summary refs log tree commit diff stats
path: root/tests/stdlib/tregex.nim
Commit message (Expand)AuthorAgeFilesLines
* require errormsg to be specified before file.Arne Döring2018-12-111-3/+0
* tests: Trim .nim files trailing whitespaceAdam Strzelecki2015-09-041-20/+20
* new tester; all tests categorizedAraq2014-01-131-0/+31
48' href='#n48'>48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
#
#
#            Nim's Runtime Library
#        (c) Copyright 2017 Nim Authors
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## This module implements a series of low level methods for bit manipulation.
## By default, this module use compiler intrinsics to improve performance
## on supported compilers: ``GCC``, ``LLVM_GCC``, ``CLANG``, ``VCC``, ``ICC``.
##
## The module will fallback to pure nim procs incase the backend is not supported.
## You can also use the flag `noIntrinsicsBitOpts` to disable compiler intrinsics.
##
## This module is also compatible with other backends: ``Javascript``, ``Nimscript``
## as well as the ``compiletime VM``.
##
## As a result of using optimized function/intrinsics some functions can return
## undefined results if the input is invalid. You can use the flag `noUndefinedBitOpts`
## to force predictable behaviour for all input, causing a small performance hit.
##
## At this time only `fastLog2`, `firstSetBit, `countLeadingZeroBits`, `countTrailingZeroBits`
## may return undefined and/or platform dependant value if given invalid input.


const useBuiltins = not defined(noIntrinsicsBitOpts)
const noUndefined = defined(noUndefinedBitOpts)
const useGCC_builtins = (defined(gcc) or defined(llvm_gcc) or defined(clang)) and useBuiltins
const useICC_builtins = defined(icc) and useBuiltins
const useVCC_builtins = defined(vcc) and useBuiltins
const arch64 = sizeof(int) == 8

# #### Pure Nim version ####

proc firstSetBit_nim(x: uint32): int {.inline, nosideeffect.} =
  ## Returns the 1-based index of the least significant set bit of x, or if x is zero, returns zero.
  # https://graphics.stanford.edu/%7Eseander/bithacks.html#ZerosOnRightMultLookup
  const lookup: array[32, uint8] = [0'u8, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15,
    25, 17, 4, 8, 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9]
  var v = x.uint32
  var k = not v + 1 # get two's complement # cast[uint32](-cast[int32](v))
  result = 1 + lookup[uint32((v and k) * 0x077CB531'u32) shr 27].int

proc firstSetBit_nim(x: uint64): int {.inline, nosideeffect.} =
  ## Returns the 1-based index of the least significant set bit of x, or if x is zero, returns zero.
  # https://graphics.stanford.edu/%7Eseander/bithacks.html#ZerosOnRightMultLookup
  var v = uint64(x)
  var k = uint32(v and 0xFFFFFFFF'u32)
  if k == 0:
    k = uint32(v shr 32'u32) and 0xFFFFFFFF'u32
    result = 32
  result += firstSetBit_nim(k)

proc fastlog2_nim(x: uint32): int {.inline, nosideeffect.} =
  ## Quickly find the log base 2 of a 32-bit or less integer.
  # https://graphics.stanford.edu/%7Eseander/bithacks.html#IntegerLogDeBruijn
  # https://stackoverflow.com/questions/11376288/fast-computing-of-log2-for-64-bit-integers
  const lookup: array[32, uint8] = [0'u8, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18,
    22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31]
  var v = x.uint32
  v = v or v shr 1 # first round down to one less than a power of 2
  v = v or v shr 2
  v = v or v shr 4
  v = v or v shr 8
  v = v or v shr 16
  result = lookup[uint32(v * 0x07C4ACDD'u32) shr 27].int

proc fastlog2_nim(x: uint64): int {.inline, nosideeffect.} =
  ## Quickly find the log base 2 of a 64-bit integer.
  # https://graphics.stanford.edu/%7Eseander/bithacks.html#IntegerLogDeBruijn
  # https://stackoverflow.com/questions/11376288/fast-computing-of-log2-for-64-bit-integers
  const lookup: array[64, uint8] = [0'u8, 58, 1, 59, 47, 53, 2, 60, 39, 48, 27, 54,
    33, 42, 3, 61, 51, 37, 40, 49, 18, 28, 20, 55, 30, 34, 11, 43, 14, 22, 4, 62,
    57, 46, 52, 38, 26, 32, 41, 50, 36, 17, 19, 29, 10, 13, 21, 56, 45, 25, 31,
    35, 16, 9, 12, 44, 24, 15, 8, 23, 7, 6, 5, 63]
  var v = x.uint64
  v = v or v shr 1 # first round down to one less than a power of 2
  v = v or v shr 2
  v = v or v shr 4
  v = v or v shr 8
  v = v or v shr 16
  v = v or v shr 32
  result = lookup[(v * 0x03F6EAF2CD271461'u64) shr 58].int


proc countSetBits_nim(n: uint32): int {.inline, noSideEffect.} =
  ## Counts the set bits in integer. (also called Hamming weight.)
  # generic formula is from: https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel

  var v = uint32(n)
  v = v - ((v shr 1) and 0x55555555)
  v = (v and 0x33333333) + ((v shr 2) and 0x33333333)
  result = (((v + (v shr 4) and 0xF0F0F0F) * 0x1010101) shr 24).int

proc countSetBits_nim(n: uint64): int {.inline, noSideEffect.} =
  ## Counts the set bits in integer. (also called Hamming weight.)
  # generic formula is from: https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
  var v = uint64(n)
  v = v - ((v shr 1'u64) and 0x5555555555555555'u64)
  v = (v and 0x3333333333333333'u64) + ((v shr 2'u64) and 0x3333333333333333'u64)
  v = (v + (v shr 4'u64) and 0x0F0F0F0F0F0F0F0F'u64)
  result = ((v * 0x0101010101010101'u64) shr 56'u64).int


template parity_impl[T](value: T): int =
  # formula id from: https://graphics.stanford.edu/%7Eseander/bithacks.html#ParityParallel
  var v = value
  when sizeof(T) == 8:
    v = v xor (v shr 32)
  when sizeof(T) >= 4:
    v = v xor (v shr 16)
  when sizeof(T) >= 2:
    v = v xor (v shr 8)
  v = v xor (v shr 4)
  v = v and 0xf
  ((0x6996'u shr v) and 1).int


when useGCC_builtins:
  # Returns the number of set 1-bits in value.
  proc builtin_popcount(x: cuint): cint {.importc: "__builtin_popcount", cdecl.}
  proc builtin_popcountll(x: culonglong): cint {.importc: "__builtin_popcountll", cdecl.}

  # Returns the bit parity in value
  proc builtin_parity(x: cuint): cint {.importc: "__builtin_parity", cdecl.}
  proc builtin_parityll(x: culonglong): cint {.importc: "__builtin_parityll", cdecl.}

  # Returns one plus the index of the least significant 1-bit of x, or if x is zero, returns zero.
  proc builtin_ffs(x: cint): cint {.importc: "__builtin_ffs", cdecl.}
  proc builtin_ffsll(x: clonglong): cint {.importc: "__builtin_ffsll", cdecl.}

  # Returns the number of leading 0-bits in x, starting at the most significant bit position. If x is 0, the result is undefined.
  proc builtin_clz(x: cuint): cint {.importc: "__builtin_clz", cdecl.}
  proc builtin_clzll(x: culonglong): cint {.importc: "__builtin_clzll", cdecl.}

  # Returns the number of trailing 0-bits in x, starting at the least significant bit position. If x is 0, the result is undefined.
  proc builtin_ctz(x: cuint): cint {.importc: "__builtin_ctz", cdecl.}
  proc builtin_ctzll(x: culonglong): cint {.importc: "__builtin_ctzll", cdecl.}

elif useVCC_builtins:
  # Counts the number of one bits (population count) in a 16-, 32-, or 64-byte unsigned integer.
  proc builtin_popcnt16(a2: uint16): uint16 {.importc: "__popcnt16" header: "<intrin.h>", nosideeffect.}
  proc builtin_popcnt32(a2: uint32): uint32 {.importc: "__popcnt" header: "<intrin.h>", nosideeffect.}
  proc builtin_popcnt64(a2: uint64): uint64 {.importc: "__popcnt64" header: "<intrin.h>", nosideeffect.}

  # Search the mask data from most significant bit (MSB) to least significant bit (LSB) for a set bit (1).
  proc bitScanReverse(index: ptr culong, mask: culong): cuchar {.importc: "_BitScanReverse", header: "<intrin.h>", nosideeffect.}
  proc bitScanReverse64(index: ptr culong, mask: uint64): cuchar {.importc: "_BitScanReverse64", header: "<intrin.h>", nosideeffect.}

  # Search the mask data from least significant bit (LSB) to the most significant bit (MSB) for a set bit (1).
  proc bitScanForward(index: ptr culong, mask: culong): cuchar {.importc: "_BitScanForward", header: "<intrin.h>", nosideeffect.}
  proc bitScanForward64(index: ptr culong, mask: uint64): cuchar {.importc: "_BitScanForward64", header: "<intrin.h>", nosideeffect.}

  template vcc_scan_impl(fnc: untyped; v: untyped): int =
    var index: culong
    discard fnc(index.addr, v)
    index.int

elif useICC_builtins:

  # Intel compiler intrinsics: http://fulla.fnal.gov/intel/compiler_c/main_cls/intref_cls/common/intref_allia_misc.htm
  # see also: https://software.intel.com/en-us/node/523362
  # Count the number of bits set to 1 in an integer a, and return that count in dst.
  proc builtin_popcnt32(a: cint): cint {.importc: "_popcnt" header: "<immintrin.h>", nosideeffect.}
  proc builtin_popcnt64(a: uint64): cint {.importc: "_popcnt64" header: "<immintrin.h>", nosideeffect.}

  # Returns the number of trailing 0-bits in x, starting at the least significant bit position. If x is 0, the result is undefined.
  proc bitScanForward(p: ptr uint32, b: uint32): cuchar {.importc: "_BitScanForward", header: "<immintrin.h>", nosideeffect.}
  proc bitScanForward64(p: ptr uint32, b: uint64): cuchar {.importc: "_BitScanForward64", header: "<immintrin.h>", nosideeffect.}

  # Returns the number of leading 0-bits in x, starting at the most significant bit position. If x is 0, the result is undefined.
  proc bitScanReverse(p: ptr uint32, b: uint32): cuchar {.importc: "_BitScanReverse", header: "<immintrin.h>", nosideeffect.}
  proc bitScanReverse64(p: ptr uint32, b: uint64): cuchar {.importc: "_BitScanReverse64", header: "<immintrin.h>", nosideeffect.}

  template icc_scan_impl(fnc: untyped; v: untyped): int =
    var index: uint32
    discard fnc(index.addr, v)
    index.int


proc countSetBits*(x: SomeInteger): int {.inline, nosideeffect.} =
  ## Counts the set bits in integer. (also called `Hamming weight`:idx:.)
  # TODO: figure out if ICC support _popcnt32/_popcnt64 on platform without POPCNT.
  # like GCC and MSVC
  when nimvm:
    when sizeof(x) <= 4: result = countSetBits_nim(x.uint32)
    else:                result = countSetBits_nim(x.uint64)
  else:
    when useGCC_builtins:
      when sizeof(x) <= 4: result = builtin_popcount(x.cuint).int
      else:                result = builtin_popcountll(x.culonglong).int
    elif useVCC_builtins:
      when sizeof(x) <= 2: result = builtin_popcnt16(x.uint16).int
      elif sizeof(x) <= 4: result = builtin_popcnt32(x.uint32).int
      elif arch64:         result = builtin_popcnt64(x.uint64).int
      else:                result = builtin_popcnt32((x.uint64 and 0xFFFFFFFF'u64).uint32 ).int +
                                    builtin_popcnt32((x.uint64 shr 32'u64).uint32 ).int
    elif useICC_builtins:
      when sizeof(x) <= 4: result = builtin_popcnt32(x.cint).int
      elif arch64:         result = builtin_popcnt64(x.uint64).int
      else:                result = builtin_popcnt32((x.uint64 and 0xFFFFFFFF'u64).cint ).int +
                                    builtin_popcnt32((x.uint64 shr 32'u64).cint ).int
    else:
      when sizeof(x) <= 4: result = countSetBits_nim(x.uint32)
      else:                result = countSetBits_nim(x.uint64)

proc popcount*(x: SomeInteger): int {.inline, nosideeffect.} =
  ## Alias for for countSetBits (Hamming weight.)
  result = countSetBits(x)

proc parityBits*(x: SomeInteger): int {.inline, nosideeffect.} =
  ## Calculate the bit parity in integer. If number of 1-bit
  ## is odd parity is 1, otherwise 0.
  # Can be used a base if creating ASM version.
  # https://stackoverflow.com/questions/21617970/how-to-check-if-value-has-even-parity-of-bits-or-odd
  when nimvm:
    when sizeof(x) <= 4: result = parity_impl(x.uint32)
    else:                result = parity_impl(x.uint64)
  else:
    when useGCC_builtins:
      when sizeof(x) <= 4: result = builtin_parity(x.uint32).int
      else:                result = builtin_parityll(x.uint64).int
    else:
      when sizeof(x) <= 4: result = parity_impl(x.uint32)
      else:                result = parity_impl(x.uint64)

proc firstSetBit*(x: SomeInteger): int {.inline, nosideeffect.} =
  ## Returns the 1-based index of the least significant set bit of x.
  ## If `x` is zero, when ``noUndefinedBitOpts`` is set, result is 0,
  ## otherwise result is undefined.
  # GCC builtin 'builtin_ffs' already handle zero input.
  when nimvm:
    when noUndefined:
      if x == 0:
        return 0
    when sizeof(x) <= 4: result = firstSetBit_nim(x.uint32)
    else:                result = firstSetBit_nim(x.uint64)
  else:
    when noUndefined and not useGCC_builtins:
      if x == 0:
        return 0
    when useGCC_builtins:
      when sizeof(x) <= 4: result = builtin_ffs(cast[cint](x.cuint)).int
      else:                result = builtin_ffsll(cast[clonglong](x.culonglong)).int
    elif useVCC_builtins:
      when sizeof(x) <= 4:
        result = 1 + vcc_scan_impl(bitScanForward, x.culong)
      elif arch64:
        result = 1 + vcc_scan_impl(bitScanForward64, x.uint64)
      else:
        result = firstSetBit_nim(x.uint64)
    elif useICC_builtins:
      when sizeof(x) <= 4:
        result = 1 + icc_scan_impl(bitScanForward, x.uint32)
      elif arch64:
        result = 1 + icc_scan_impl(bitScanForward64, x.uint64)
      else:
        result = firstSetBit_nim(x.uint64)
    else:
      when sizeof(x) <= 4: result = firstSetBit_nim(x.uint32)
      else:                result = firstSetBit_nim(x.uint64)

proc fastLog2*(x: SomeInteger): int {.inline, nosideeffect.} =
  ## Quickly find the log base 2 of an integer.
  ## If `x` is zero, when ``noUndefinedBitOpts`` is set, result is -1,
  ## otherwise result is undefined.
  when noUndefined:
    if x == 0:
      return -1
  when nimvm:
    when sizeof(x) <= 4: result = fastlog2_nim(x.uint32)
    else:                result = fastlog2_nim(x.uint64)
  else:
    when useGCC_builtins:
      when sizeof(x) <= 4: result = 31 - builtin_clz(x.uint32).int
      else:                result = 63 - builtin_clzll(x.uint64).int
    elif useVCC_builtins:
      when sizeof(x) <= 4:
        result = vcc_scan_impl(bitScanReverse, x.culong)
      elif arch64:
        result = vcc_scan_impl(bitScanReverse64, x.uint64)
      else:
        result = fastlog2_nim(x.uint64)
    elif useICC_builtins:
      when sizeof(x) <= 4:
        result = icc_scan_impl(bitScanReverse, x.uint32)
      elif arch64:
        result = icc_scan_impl(bitScanReverse64, x.uint64)
      else:
        result = fastlog2_nim(x.uint64)
    else:
      when sizeof(x) <= 4: result = fastlog2_nim(x.uint32)
      else:                result = fastlog2_nim(x.uint64)

proc countLeadingZeroBits*(x: SomeInteger): int {.inline, nosideeffect.} =
  ## Returns the number of leading zero bits in integer.
  ## If `x` is zero, when ``noUndefinedBitOpts`` is set, result is 0,
  ## otherwise result is undefined.
  when noUndefined:
    if x == 0:
      return 0
  when nimvm:
      when sizeof(x) <= 4: result = sizeof(x)*8 - 1 - fastlog2_nim(x.uint32)
      else:                result = sizeof(x)*8 - 1 - fastlog2_nim(x.uint64)
  else:
    when useGCC_builtins:
      when sizeof(x) <= 4: result = builtin_clz(x.uint32).int - (32 - sizeof(x)*8)
      else:                result = builtin_clzll(x.uint64).int
    else:
      when sizeof(x) <= 4: result = sizeof(x)*8 - 1 - fastlog2_nim(x.uint32)
      else:                result = sizeof(x)*8 - 1 - fastlog2_nim(x.uint64)

proc countTrailingZeroBits*(x: SomeInteger): int {.inline, nosideeffect.} =
  ## Returns the number of trailing zeros in integer.
  ## If `x` is zero, when ``noUndefinedBitOpts`` is set, result is 0,
  ## otherwise result is undefined.
  when noUndefined:
    if x == 0:
      return 0
  when nimvm:
    result = firstSetBit(x) - 1
  else:
    when useGCC_builtins:
      when sizeof(x) <= 4: result = builtin_ctz(x.uint32).int
      else:                result = builtin_ctzll(x.uint64).int
    else:
      result = firstSetBit(x) - 1


proc rotateLeftBits*(value: uint8;
           amount: range[0..8]): uint8 {.inline, noSideEffect.} =
  ## Left-rotate bits in a 8-bits value.
  # using this form instead of the one below should handle any value
  # out of range as well as negative values.
  # result = (value shl amount) or (value shr (8 - amount))
  # taken from: https://en.wikipedia.org/wiki/Circular_shift#Implementing_circular_shifts
  let amount = amount and 7
  result = (value shl amount) or (value shr ( (-amount) and 7))

proc rotateLeftBits*(value: uint16;
           amount: range[0..16]): uint16 {.inline, noSideEffect.} =
  ## Left-rotate bits in a 16-bits value.
  let amount = amount and 15
  result = (value shl amount) or (value shr ( (-amount) and 15))

proc rotateLeftBits*(value: uint32;
           amount: range[0..32]): uint32 {.inline, noSideEffect.} =
  ## Left-rotate bits in a 32-bits value.
  let amount = amount and 31
  result = (value shl amount) or (value shr ( (-amount) and 31))

proc rotateLeftBits*(value: uint64;
           amount: range[0..64]): uint64 {.inline, noSideEffect.} =
  ## Left-rotate bits in a 64-bits value.
  let amount = amount and 63
  result = (value shl amount) or (value shr ( (-amount) and 63))


proc rotateRightBits*(value: uint8;
            amount: range[0..8]): uint8 {.inline, noSideEffect.} =
  ## Right-rotate bits in a 8-bits value.
  let amount = amount and 7
  result = (value shr amount) or (value shl ( (-amount) and 7))

proc rotateRightBits*(value: uint16;
            amount: range[0..16]): uint16 {.inline, noSideEffect.} =
  ## Right-rotate bits in a 16-bits value.
  let amount = amount and 15
  result = (value shr amount) or (value shl ( (-amount) and 15))

proc rotateRightBits*(value: uint32;
            amount: range[0..32]): uint32 {.inline, noSideEffect.} =
  ## Right-rotate bits in a 32-bits value.
  let amount = amount and 31
  result = (value shr amount) or (value shl ( (-amount) and 31))

proc rotateRightBits*(value: uint64;
            amount: range[0..64]): uint64 {.inline, noSideEffect.} =
  ## Right-rotate bits in a 64-bits value.
  let amount = amount and 63
  result = (value shr amount) or (value shl ( (-amount) and 63))