, max*, mean*: float      ## self-explaining
    oldM, oldS, newS: float

{.deprecated: [TFloatClass: FloatClass, TRunningStat: RunningStat].}

proc push*(s: var RunningStat, x: float) = 
  ## pushes a value `x` for processing
  inc(s.n)
  # See Knuth TAOCP vol 2, 3rd edition, page 232
  if s.n == 1:
    s.min = x
    s.max = x
    s.oldM = x
    s.mean = x
    s.oldS = 0.0
  else:
    if s.min > x: s.min = x
    if s.max < x: s.max = x
    s.mean = s.oldM + (x - s.oldM)/toFloat(s.n)
    s.newS = s.oldS + (x - s.oldM)*(x - s.mean)

    # set up for next iteration:
    s.oldM = s.mean
    s.oldS = s.newS
  s.sum = s.sum + x
  
proc push*(s: var RunningStat, x: int) = 
  ## pushes a value `x` for processing. `x` is simply converted to ``float``
  ## and the other push operation is called.
  push(s, toFloat(x))
  
proc variance*(s: RunningStat): float = 
  ## computes the current variance of `s`
  if s.n > 1: result = s.newS / (toFloat(s.n - 1))

proc standardDeviation*(s: RunningStat): float = 
  ## computes the current standard deviation of `s`
  result = sqrt(variance(s))

{.pop.}
{.pop.}

when isMainModule and not defined(JS):
  # Verifies random seed initialization.
  let seed = gettime(nil)
  randomize(seed)
  const SIZE = 10
  var buf : array[0..SIZE, int]
  # Fill the buffer with random values
  for i in 0..SIZE-1:
    buf[i] = random(high(int))
  # Check that the second random calls are the same for each position.
  randomize(seed)
  for i in 0..SIZE-1:
    assert buf[i] == random(high(int)), "non deterministic random seeding"
  echo "random values equal after reseeding"