summary refs log tree commit diff stats
path: root/tinyc/tcc.h
Commit message (Expand)AuthorAgeFilesLines
* Removes executable bit for text files.Grzegorz Adam Hankiewicz2013-03-161-0/+0
* tiny C support; cosmetic improvements for the docsAraq2010-08-281-0/+766
> 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
#
#
#            Nim's Runtime Library
#        (c) Copyright 2011 Alexander Mitchell-Robinson
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## Although this module has ``seq`` in its name, it implements operations
## not only for `seq`:idx: type, but for three built-in container types under
## the ``openArray`` umbrella:
## * sequences
## * strings
## * array
##
## The system module defines several common functions, such as:
## * ``newseq[T]`` for creating new sequences of type ``T``
## * ``@`` for converting arrays and strings to sequences
## * ``add`` for adding new elements to strings and sequences
## * ``&`` for string and seq concatenation
## * ``in`` (alias for ``contains``) and ``notin`` for checking if an item is
##   in a container
##
## This module builds upon that, providing additional functionality in form of
## procs, iterators and templates inspired by functional programming
## languages.
##
## For functional style programming you have different options at your disposal:
## * pass `anonymous proc<manual.html#procedures-anonymous-procs>`_
## * import `sugar module<sugar.html>`_  and use
##   `=> macro<sugar.html#%3D>.m,untyped,untyped>`_
## * use `...It templates<#18>`_
##   (`mapIt<#mapIt.t,typed,untyped>`_,
##   `filterIt<#filterIt.t,untyped,untyped>`_, etc.)
##
## The chaining of functions is possible thanks to the
## `method call syntax<manual.html#procs-method-call-syntax>`_.
##
## .. code-block::
##   import sequtils, sugar
##
##   # Creating a sequence from 1 to 10, multiplying each member by 2,
##   # keeping only the members which are not divisible by 6.
##   let
##     foo = toSeq(1..10).map(x => x*2).filter(x => x mod 6 != 0)
##     bar = toSeq(1..10).mapIt(it*2).filterIt(it mod 6 != 0)
##
##   doAssert foo == bar
##   echo foo                  # @[2, 4, 8, 10, 14, 16, 20]
##
##   echo foo.any(x => x > 17) # true
##   echo bar.allIt(it < 20)   # false
##   echo foo.foldl(a + b)     # 74; sum of all members
##
## .. code-block::
##   import sequtils
##   from strutils import join
##
##   let
##     vowels = @"aeiou" # creates a sequence @['a', 'e', 'i', 'o', 'u']
##     foo = "sequtils is an awesome module"
##
##   echo foo.filterIt(it notin vowels).join # "sqtls s n wsm mdl"
##
## ----
##
## **See also**:
## * `strutils module<strutils.html>`_ for common string functions
## * `sugar module<sugar.html>`_ for syntactic sugar macros
## * `algorithm module<algorithm.html>`_ for common generic algorithms
## * `json module<json.html>`_ for a structure which allows
##   heterogeneous members


include "system/inclrtl"

import macros

when not defined(nimhygiene):
  {.pragma: dirty.}


macro evalOnceAs(expAlias, exp: untyped, letAssigneable: static[bool]): untyped =
  ## Injects ``expAlias`` in caller scope, to avoid bugs involving multiple
  ##  substitution in macro arguments such as
  ## https://github.com/nim-lang/Nim/issues/7187
  ## ``evalOnceAs(myAlias, myExp)`` will behave as ``let myAlias = myExp``
  ## except when ``letAssigneable`` is false (e.g. to handle openArray) where
  ## it just forwards ``exp`` unchanged
  expectKind(expAlias, nnkIdent)
  var val = exp

  result = newStmtList()
  # If `exp` is not a symbol we evaluate it once here and then use the temporary
  # symbol as alias
  if exp.kind != nnkSym and letAssigneable:
    val = genSym()
    result.add(newLetStmt(val, exp))

  result.add(
    newProc(name = genSym(nskTemplate, $expAlias), params = [getType(untyped)],
      body = val, procType = nnkTemplateDef))

proc concat*[T](seqs: varargs[seq[T]]): seq[T] =
  ## Takes several sequences' items and returns them inside a new sequence.
  ## All sequences must be of the same type.
  ##
  ## See also:
  ## * `distribute proc<#distribute,seq[T],Positive>`_ for a reverse
  ##   operation
  ##
  runnableExamples:
    let
      s1 = @[1, 2, 3]
      s2 = @[4, 5]
      s3 = @[6, 7]
      total = concat(s1, s2, s3)
    assert total == @[1, 2, 3, 4, 5, 6, 7]

  var L = 0
  for seqitm in items(seqs): inc(L, len(seqitm))
  newSeq(result, L)
  var i = 0
  for s in items(seqs):
    for itm in items(s):
      result[i] = itm
      inc(i)

proc count*[T](s: openArray[T], x: T): int =
  ## Returns the number of occurrences of the item `x` in the container `s`.
  ##
  runnableExamples:
    let
      a = @[1, 2, 2, 3, 2, 4, 2]
      b = "abracadabra"
    assert count(a, 2) == 4
    assert count(a, 99) == 0
    assert count(b, 'r') == 2

  for itm in items(s):
    if itm == x:
      inc result

proc cycle*[T](s: openArray[T], n: Natural): seq[T] =
  ## Returns a new sequence with the items of the container `s` repeated
  ## `n` times.
  ## `n` must be a non-negative number (zero or more).
  ##
  runnableExamples:
    let
      s = @[1, 2, 3]
      total = s.cycle(3)
    assert total == @[1, 2, 3, 1, 2, 3, 1, 2, 3]

  result = newSeq[T](n * s.len)
  var o = 0
  for x in 0 ..< n:
    for e in s:
      result[o] = e
      inc o

proc repeat*[T](x: T, n: Natural): seq[T] =
  ## Returns a new sequence with the item `x` repeated `n` times.
  ## `n` must be a non-negative number (zero or more).
  ##
  runnableExamples:
    let
      total = repeat(5, 3)
    assert total == @[5, 5, 5]

  result = newSeq[T](n)
  for i in 0 ..< n:
    result[i] = x

proc deduplicate*[T](s: openArray[T], isSorted: bool = false): seq[T] =
  ## Returns a new sequence without duplicates.
  ##
  ## Setting the optional argument ``isSorted`` to ``true`` (default: false)
  ## uses a faster algorithm for deduplication.
  ##
  runnableExamples:
    let
      dup1 = @[1, 1, 3, 4, 2, 2, 8, 1, 4]
      dup2 = @["a", "a", "c", "d", "d"]
      unique1 = deduplicate(dup1)
      unique2 = deduplicate(dup2, isSorted = true)
    assert unique1 == @[1, 3, 4, 2, 8]
    assert unique2 == @["a", "c", "d"]

  result = @[]
  if s.len > 0:
    if isSorted:
      var prev = s[0]
      result.add(prev)
      for i in 1..s.high:
        if s[i] != prev:
          prev = s[i]
          result.add(prev)
    else:
      for itm in items(s):
        if not result.contains(itm): result.add(itm)

proc zip*[S, T](s1: openArray[S], s2: openArray[T]): seq[tuple[a: S, b: T]] =
  ## Returns a new sequence with a combination of the two input containers.
  ##
  ## The input containers can be of different types.
  ## If one container is shorter, the remaining items in the longer container
  ## are discarded.
  ##
  ## For convenience you can access the returned tuples through the named
  ## fields `a` and `b`.
  ##
  runnableExamples:
    let
      short = @[1, 2, 3]
      long = @[6, 5, 4, 3, 2, 1]
      words = @["one", "two", "three"]
      letters = "abcd"
      zip1 = zip(short, long)
      zip2 = zip(short, words)
      zip3 = zip(long, letters)
    assert zip1 == @[(1, 6), (2, 5), (3, 4)]
    assert zip2 == @[(1, "one"), (2, "two"), (3, "three")]
    assert zip3 == @[(a: 6, b: 'a'), (a: 5, b: 'b'), (a: 4, b: 'c'),
                     (a: 3, b: 'd')]
    assert zip1[2].b == 4
    assert zip2[2].b == "three"

  var m = min(s1.len, s2.len)
  newSeq(result, m)
  for i in 0 ..< m:
    result[i] = (s1[i], s2[i])

proc distribute*[T](s: seq[T], num: Positive, spread = true): seq[seq[T]] =
  ## Splits and distributes a sequence `s` into `num` sub-sequences.
  ##
  ## Returns a sequence of `num` sequences. For *some* input values this is the
  ## inverse of the `concat <#concat,varargs[seq[T]]>`_ proc.
  ## The input sequence `s` can be empty, which will produce
  ## `num` empty sequences.
  ##
  ## If `spread` is false and the length of `s` is not a multiple of `num`, the
  ## proc will max out the first sub-sequence with ``1 + len(s) div num``
  ## entries, leaving the remainder of elements to the last sequence.
  ##
  ## On the other hand, if `spread` is true, the proc will distribute evenly
  ## the remainder of the division across all sequences, which makes the result
  ## more suited to multithreading where you are passing equal sized work units
  ## to a thread pool and want to maximize core usage.
  ##
  runnableExamples:
    let numbers = @[1, 2, 3, 4, 5, 6, 7]
    assert numbers.distribute(3) == @[@[1, 2, 3], @[4, 5], @[6, 7]]
    assert numbers.distribute(3, false) == @[@[1, 2, 3], @[4, 5, 6], @[7]]
    assert numbers.distribute(6)[0] == @[1, 2]
    assert numbers.distribute(6)[1] == @[3]

  if num < 2:
    result = @[s]
    return
  let num = int(num) # XXX probably only needed because of .. bug

  # Create the result and calculate the stride size and the remainder if any.
  result = newSeq[seq[T]](num)
  var
    stride = s.len div num
    first = 0
    last = 0
    extra = s.len mod num

  if extra == 0 or spread == false:
    # Use an algorithm which overcounts the stride and minimizes reading limits.
    if extra > 0: inc(stride)
    for i in 0 ..< num:
      result[i] = newSeq[T]()
      for g in first ..< min(s.len, first + stride):
        result[i].add(s[g])
      first += stride
  else:
    # Use an undercounting algorithm which *adds* the remainder each iteration.
    for i in 0 ..< num:
      last = first + stride
      if extra > 0:
        extra -= 1
        inc(last)
      result[i] = newSeq[T]()
      for g in first ..< last:
        result[i].add(s[g])
      first = last

proc map*[T, S](s: openArray[T], op: proc (x: T): S {.closure.}):
                                                            seq[S]{.inline.} =
  ## Returns a new sequence with the results of `op` proc applied to every
  ## item in the container `s`.
  ##
  ## Since the input is not modified you can use it to
  ## transform the type of the elements in the input container.
  ##
  ## See also:
  ## * `mapIt template<#mapIt.t,typed,untyped>`_
  ## * `apply proc<#apply,openArray[T],proc(T)_2>`_ for the in-place version
  ##
  runnableExamples:
    let
      a = @[1, 2, 3, 4]
      b = map(a, proc(x: int): string = $x)
    assert b == @["1", "2", "3", "4"]

  newSeq(result, s.len)
  for i in 0 ..< s.len:
    result[i] = op(s[i])

proc apply*[T](s: var openArray[T], op: proc (x: var T) {.closure.})
                                                              {.inline.} =
  ## Applies `op` to every item in `s` modifying it directly.
  ##
  ## Note that container `s` must be declared as a ``var``
  ## and it is required for your input and output types to
  ## be the same, since `s` is modified in-place.
  ## The parameter function takes a ``var T`` type parameter.
  ##
  ## See also:
  ## * `applyIt template<#applyIt.t,untyped,untyped>`_
  ## * `map proc<#map,openArray[T],proc(T)>`_
  ##
  runnableExamples:
    var a = @["1", "2", "3", "4"]
    apply(a, proc(x: var string) = x &= "42")
    assert a == @["142", "242", "342", "442"]

  for i in 0 ..< s.len: op(s[i])

proc apply*[T](s: var openArray[T], op: proc (x: T): T {.closure.})
                                                              {.inline.} =
  ## Applies `op` to every item in `s` modifying it directly.
  ##
  ## Note that container `s` must be declared as a ``var``
  ## and it is required for your input and output types to
  ## be the same, since `s` is modified in-place.
  ## The parameter function takes and returns a ``T`` type variable.
  ##
  ## See also:
  ## * `applyIt template<#applyIt.t,untyped,untyped>`_
  ## * `map proc<#map,openArray[T],proc(T)>`_
  ##
  runnableExamples:
    var a = @["1", "2", "3", "4"]
    apply(a, proc(x: string): string = x & "42")
    assert a == @["142", "242", "342", "442"]

  for i in 0 ..< s.len: s[i] = op(s[i])

iterator filter*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): T =
  ## Iterates through a container `s` and yields every item that fulfills the
  ## predicate `pred` (function that returns a `bool`).
  ##
  ## See also:
  ## * `fliter proc<#filter,openArray[T],proc(T)>`_
  ## * `filterIt template<#filterIt.t,untyped,untyped>`_
  ##
  runnableExamples:
    let numbers = @[1, 4, 5, 8, 9, 7, 4]
    var evens = newSeq[int]()
    for n in filter(numbers, proc (x: int): bool = x mod 2 == 0):
      evens.add(n)
    assert evens == @[4, 8, 4]

  for i in 0 ..< s.len:
    if pred(s[i]):
      yield s[i]

proc filter*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): seq[T]
                                                                  {.inline.} =
  ## Returns a new sequence with all the items of `s` that fulfilled the
  ## predicate `pred` (function that returns a `bool`).
  ##
  ## See also:
  ## * `filterIt template<#filterIt.t,untyped,untyped>`_
  ## * `filter iterator<#filter.i,openArray[T],proc(T)>`_
  ## * `keepIf proc<#keepIf,seq[T],proc(T)>`_ for the in-place version
  ##
  runnableExamples:
    let
      colors = @["red", "yellow", "black"]
      f1 = filter(colors, proc(x: string): bool = x.len < 6)
      f2 = filter(colors, proc(x: string): bool = x.contains('y'))
    assert f1 == @["red", "black"]
    assert f2 == @["yellow"]

  result = newSeq[T]()
  for i in 0 ..< s.len:
    if pred(s[i]):
      result.add(s[i])

proc keepIf*[T](s: var seq[T], pred: proc(x: T): bool {.closure.})
                                                                {.inline.} =
  ## Keeps the items in the passed sequence `s` if they fulfilled the
  ## predicate `pred` (function that returns a `bool`).
  ##
  ## Note that `s` must be declared as a ``var``.
  ##
  ## Similar to the `filter proc<#filter,openArray[T],proc(T)>`_,
  ## but modifies the sequence directly.
  ##
  ## See also:
  ## * `keepItIf template<#keepItIf.t,seq,untyped>`_
  ## * `filter proc<#filter,openArray[T],proc(T)>`_
  ##
  runnableExamples:
    var floats = @[13.0, 12.5, 5.8, 2.0, 6.1, 9.9, 10.1]
    keepIf(floats, proc(x: float): bool = x > 10)
    assert floats == @[13.0, 12.5, 10.1]

  var pos = 0
  for i in 0 ..< len(s):
    if pred(s[i]):
      if pos != i:
        shallowCopy(s[pos], s[i])
      inc(pos)
  setLen(s, pos)

proc delete*[T](s: var seq[T]; first, last: Natural) =
  ## Deletes in the items of a sequence `s` at positions ``first..last``
  ## (including both ends of a range).
  ## This modifies `s` itself, it does not return a copy.
  ##
  runnableExamples:
    let outcome = @[1,1,1,1,1,1,1,1]
    var dest = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1]
    dest.delete(3, 8)
    assert outcome == dest

  var i = first
  var j = last+1
  var newLen = len(s)-j+i
  while i < newLen:
    s[i].shallowCopy(s[j])
    inc(i)
    inc(j)
  setLen(s, newLen)

proc insert*[T](dest: var seq[T], src: openArray[T], pos=0) =
  ## Inserts items from `src` into `dest` at position `pos`. This modifies
  ## `dest` itself, it does not return a copy.
  ##
  ## Notice that `src` and `dest` must be of the same type.
  ##
  runnableExamples:
    var dest = @[1,1,1,1,1,1,1,1]
    let
      src = @[2,2,2,2,2,2]
      outcome = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1]
    dest.insert(src, 3)
    assert dest == outcome

  var j = len(dest) - 1
  var i = len(dest) + len(src) - 1
  dest.setLen(i + 1)

  # Move items after `pos` to the end of the sequence.
  while j >= pos:
    dest[i].shallowCopy(dest[j])
    dec(i)
    dec(j)
  # Insert items from `dest` into `dest` at `pos`
  inc(j)
  for item in src:
    dest[j] = item
    inc(j)


template filterIt*(s, pred: untyped): untyped =
  ## Returns a new sequence with all the items of `s` that fulfilled the
  ## predicate `pred`.
  ##
  ## Unlike the `filter proc<#filter,openArray[T],proc(T)>`_ and
  ## `filter iterator<#filter.i,openArray[T],proc(T)>`_,
  ## the predicate needs to be an expression using the ``it`` variable
  ## for testing, like: ``filterIt("abcxyz", it == 'x')``.
  ##
  ## See also:
  ## * `fliter proc<#filter,openArray[T],proc(T)>`_
  ## * `filter iterator<#filter.i,openArray[T],proc(T)>`_
  ##
  runnableExamples:
    let
      temperatures = @[-272.15, -2.0, 24.5, 44.31, 99.9, -113.44]
      acceptable = temperatures.filterIt(it < 50 and it > -10)
      notAcceptable = temperatures.filterIt(it > 50 or it < -10)
    assert acceptable == @[-2.0, 24.5, 44.31]
    assert notAcceptable == @[-272.15, 99.9, -113.44]

  var result = newSeq[type(s[0])]()
  for it {.inject.} in items(s):
    if pred: result.add(it)
  result

template keepItIf*(varSeq: seq, pred: untyped) =
  ## Keeps the items in the passed sequence (must be declared as a ``var``)
  ## if they fulfilled the predicate.
  ##
  ## Unlike the `keepIf proc<#keepIf,seq[T],proc(T)>`_,
  ## the predicate needs to be an expression using
  ## the ``it`` variable for testing, like: ``keepItIf("abcxyz", it == 'x')``.
  ##
  ## See also:
  ## * `keepIf proc<#keepIf,seq[T],proc(T)>`_
  ## * `filterIt template<#filterIt.t,untyped,untyped>`_
  ##
  runnableExamples:
    var candidates = @["foo", "bar", "baz", "foobar"]
    candidates.keepItIf(it.len == 3 and it[0] == 'b')
    assert candidates == @["bar", "baz"]

  var pos = 0
  for i in 0 ..< len(varSeq):
    let it {.inject.} = varSeq[i]
    if pred:
      if pos != i:
        shallowCopy(varSeq[pos], varSeq[i])
      inc(pos)
  setLen(varSeq, pos)

proc all*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): bool =
  ## Iterates through a container and checks if every item fulfills the
  ## predicate.
  ##
  ## See also:
  ## * `allIt template<#allIt.t,untyped,untyped>`_
  ## * `any proc<#any,openArray[T],proc(T)>`_
  ##
  runnableExamples:
     let numbers = @[1, 4, 5, 8, 9, 7, 4]
     assert all(numbers, proc (x: int): bool = return x < 10) == true
     assert all(numbers, proc (x: int): bool = return x < 9) == false

  for i in s:
    if not pred(i):
      return false
  return true

template allIt*(s, pred: untyped): bool =
  ## Iterates through a container and checks if every item fulfills the
  ## predicate.
  ##
  ## Unlike the `all proc<#all,openArray[T],proc(T)>`_,
  ## the predicate needs to be an expression using
  ## the ``it`` variable for testing, like: ``allIt("abba", it == 'a')``.
  ##
  ## See also:
  ## * `all proc<#all,openArray[T],proc(T)>`_
  ## * `anyIt template<#anyIt.t,untyped,untyped>`_
  ##
  runnableExamples:
    let numbers = @[1, 4, 5, 8, 9, 7, 4]
    assert numbers.allIt(it < 10) == true
    assert numbers.allIt(it < 9) == false

  var result = true
  for it {.inject.} in items(s):
    if not pred:
      result = false
      break
  result

proc any*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): bool =
  ## Iterates through a container and checks if some item fulfills the
  ## predicate.
  ##
  ## See also:
  ## * `anyIt template<#anyIt.t,untyped,untyped>`_
  ## * `all proc<#all,openArray[T],proc(T)>`_
  ##
  runnableExamples:
    let numbers = @[1, 4, 5, 8, 9, 7, 4]
    assert any(numbers, proc (x: int): bool = return x > 8) == true
    assert any(numbers, proc (x: int): bool = return x > 9) == false

  for i in s:
    if pred(i):
      return true
  return false

template anyIt*(s, pred: untyped): bool =
  ## Iterates through a container and checks if some item fulfills the
  ## predicate.
  ##
  ## Unlike the `any proc<#any,openArray[T],proc(T)>`_,
  ## the predicate needs to be an expression using
  ## the ``it`` variable for testing, like: ``anyIt("abba", it == 'a')``.
  ##
  ## See also:
  ## * `any proc<#any,openArray[T],proc(T)>`_
  ## * `allIt template<#allIt.t,untyped,untyped>`_
  ##
  runnableExamples:
    let numbers = @[1, 4, 5, 8, 9, 7, 4]
    assert numbers.anyIt(it > 8) == true
    assert numbers.anyIt(it > 9) == false

  var result = false
  for it {.inject.} in items(s):
    if pred:
      result = true
      break
  result

template toSeq1(s: not iterator): untyped =
  # overload for typed but not iterator
  type outType = type(items(s))
  when compiles(s.len):
    block:
      evalOnceAs(s2, s, compiles((let _ = s)))
      var i = 0
      var result = newSeq[outType](s2.len)
      for it in s2:
        result[i] = it
        i += 1
      result
  else:
    var result: seq[outType] = @[]
    for it in s:
      result.add(it)
    result

template toSeq2(iter: iterator): untyped =
  # overload for iterator
  evalOnceAs(iter2, iter(), false)
  when compiles(iter2.len):
    var i = 0
    var result = newSeq[type(iter2)](iter2.len)
    for x in iter2:
      result[i] = x
      inc i
    result
  else:
    type outType = type(iter2())
    var result: seq[outType] = @[]
    when compiles(iter2()):
      evalOnceAs(iter4, iter, false)
      let iter3=iter4()
      for x in iter3():
        result.add(x)
    else:
      for x in iter2():
        result.add(x)
    result

template toSeq*(iter: untyped): untyped =
  ## Transforms any iterable (anything that can be iterated over, e.g. with
  ## a for-loop) into a sequence.
  ##
  runnableExamples:
    let
      myRange = 1..5
      mySet: set[int8] = {5'i8, 3, 1}
    assert type(myRange) is HSlice[system.int, system.int]
    assert type(mySet) is set[int8]

    let
      mySeq1 = toSeq(myRange)
      mySeq2 = toSeq(mySet)
    assert mySeq1 == @[1, 2, 3, 4, 5]
    assert mySeq2 == @[1'i8, 3, 5]

  when compiles(toSeq1(iter)):
    toSeq1(iter)
  elif compiles(toSeq2(iter)):
    toSeq2(iter)
  else:
    # overload for untyped, e.g.: `toSeq(myInlineIterator(3))`
    when compiles(iter.len):
      block:
        evalOnceAs(iter2, iter, true)
        var result = newSeq[type(iter)](iter2.len)
        var i = 0
        for x in iter2:
          result[i] = x
          inc i
        result
    else:
      var result: seq[type(iter)] = @[]
      for x in iter:
        result.add(x)
      result

template foldl*(sequence, operation: untyped): untyped =
  ## Template to fold a sequence from left to right, returning the accumulation.
  ##
  ## The sequence is required to have at least a single element. Debug versions
  ## of your program will assert in this situation but release versions will
  ## happily go ahead. If the sequence has a single element it will be returned
  ## without applying ``operation``.
  ##
  ## The ``operation`` parameter should be an expression which uses the
  ## variables ``a`` and ``b`` for each step of the fold. Since this is a left
  ## fold, for non associative binary operations like subtraction think that
  ## the sequence of numbers 1, 2 and 3 will be parenthesized as (((1) - 2) -
  ## 3).
  ##
  ## See also:
  ## * `foldl template<#foldl.t,,,>`_ with a starting parameter
  ## * `foldr template<#foldr.t,untyped,untyped>`_
  ##
  runnableExamples:
    let
      numbers = @[5, 9, 11]
      addition = foldl(numbers, a + b)
      subtraction = foldl(numbers, a - b)
      multiplication = foldl(numbers, a * b)
      words = @["nim", "is", "cool"]
      concatenation = foldl(words, a & b)
    assert addition == 25, "Addition is (((5)+9)+11)"
    assert subtraction == -15, "Subtraction is (((5)-9)-11)"
    assert multiplication == 495, "Multiplication is (((5)*9)*11)"
    assert concatenation == "nimiscool"

  let s = sequence
  assert s.len > 0, "Can't fold empty sequences"
  var result: type(s[0])
  result = s[0]
  for i in 1..<s.len:
    let
      a {.inject.} = result
      b {.inject.} = s[i]
    result = operation
  result

template foldl*(sequence, operation, first): untyped =
  ## Template to fold a sequence from left to right, returning the accumulation.
  ##
  ## This version of ``foldl`` gets a **starting parameter**. This makes it possible
  ## to accumulate the sequence into a different type than the sequence elements.
  ##
  ## The ``operation`` parameter should be an expression which uses the variables
  ## ``a`` and ``b`` for each step of the fold. The ``first`` parameter is the
  ## start value (the first ``a``) and therefor defines the type of the result.
  ##
  ## See also:
  ## * `foldr template<#foldr.t,untyped,untyped>`_
  ##
  runnableExamples:
    let
      numbers = @[0, 8, 1, 5]
      digits = foldl(numbers, a & (chr(b + ord('0'))), "")
    assert digits == "0815"

  var result: type(first)
  result = first
  for x in items(sequence):
    let
      a {.inject.} = result
      b {.inject.} = x
    result = operation
  result

template foldr*(sequence, operation: untyped): untyped =
  ## Template to fold a sequence from right to left, returning the accumulation.
  ##
  ## The sequence is required to have at least a single element. Debug versions
  ## of your program will assert in this situation but release versions will
  ## happily go ahead. If the sequence has a single element it will be returned
  ## without applying ``operation``.
  ##
  ## The ``operation`` parameter should be an expression which uses the
  ## variables ``a`` and ``b`` for each step of the fold. Since this is a right
  ## fold, for non associative binary operations like subtraction think that
  ## the sequence of numbers 1, 2 and 3 will be parenthesized as (1 - (2 -
  ## (3))).
  ##
  ## See also:
  ## * `foldl template<#foldl.t,untyped,untyped>`_
  ## * `foldl template<#foldl.t,,,>`_ with a starting parameter
  ##
  runnableExamples:
    let
      numbers = @[5, 9, 11]
      addition = foldr(numbers, a + b)
      subtraction = foldr(numbers, a - b)
      multiplication = foldr(numbers, a * b)
      words = @["nim", "is", "cool"]
      concatenation = foldr(words, a & b)
    assert addition == 25, "Addition is (5+(9+(11)))"
    assert subtraction == 7, "Subtraction is (5-(9-(11)))"
    assert multiplication == 495, "Multiplication is (5*(9*(11)))"
    assert concatenation == "nimiscool"

  let s = sequence
  assert s.len > 0, "Can't fold empty sequences"
  var result: type(s[0])
  result = sequence[s.len - 1]
  for i in countdown(s.len - 2, 0):
    let
      a {.inject.} = s[i]
      b {.inject.} = result
    result = operation
  result

template mapIt*(s: typed, op: untyped): untyped =
  ## Returns a new sequence with the results of `op` proc applied to every
  ## item in the container `s`.
  ##
  ## Since the input is not modified you can use it to
  ## transform the type of the elements in the input container.
  ##
  ## The template injects the ``it`` variable which you can use directly in an
  ## expression.
  ##
  ## See also:
  ## * `map proc<#map,openArray[T],proc(T)>`_
  ## * `applyIt template<#applyIt.t,untyped,untyped>`_ for the in-place version
  ##
  runnableExamples:
    let
      nums = @[1, 2, 3, 4]
      strings = nums.mapIt($(4 * it))
    assert strings == @["4", "8", "12", "16"]

  when defined(nimHasTypeof):
    type outType = typeof((
      block:
        var it{.inject.}: typeof(items(s), typeOfIter);
        op), typeOfProc)
  else:
    type outType = type((
      block:
        var it{.inject.}: type(items(s));
        op))
  when compiles(s.len):
    block: # using a block avoids https://github.com/nim-lang/Nim/issues/8580

      # BUG: `evalOnceAs(s2, s, false)` would lead to C compile errors
      # (`error: use of undeclared identifier`) instead of Nim compile errors
      evalOnceAs(s2, s, compiles((let _ = s)))

      var i = 0
      var result = newSeq[outType](s2.len)
      for it {.inject.} in s2:
        result[i] = op
        i += 1
      result
  else:
    var result: seq[outType] = @[]
    for it {.inject.} in s:
      result.add(op)
    result

template applyIt*(varSeq, op: untyped) =
  ## Convenience template around the mutable ``apply`` proc to reduce typing.
  ##
  ## The template injects the ``it`` variable which you can use directly in an
  ## expression. The expression has to return the same type as the sequence you
  ## are mutating.
  ##
  ## See also:
  ## * `apply proc<#apply,openArray[T],proc(T)_2>`_
  ## * `mapIt template<#mapIt.t,typed,untyped>`_
  ##
  runnableExamples:
     var nums = @[1, 2, 3, 4]
     nums.applyIt(it * 3)
     assert nums[0] + nums[3] == 15

  for i in low(varSeq) .. high(varSeq):
    let it {.inject.} = varSeq[i]
    varSeq[i] = op


template newSeqWith*(len: int, init: untyped): untyped =
  ## Creates a new sequence of length `len`, calling `init` to initialize
  ## each value of the sequence.
  ##
  ## Useful for creating "2D" sequences - sequences containing other sequences
  ## or to populate fields of the created sequence.
  ##
  runnableExamples:
    ## Creates a seqence containing 5 bool sequences, each of length of 3.
    var seq2D = newSeqWith(5, newSeq[bool](3))
    assert seq2D.len == 5
    assert seq2D[0].len == 3
    assert seq2D[4][2] == false

    ## Creates a sequence of 20 random numbers from 1 to 10
    import random
    var seqRand = newSeqWith(20, random(10))

  var result = newSeq[type(init)](len)
  for i in 0 ..< len:
    result[i] = init
  result

proc mapLitsImpl(constructor: NimNode; op: NimNode; nested: bool;
                 filter = nnkLiterals): NimNode =
  if constructor.kind in filter:
    result = newNimNode(nnkCall, lineInfoFrom=constructor)
    result.add op
    result.add constructor
  else:
    result = copyNimNode(constructor)
    for v in constructor:
      if nested or v.kind in filter:
        result.add mapLitsImpl(v, op, nested, filter)
      else:
        result.add v

macro mapLiterals*(constructor, op: untyped;
                   nested = true): untyped =
  ## Applies ``op`` to each of the **atomic** literals like ``3``
  ## or ``"abc"`` in the specified ``constructor`` AST. This can
  ## be used to map every array element to some target type:
  ##
  ## Example:
  ##
  ## .. code-block::
  ##   let x = mapLiterals([0.1, 1.2, 2.3, 3.4], int)
  ##   doAssert x is array[4, int]
  ##
  ## Short notation for:
  ##
  ## .. code-block::
  ##   let x = [int(0.1), int(1.2), int(2.3), int(3.4)]
  ##
  ## If ``nested`` is true (which is the default), the literals are replaced
  ## everywhere in the ``constructor`` AST, otherwise only the first level
  ## is considered:
  ##
  ## .. code-block::
  ##   let a = mapLiterals((1.2, (2.3, 3.4), 4.8), int)
  ##   let b = mapLiterals((1.2, (2.3, 3.4), 4.8), int, nested=false)
  ##   assert a == (1, (2, 3), 4)
  ##   assert b == (1, (2.3, 3.4), 4)
  ##
  ##   let c = mapLiterals((1, (2, 3), 4, (5, 6)), `$`)
  ##   let d = mapLiterals((1, (2, 3), 4, (5, 6)), `$`, nested=false)
  ##   assert c == ("1", ("2", "3"), "4", ("5", "6"))
  ##   assert d == ("1", (2, 3), "4", (5, 6))
  ##
  ## There are no constraints for the ``constructor`` AST, it
  ## works for nested tuples of arrays of sets etc.
  result = mapLitsImpl(constructor, op, nested.boolVal)

when isMainModule:
  import strutils
  from algorithm import sorted

  # helper for testing double substitution side effects which are handled
  # by `evalOnceAs`
  var counter = 0
  proc identity[T](a:T):auto=
    counter.inc
    a

  block: # concat test
    let
      s1 = @[1, 2, 3]
      s2 = @[4, 5]
      s3 = @[6, 7]
      total = concat(s1, s2, s3)
    assert total == @[1, 2, 3, 4, 5, 6, 7]

  block: # count test
    let
      s1 = @[1, 2, 3, 2]
      s2 = @['a', 'b', 'x', 'a']
      a1 = [1, 2, 3, 2]
      a2 = ['a', 'b', 'x', 'a']
      r0 = count(s1, 0)
      r1 = count(s1, 1)
      r2 = count(s1, 2)
      r3 = count(s2, 'y')
      r4 = count(s2, 'x')
      r5 = count(s2, 'a')
      ar0 = count(a1, 0)
      ar1 = count(a1, 1)
      ar2 = count(a1, 2)
      ar3 = count(a2, 'y')
      ar4 = count(a2, 'x')
      ar5 = count(a2, 'a')
    assert r0 == 0
    assert r1 == 1
    assert r2 == 2
    assert r3 == 0
    assert r4 == 1
    assert r5 == 2
    assert ar0 == 0
    assert ar1 == 1
    assert ar2 == 2
    assert ar3 == 0
    assert ar4 == 1
    assert ar5 == 2

  block: # cycle tests
    let
      a = @[1, 2, 3]
      b: seq[int] = @[]
      c = [1, 2, 3]

    doAssert a.cycle(3) == @[1, 2, 3, 1, 2, 3, 1, 2, 3]
    doAssert a.cycle(0) == @[]
    #doAssert a.cycle(-1) == @[] # will not compile!
    doAssert b.cycle(3) == @[]
    doAssert c.cycle(3) == @[1, 2, 3, 1, 2, 3, 1, 2, 3]
    doAssert c.cycle(0) == @[]

  block: # repeat tests
    assert repeat(10, 5) == @[10, 10, 10, 10, 10]
    assert repeat(@[1,2,3], 2) == @[@[1,2,3], @[1,2,3]]
    assert repeat([1,2,3], 2) == @[[1,2,3], [1,2,3]]

  block: # deduplicates test
    let
      dup1 = @[1, 1, 3, 4, 2, 2, 8, 1, 4]
      dup2 = @["a", "a", "c", "d", "d"]
      dup3 = [1, 1, 3, 4, 2, 2, 8, 1, 4]
      dup4 = ["a", "a", "c", "d", "d"]
      unique1 = deduplicate(dup1)
      unique2 = deduplicate(dup2)
      unique3 = deduplicate(dup3)
      unique4 = deduplicate(dup4)
      unique5 = deduplicate(dup1.sorted, true)
      unique6 = deduplicate(dup2, true)
      unique7 = deduplicate(dup3.sorted, true)
      unique8 = deduplicate(dup4, true)
    assert unique1 == @[1, 3, 4, 2, 8]
    assert unique2 == @["a", "c", "d"]
    assert unique3 == @[1, 3, 4, 2, 8]
    assert unique4 == @["a", "c", "d"]
    assert unique5 == @[1, 2, 3, 4, 8]
    assert unique6 == @["a", "c", "d"]
    assert unique7 == @[1, 2, 3, 4, 8]
    assert unique8 == @["a", "c", "d"]

  block: # zip test
    let
      short = @[1, 2, 3]
      long = @[6, 5, 4, 3, 2, 1]
      words = @["one", "two", "three"]
      ashort = [1, 2, 3]
      along = [6, 5, 4, 3, 2, 1]
      awords = ["one", "two", "three"]
      zip1 = zip(short, long)
      zip2 = zip(short, words)
      zip3 = zip(ashort, along)
      zip4 = zip(ashort, awords)
      zip5 = zip(ashort, words)
    assert zip1 == @[(1, 6), (2, 5), (3, 4)]
    assert zip2 == @[(1, "one"), (2, "two"), (3, "three")]
    assert zip3 == @[(1, 6), (2, 5), (3, 4)]
    assert zip4 == @[(1, "one"), (2, "two"), (3, "three")]
    assert zip5 == @[(1, "one"), (2, "two"), (3, "three")]
    assert zip1[2].b == 4
    assert zip2[2].b == "three"
    assert zip3[2].b == 4
    assert zip4[2].b == "three"
    assert zip5[2].b == "three"

  block: # distribute tests
    let numbers = @[1, 2, 3, 4, 5, 6, 7]
    doAssert numbers.distribute(3) == @[@[1, 2, 3], @[4, 5], @[6, 7]]
    doAssert numbers.distribute(6)[0] == @[1, 2]
    doAssert numbers.distribute(6)[5] == @[7]
    let a = @[1, 2, 3, 4, 5, 6, 7]
    doAssert a.distribute(1, true) == @[@[1, 2, 3, 4, 5, 6, 7]]
    doAssert a.distribute(1, false) == @[@[1, 2, 3, 4, 5, 6, 7]]
    doAssert a.distribute(2, true) == @[@[1, 2, 3, 4], @[5, 6, 7]]
    doAssert a.distribute(2, false) == @[@[1, 2, 3, 4], @[5, 6, 7]]
    doAssert a.distribute(3, true) == @[@[1, 2, 3], @[4, 5], @[6, 7]]
    doAssert a.distribute(3, false) == @[@[1, 2, 3], @[4, 5, 6], @[7]]
    doAssert a.distribute(4, true) == @[@[1, 2], @[3, 4], @[5, 6], @[7]]
    doAssert a.distribute(4, false) == @[@[1, 2], @[3, 4], @[5, 6], @[7]]
    doAssert a.distribute(5, true) == @[@[1, 2], @[3, 4], @[5], @[6], @[7]]
    doAssert a.distribute(5, false) == @[@[1, 2], @[3, 4], @[5, 6], @[7], @[]]
    doAssert a.distribute(6, true) == @[@[1, 2], @[3], @[4], @[5], @[6], @[7]]
    doAssert a.distribute(6, false) == @[
      @[1, 2], @[3, 4], @[5, 6], @[7], @[], @[]]
    doAssert a.distribute(8, false) == a.distribute(8, true)
    doAssert a.distribute(90, false) == a.distribute(90, true)
    var b = @[0]
    for f in 1 .. 25: b.add(f)
    doAssert b.distribute(5, true)[4].len == 5
    doAssert b.distribute(5, false)[4].len == 2

  block: # map test
    let
      numbers = @[1, 4, 5, 8, 9, 7, 4]
      anumbers = [1, 4, 5, 8, 9, 7, 4]
      m1 = map(numbers, proc(x: int): int = 2*x)
      m2 = map(anumbers, proc(x: int): int = 2*x)
    assert m1 == @[2, 8, 10, 16, 18, 14, 8]
    assert m2 == @[2, 8, 10, 16, 18, 14, 8]

  block: # apply test
    var a = @["1", "2", "3", "4"]
    apply(a, proc(x: var string) = x &= "42")
    assert a == @["142", "242", "342", "442"]

  block: # filter proc test
    let
      colors = @["red", "yellow", "black"]
      acolors = ["red", "yellow", "black"]
      f1 = filter(colors, proc(x: string): bool = x.len < 6)
      f2 = filter(colors) do (x: string) -> bool : x.len > 5
      f3 = filter(acolors, proc(x: string): bool = x.len < 6)
      f4 = filter(acolors) do (x: string) -> bool : x.len > 5
    assert f1 == @["red", "black"]
    assert f2 == @["yellow"]
    assert f3 == @["red", "black"]
    assert f4 == @["yellow"]

  block: # filter iterator test
    let numbers = @[1, 4, 5, 8, 9, 7, 4]
    let anumbers = [1, 4, 5, 8, 9, 7, 4]
    assert toSeq(filter(numbers, proc (x: int): bool = x mod 2 == 0)) ==
      @[4, 8, 4]
    assert toSeq(filter(anumbers, proc (x: int): bool = x mod 2 == 0)) ==
      @[4, 8, 4]

  block: # keepIf test
    var floats = @[13.0, 12.5, 5.8, 2.0, 6.1, 9.9, 10.1]
    keepIf(floats, proc(x: float): bool = x > 10)
    assert floats == @[13.0, 12.5, 10.1]

  block: # delete tests
    let outcome = @[1,1,1,1,1,1,1,1]
    var dest = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1]
    dest.delete(3, 8)
    assert outcome == dest, """\
    Deleting range 3-9 from [1,1,1,2,2,2,2,2,2,1,1,1,1,1]
    is [1,1,1,1,1,1,1,1]"""

  block: # insert tests
    var dest = @[1,1,1,1,1,1,1,1]
    let
      src = @[2,2,2,2,2,2]
      outcome = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1]
    dest.insert(src, 3)
    assert dest == outcome, """\
    Inserting [2,2,2,2,2,2] into [1,1,1,1,1,1,1,1]
    at 3 is [1,1,1,2,2,2,2,2,2,1,1,1,1,1]"""

  block: # filterIt test
    let
      temperatures = @[-272.15, -2.0, 24.5, 44.31, 99.9, -113.44]
      acceptable = filterIt(temperatures, it < 50 and it > -10)
      notAcceptable = filterIt(temperatures, it > 50 or it < -10)
    assert acceptable == @[-2.0, 24.5, 44.31]
    assert notAcceptable == @[-272.15, 99.9, -113.44]

  block: # keepItIf test
    var candidates = @["foo", "bar", "baz", "foobar"]
    keepItIf(candidates, it.len == 3 and it[0] == 'b')
    assert candidates == @["bar", "baz"]

  block: # all
    let
      numbers = @[1, 4, 5, 8, 9, 7, 4]
      anumbers = [1, 4, 5, 8, 9, 7, 4]
      len0seq : seq[int] = @[]
    assert all(numbers, proc (x: int): bool = return x < 10) == true
    assert all(numbers, proc (x: int): bool = return x < 9) == false
    assert all(len0seq, proc (x: int): bool = return false) == true
    assert all(anumbers, proc (x: int): bool = return x < 10) == true
    assert all(anumbers, proc (x: int): bool = return x < 9) == false

  block: # allIt
    let
      numbers = @[1, 4, 5, 8, 9, 7, 4]
      anumbers = [1, 4, 5, 8, 9, 7, 4]
      len0seq : seq[int] = @[]
    assert allIt(numbers, it < 10) == true
    assert allIt(numbers, it < 9) == false
    assert allIt(len0seq, false) == true
    assert allIt(anumbers, it < 10) == true
    assert allIt(anumbers, it < 9) == false

  block: # any
    let
      numbers = @[1, 4, 5, 8, 9, 7, 4]
      anumbers = [1, 4, 5, 8, 9, 7, 4]
      len0seq : seq[int] = @[]
    assert any(numbers, proc (x: int): bool = return x > 8) == true
    assert any(numbers, proc (x: int): bool = return x > 9) == false
    assert any(len0seq, proc (x: int): bool = return true) == false
    assert any(anumbers, proc (x: int): bool = return x > 8) == true
    assert any(anumbers, proc (x: int): bool = return x > 9) == false

  block: # anyIt
    let
      numbers = @[1, 4, 5, 8, 9, 7, 4]
      anumbers = [1, 4, 5, 8, 9, 7, 4]
      len0seq : seq[int] = @[]
    assert anyIt(numbers, it > 8) == true
    assert anyIt(numbers, it > 9) == false
    assert anyIt(len0seq, true) == false
    assert anyIt(anumbers, it > 8) == true
    assert anyIt(anumbers, it > 9) == false

  block: # toSeq test
    block:
      let
        numeric = @[1, 2, 3, 4, 5, 6, 7, 8, 9]
        odd_numbers = toSeq(filter(numeric) do (x: int) -> bool:
          if x mod 2 == 1:
            result = true)
      assert odd_numbers == @[1, 3, 5, 7, 9]

    block:
      doAssert [1,2].toSeq == @[1,2]
      doAssert @[1,2].toSeq == @[1,2]

      doAssert @[1,2].toSeq == @[1,2]
      doAssert toSeq(@[1,2]) == @[1,2]

    block:
      iterator myIter(seed:int):auto=
        for i in 0..<seed:
          yield i
      doAssert toSeq(myIter(2)) == @[0, 1]

    block:
      iterator myIter():auto{.inline.}=
        yield 1
        yield 2

      doAssert myIter.toSeq == @[1,2]
      doAssert toSeq(myIter) == @[1,2]

    block:
      iterator myIter():int {.closure.} =
        yield 1
        yield 2

      doAssert myIter.toSeq == @[1,2]
      doAssert toSeq(myIter) == @[1,2]

    block:
      proc myIter():auto=
        iterator ret():int{.closure.}=
          yield 1
          yield 2
        result = ret

      doAssert myIter().toSeq == @[1,2]
      doAssert toSeq(myIter()) == @[1,2]

    block:
      proc myIter(n:int):auto=
        var counter = 0
        iterator ret():int{.closure.}=
          while counter<n:
            yield counter
            counter.inc
        result = ret

      block:
        let myIter3 = myIter(3)
        doAssert myIter3.toSeq == @[0,1,2]
      block:
        let myIter3 = myIter(3)
        doAssert toSeq(myIter3) == @[0,1,2]
      block:
        # makes sure this does not hang forever
        doAssert myIter(3).toSeq == @[0,1,2]
        doAssert toSeq(myIter(3)) == @[0,1,2]

  block:
    # tests https://github.com/nim-lang/Nim/issues/7187
    counter = 0
    let ret = toSeq(@[1, 2, 3].identity().filter(proc (x: int): bool = x < 3))
    doAssert ret == @[1, 2]
    doAssert counter == 1
  block: # foldl tests
    let
      numbers = @[5, 9, 11]
      addition = foldl(numbers, a + b)
      subtraction = foldl(numbers, a - b)
      multiplication = foldl(numbers, a * b)
      words = @["nim", "is", "cool"]
      concatenation = foldl(words, a & b)
    assert addition == 25, "Addition is (((5)+9)+11)"
    assert subtraction == -15, "Subtraction is (((5)-9)-11)"
    assert multiplication == 495, "Multiplication is (((5)*9)*11)"
    assert concatenation == "nimiscool"

  block: # foldr tests
    let
      numbers = @[5, 9, 11]
      addition = foldr(numbers, a + b)
      subtraction = foldr(numbers, a - b)
      multiplication = foldr(numbers, a * b)
      words = @["nim", "is", "cool"]
      concatenation = foldr(words, a & b)
    assert addition == 25, "Addition is (5+(9+(11)))"
    assert subtraction == 7, "Subtraction is (5-(9-(11)))"
    assert multiplication == 495, "Multiplication is (5*(9*(11)))"
    assert concatenation == "nimiscool"

  block: # mapIt + applyIt test
    counter = 0
    var
      nums = @[1, 2, 3, 4]
      strings = nums.identity.mapIt($(4 * it))
    doAssert counter == 1
    nums.applyIt(it * 3)
    assert nums[0] + nums[3] == 15
    assert strings[2] == "12"

  block: # newSeqWith tests
    var seq2D = newSeqWith(4, newSeq[bool](2))
    seq2D[0][0] = true
    seq2D[1][0] = true
    seq2D[0][1] = true
    doAssert seq2D == @[@[true, true], @[true, false], @[false, false], @[false, false]]

  block: # mapLiterals tests
    let x = mapLiterals([0.1, 1.2, 2.3, 3.4], int)
    doAssert x is array[4, int]
    doAssert mapLiterals((1, ("abc"), 2), float, nested=false) == (float(1), "abc", float(2))
    doAssert mapLiterals(([1], ("abc"), 2), `$`, nested=true) == (["1"], "abc", "2")

  block: # mapIt with openArray
    counter = 0
    proc foo(x: openArray[int]): seq[int] = x.mapIt(it * 10)
    doAssert foo([identity(1),identity(2)]) == @[10, 20]
    doAssert counter == 2

  block: # mapIt with direct openArray
    proc foo1(x: openArray[int]): seq[int] = x.mapIt(it * 10)
    counter = 0
    doAssert foo1(openArray[int]([identity(1),identity(2)])) == @[10,20]
    doAssert counter == 2

    # Corner cases (openArray litterals should not be common)
    template foo2(x: openArray[int]): seq[int] = x.mapIt(it * 10)
    counter = 0
    doAssert foo2(openArray[int]([identity(1),identity(2)])) == @[10,20]
    # TODO: this fails; not sure how to fix this case
    # doAssert counter == 2

    counter = 0
    doAssert openArray[int]([identity(1), identity(2)]).mapIt(it) == @[1,2]
    # ditto
    # doAssert counter == 2

  block: # mapIt empty test, see https://github.com/nim-lang/Nim/pull/8584#pullrequestreview-144723468
    # NOTE: `[].mapIt(it)` is illegal, just as `let a = @[]` is (lacks type
    # of elements)
    doAssert: not compiles(mapIt(@[], it))
    doAssert: not compiles(mapIt([], it))
    doAssert newSeq[int](0).mapIt(it) == @[]

  block: # mapIt redifinition check, see https://github.com/nim-lang/Nim/issues/8580
    let s2 = [1,2].mapIt(it)
    doAssert s2 == @[1,2]

  block:
    counter = 0
    doAssert [1,2].identity().mapIt(it*2).mapIt(it*10) == @[20, 40]
    # https://github.com/nim-lang/Nim/issues/7187 test case
    doAssert counter == 1

  block: # mapIt with invalid RHS for `let` (#8566)
    type X = enum
      A, B
    doAssert mapIt(X, $it) == @["A", "B"]

  block:
    # bug #9093
    let inp = "a:b,c:d"

    let outp = inp.split(",").mapIt(it.split(":"))
    doAssert outp == @[@["a", "b"], @["c", "d"]]


  when not defined(testing):
    echo "Finished doc tests"