summary refs log tree commit diff stats
path: root/tools/nimblepkglist.nim
Commit message (Expand)AuthorAgeFilesLines
* make implicit cstring conversions explicit (#19488)ee72022-08-191-6/+6
* walkDirRecFilter, update doc CI filter, compiler/index.nim for docs + variou...Timothee Cour2020-06-011-0/+3
* complete removal of web folder, fixes #9304 (#9310)Miran2018-10-121-0/+77
'n46' href='#n46'>46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
#
#
#            Nim's Runtime Library
#        (c) Copyright 2012 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

# Low level allocator for Nim. Has been designed to support the GC.
# TODO:
# - eliminate "used" field
# - make searching for block O(1)
{.push profiler:off.}

include osalloc

template track(op, address, size) =
  when defined(memTracker):
    memTrackerOp(op, address, size)

# We manage *chunks* of memory. Each chunk is a multiple of the page size.
# Each chunk starts at an address that is divisible by the page size. Chunks
# that are bigger than ``ChunkOsReturn`` are returned back to the operating
# system immediately.

const
  ChunkOsReturn = 256 * PageSize # 1 MB
  InitialMemoryRequest = ChunkOsReturn div 2 # < ChunkOsReturn!
  SmallChunkSize = PageSize

type
  PTrunk = ptr Trunk
  Trunk = object
    next: PTrunk         # all nodes are connected with this pointer
    key: int             # start address at bit 0
    bits: array[0..IntsPerTrunk-1, int] # a bit vector

  TrunkBuckets = array[0..255, PTrunk]
  IntSet = object
    data: TrunkBuckets

type
  AlignType = BiggestFloat
  FreeCell {.final, pure.} = object
    next: ptr FreeCell  # next free cell in chunk (overlaid with refcount)
    zeroField: int       # 0 means cell is not used (overlaid with typ field)
                         # 1 means cell is manually managed pointer
                         # otherwise a PNimType is stored in there

  PChunk = ptr BaseChunk
  PBigChunk = ptr BigChunk
  PSmallChunk = ptr SmallChunk
  BaseChunk {.pure, inheritable.} = object
    prevSize: int        # size of previous chunk; for coalescing
    size: int            # if < PageSize it is a small chunk
    used: bool           # later will be optimized into prevSize...

  SmallChunk = object of BaseChunk
    next, prev: PSmallChunk  # chunks of the same size
    freeList: ptr FreeCell
    free: int            # how many bytes remain
    acc: int             # accumulator for small object allocation
    data: AlignType      # start of usable memory

  BigChunk = object of BaseChunk # not necessarily > PageSize!
    next, prev: PBigChunk    # chunks of the same (or bigger) size
    align: int
    data: AlignType      # start of usable memory

template smallChunkOverhead(): expr = sizeof(SmallChunk)-sizeof(AlignType)
template bigChunkOverhead(): expr = sizeof(BigChunk)-sizeof(AlignType)

# ------------- chunk table ---------------------------------------------------
# We use a PtrSet of chunk starts and a table[Page, chunksize] for chunk
# endings of big chunks. This is needed by the merging operation. The only
# remaining operation is best-fit for big chunks. Since there is a size-limit
# for big chunks (because greater than the limit means they are returned back
# to the OS), a fixed size array can be used.

type
  PLLChunk = ptr LLChunk
  LLChunk = object ## *low-level* chunk
    size: int                # remaining size
    acc: int                 # accumulator
    next: PLLChunk           # next low-level chunk; only needed for dealloc

  PAvlNode = ptr AvlNode
  AvlNode = object
    link: array[0..1, PAvlNode] # Left (0) and right (1) links
    key, upperBound: int
    level: int

  MemRegion = object
    minLargeObj, maxLargeObj: int
    freeSmallChunks: array[0..SmallChunkSize div MemAlign-1, PSmallChunk]
    llmem: PLLChunk
    currMem, maxMem, freeMem: int # memory sizes (allocated from OS)
    lastSize: int # needed for the case that OS gives us pages linearly
    freeChunksList: PBigChunk # XXX make this a datastructure with O(1) access
    chunkStarts: IntSet
    root, deleted, last, freeAvlNodes: PAvlNode
    locked, blockChunkSizeIncrease: bool # if locked, we cannot free pages.
    nextChunkSize: int
{.deprecated: [TLLChunk: LLChunk, TAvlNode: AvlNode, TMemRegion: MemRegion].}

# shared:
var
  bottomData {.threadvar.}: AvlNode
  bottom {.threadvar.}: PAvlNode

{.push stack_trace: off.}
proc initAllocator() =
  when not defined(useNimRtl):
    bottom = addr(bottomData)
    bottom.link[0] = bottom
    bottom.link[1] = bottom
{.pop.}

proc incCurrMem(a: var MemRegion, bytes: int) {.inline.} =
  inc(a.currMem, bytes)

proc decCurrMem(a: var MemRegion, bytes: int) {.inline.} =
  a.maxMem = max(a.maxMem, a.currMem)
  dec(a.currMem, bytes)

proc getMaxMem(a: var MemRegion): int =
  # Since we update maxPagesCount only when freeing pages,
  # maxPagesCount may not be up to date. Thus we use the
  # maximum of these both values here:
  result = max(a.currMem, a.maxMem)

proc llAlloc(a: var MemRegion, size: int): pointer =
  # *low-level* alloc for the memory managers data structures. Deallocation
  # is done at the end of the allocator's life time.
  if a.llmem == nil or size > a.llmem.size:
    # the requested size is ``roundup(size+sizeof(LLChunk), PageSize)``, but
    # since we know ``size`` is a (small) constant, we know the requested size
    # is one page:
    sysAssert roundup(size+sizeof(LLChunk), PageSize) == PageSize, "roundup 6"
    var old = a.llmem # can be nil and is correct with nil
    a.llmem = cast[PLLChunk](osAllocPages(PageSize))
    incCurrMem(a, PageSize)
    a.llmem.size = PageSize - sizeof(LLChunk)
    a.llmem.acc = sizeof(LLChunk)
    a.llmem.next = old
  result = cast[pointer](cast[ByteAddress](a.llmem) + a.llmem.acc)
  dec(a.llmem.size, size)
  inc(a.llmem.acc, size)
  zeroMem(result, size)

proc allocAvlNode(a: var MemRegion, key, upperBound: int): PAvlNode =
  if a.freeAvlNodes != nil:
    result = a.freeAvlNodes
    a.freeAvlNodes = a.freeAvlNodes.link[0]
  else:
    result = cast[PAvlNode](llAlloc(a, sizeof(AvlNode)))
  result.key = key
  result.upperBound = upperBound
  result.link[0] = bottom
  result.link[1] = bottom
  result.level = 1
  sysAssert(bottom == addr(bottomData), "bottom data")
  sysAssert(bottom.link[0] == bottom, "bottom link[0]")
  sysAssert(bottom.link[1] == bottom, "bottom link[1]")

proc deallocAvlNode(a: var MemRegion, n: PAvlNode) {.inline.} =
  n.link[0] = a.freeAvlNodes
  a.freeAvlNodes = n

include "system/avltree"

proc llDeallocAll(a: var MemRegion) =
  var it = a.llmem
  while it != nil:
    # we know each block in the list has the size of 1 page:
    var next = it.next
    osDeallocPages(it, PageSize)
    it = next

proc intSetGet(t: IntSet, key: int): PTrunk =
  var it = t.data[key and high(t.data)]
  while it != nil:
    if it.key == key: return it
    it = it.next
  result = nil

proc intSetPut(a: var MemRegion, t: var IntSet, key: int): PTrunk =
  result = intSetGet(t, key)
  if result == nil:
    result = cast[PTrunk](llAlloc(a, sizeof(result[])))
    result.next = t.data[key and high(t.data)]
    t.data[key and high(t.data)] = result
    result.key = key

proc contains(s: IntSet, key: int): bool =
  var t = intSetGet(s, key shr TrunkShift)
  if t != nil:
    var u = key and TrunkMask
    result = (t.bits[u shr IntShift] and (1 shl (u and IntMask))) != 0
  else:
    result = false

proc incl(a: var MemRegion, s: var IntSet, key: int) =
  var t = intSetPut(a, s, key shr TrunkShift)
  var u = key and TrunkMask
  t.bits[u shr IntShift] = t.bits[u shr IntShift] or (1 shl (u and IntMask))

proc excl(s: var IntSet, key: int) =
  var t = intSetGet(s, key shr TrunkShift)
  if t != nil:
    var u = key and TrunkMask
    t.bits[u shr IntShift] = t.bits[u shr IntShift] and not
        (1 shl (u and IntMask))

iterator elements(t: IntSet): int {.inline.} =
  # while traversing it is forbidden to change the set!
  for h in 0..high(t.data):
    var r = t.data[h]
    while r != nil:
      var i = 0
      while i <= high(r.bits):
        var w = r.bits[i] # taking a copy of r.bits[i] here is correct, because
        # modifying operations are not allowed during traversation
        var j = 0
        while w != 0:         # test all remaining bits for zero
          if (w and 1) != 0:  # the bit is set!
            yield (r.key shl TrunkShift) or (i shl IntShift +% j)
          inc(j)
          w = w shr 1
        inc(i)
      r = r.next

proc isSmallChunk(c: PChunk): bool {.inline.} =
  return c.size <= SmallChunkSize-smallChunkOverhead()

proc chunkUnused(c: PChunk): bool {.inline.} =
  result = not c.used

iterator allObjects(m: var MemRegion): pointer {.inline.} =
  m.locked = true
  for s in elements(m.chunkStarts):
    # we need to check here again as it could have been modified:
    if s in m.chunkStarts:
      let c = cast[PChunk](s shl PageShift)
      if not chunkUnused(c):
        if isSmallChunk(c):
          var c = cast[PSmallChunk](c)

          let size = c.size
          var a = cast[ByteAddress](addr(c.data))
          let limit = a + c.acc
          while a <% limit:
            yield cast[pointer](a)
            a = a +% size
        else:
          let c = cast[PBigChunk](c)
          yield addr(c.data)
  m.locked = false

proc iterToProc*(iter: typed, envType: typedesc; procName: untyped) {.
                      magic: "Plugin", compileTime.}

proc isCell(p: pointer): bool {.inline.} =
  result = cast[ptr FreeCell](p).zeroField >% 1

# ------------- chunk management ----------------------------------------------
proc pageIndex(c: PChunk): int {.inline.} =
  result = cast[ByteAddress](c) shr PageShift

proc pageIndex(p: pointer): int {.inline.} =
  result = cast[ByteAddress](p) shr PageShift

proc pageAddr(p: pointer): PChunk {.inline.} =
  result = cast[PChunk](cast[ByteAddress](p) and not PageMask)
  #sysAssert(Contains(allocator.chunkStarts, pageIndex(result)))

proc writeFreeList(a: MemRegion) =
  var it = a.freeChunksList
  c_fprintf(stdout, "freeChunksList: %p\n", it)
  while it != nil:
    c_fprintf(stdout, "it: %p, next: %p, prev: %p, size: %ld\n",
              it, it.next, it.prev, it.size)
    it = it.next

proc requestOsChunks(a: var MemRegion, size: int): PBigChunk =
  when not defined(emscripten):
    if not a.blockChunkSizeIncrease:
      if a.currMem < 64 * 1024:
        a.nextChunkSize = PageSize*4
      else:
        a.nextChunkSize = min(roundup(a.currMem shr 2, PageSize), a.nextChunkSize * 2)
  var size = size

  if size > a.nextChunkSize:
    result = cast[PBigChunk](osAllocPages(size))
  else:
    result = cast[PBigChunk](osTryAllocPages(a.nextChunkSize))
    if result == nil:
      result = cast[PBigChunk](osAllocPages(size))
      a.blockChunkSizeIncrease = true
    else:
      size = a.nextChunkSize

  incCurrMem(a, size)
  inc(a.freeMem, size)

  sysAssert((cast[ByteAddress](result) and PageMask) == 0, "requestOsChunks 1")
  #zeroMem(result, size)
  result.next = nil
  result.prev = nil
  result.used = false
  result.size = size
  # update next.prevSize:
  var nxt = cast[ByteAddress](result) +% size
  sysAssert((nxt and PageMask) == 0, "requestOsChunks 2")
  var next = cast[PChunk](nxt)
  if pageIndex(next) in a.chunkStarts:
    #echo("Next already allocated!")
    next.prevSize = size
  # set result.prevSize:
  var lastSize = if a.lastSize != 0: a.lastSize else: PageSize
  var prv = cast[ByteAddress](result) -% lastSize
  sysAssert((nxt and PageMask) == 0, "requestOsChunks 3")
  var prev = cast[PChunk](prv)
  if pageIndex(prev) in a.chunkStarts and prev.size == lastSize:
    #echo("Prev already allocated!")
    result.prevSize = lastSize
  else:
    result.prevSize = 0 # unknown
  a.lastSize = size # for next request

proc freeOsChunks(a: var MemRegion, p: pointer, size: int) =
  # update next.prevSize:
  var c = cast[PChunk](p)
  var nxt = cast[ByteAddress](p) +% c.size
  sysAssert((nxt and PageMask) == 0, "freeOsChunks")
  var next = cast[PChunk](nxt)
  if pageIndex(next) in a.chunkStarts:
    next.prevSize = 0 # XXX used
  excl(a.chunkStarts, pageIndex(p))
  osDeallocPages(p, size)
  decCurrMem(a, size)
  dec(a.freeMem, size)
  #c_fprintf(stdout, "[Alloc] back to OS: %ld\n", size)

proc isAccessible(a: MemRegion, p: pointer): bool {.inline.} =
  result = contains(a.chunkStarts, pageIndex(p))

proc contains[T](list, x: T): bool =
  var it = list
  while it != nil:
    if it == x: return true
    it = it.next

proc listAdd[T](head: var T, c: T) {.inline.} =
  sysAssert(c notin head, "listAdd 1")
  sysAssert c.prev == nil, "listAdd 2"
  sysAssert c.next == nil, "listAdd 3"
  c.next = head
  if head != nil:
    sysAssert head.prev == nil, "listAdd 4"
    head.prev = c
  head = c

proc listRemove[T](head: var T, c: T) {.inline.} =
  sysAssert(c in head, "listRemove")
  if c == head:
    head = c.next
    sysAssert c.prev == nil, "listRemove 2"
    if head != nil: head.prev = nil
  else:
    sysAssert c.prev != nil, "listRemove 3"
    c.prev.next = c.next
    if c.next != nil: c.next.prev = c.prev
  c.next = nil
  c.prev = nil

proc updatePrevSize(a: var MemRegion, c: PBigChunk,
                    prevSize: int) {.inline.} =
  var ri = cast[PChunk](cast[ByteAddress](c) +% c.size)
  sysAssert((cast[ByteAddress](ri) and PageMask) == 0, "updatePrevSize")
  if isAccessible(a, ri):
    ri.prevSize = prevSize

proc freeBigChunk(a: var MemRegion, c: PBigChunk) =
  var c = c
  sysAssert(c.size >= PageSize, "freeBigChunk")
  inc(a.freeMem, c.size)
  when coalescRight:
    var ri = cast[PChunk](cast[ByteAddress](c) +% c.size)
    sysAssert((cast[ByteAddress](ri) and PageMask) == 0, "freeBigChunk 2")
    if isAccessible(a, ri) and chunkUnused(ri):
      sysAssert(not isSmallChunk(ri), "freeBigChunk 3")
      if not isSmallChunk(ri):
        listRemove(a.freeChunksList, cast[PBigChunk](ri))
        inc(c.size, ri.size)
        excl(a.chunkStarts, pageIndex(ri))
  when coalescLeft:
    if c.prevSize != 0:
      var le = cast[PChunk](cast[ByteAddress](c) -% c.prevSize)
      sysAssert((cast[ByteAddress](le) and PageMask) == 0, "freeBigChunk 4")
      if isAccessible(a, le) and chunkUnused(le):
        sysAssert(not isSmallChunk(le), "freeBigChunk 5")
        if not isSmallChunk(le):
          listRemove(a.freeChunksList, cast[PBigChunk](le))
          inc(le.size, c.size)
          excl(a.chunkStarts, pageIndex(c))
          c = cast[PBigChunk](le)

  if c.size < ChunkOsReturn or doNotUnmap or a.locked:
    incl(a, a.chunkStarts, pageIndex(c))
    updatePrevSize(a, c, c.size)
    listAdd(a.freeChunksList, c)
    c.used = false
  else:
    freeOsChunks(a, c, c.size)

proc splitChunk(a: var MemRegion, c: PBigChunk, size: int) =
  var rest = cast[PBigChunk](cast[ByteAddress](c) +% size)
  sysAssert(rest notin a.freeChunksList, "splitChunk")
  rest.size = c.size - size
  rest.used = false
  rest.next = nil
  rest.prev = nil
  rest.prevSize = size
  updatePrevSize(a, c, rest.size)
  c.size = size
  incl(a, a.chunkStarts, pageIndex(rest))
  listAdd(a.freeChunksList, rest)

proc getBigChunk(a: var MemRegion, size: int): PBigChunk =
  # use first fit for now:
  sysAssert((size and PageMask) == 0, "getBigChunk 1")
  sysAssert(size > 0, "getBigChunk 2")
  result = a.freeChunksList
  block search:
    while result != nil:
      sysAssert chunkUnused(result), "getBigChunk 3"
      if result.size == size:
        listRemove(a.freeChunksList, result)
        break search
      elif result.size > size:
        listRemove(a.freeChunksList, result)
        splitChunk(a, result, size)
        break search
      result = result.next
      sysAssert result != a.freeChunksList, "getBigChunk 4"
    if size < InitialMemoryRequest:
      result = requestOsChunks(a, InitialMemoryRequest)
      splitChunk(a, result, size)
    else:
      result = requestOsChunks(a, size)
      # if we over allocated split the chunk:
      if result.size > size:
        splitChunk(a, result, size)
  result.prevSize = 0 # XXX why is this needed?
  result.used = true
  incl(a, a.chunkStarts, pageIndex(result))
  dec(a.freeMem, size)

proc getSmallChunk(a: var MemRegion): PSmallChunk =
  var res = getBigChunk(a, PageSize)
  sysAssert res.prev == nil, "getSmallChunk 1"
  sysAssert res.next == nil, "getSmallChunk 2"
  result = cast[PSmallChunk](res)

# -----------------------------------------------------------------------------
proc isAllocatedPtr(a: MemRegion, p: pointer): bool {.benign.}

when true:
  template allocInv(a: MemRegion): bool = true
else:
  proc allocInv(a: MemRegion): bool =
    ## checks some (not all yet) invariants of the allocator's data structures.
    for s in low(a.freeSmallChunks)..high(a.freeSmallChunks):
      var c = a.freeSmallChunks[s]
      while not (c == nil):
        if c.next == c:
          echo "[SYSASSERT] c.next == c"
          return false
        if not (c.size == s * MemAlign):
          echo "[SYSASSERT] c.size != s * MemAlign"
          return false
        var it = c.freeList
        while not (it == nil):
          if not (it.zeroField == 0):
            echo "[SYSASSERT] it.zeroField != 0"
            c_printf("%ld %p\n", it.zeroField, it)
            return false
          it = it.next
        c = c.next
    result = true

proc rawAlloc(a: var MemRegion, requestedSize: int): pointer =
  sysAssert(allocInv(a), "rawAlloc: begin")
  sysAssert(roundup(65, 8) == 72, "rawAlloc: roundup broken")
  sysAssert(requestedSize >= sizeof(FreeCell), "rawAlloc: requested size too small")
  var size = roundup(requestedSize, MemAlign)
  sysAssert(size >= requestedSize, "insufficient allocated size!")
  #c_fprintf(stdout, "alloc; size: %ld; %ld\n", requestedSize, size)
  if size <= SmallChunkSize-smallChunkOverhead():
    # allocate a small block: for small chunks, we use only its next pointer
    var s = size div MemAlign
    var c = a.freeSmallChunks[s]
    if c == nil:
      c = getSmallChunk(a)
      c.freeList = nil
      sysAssert c.size == PageSize, "rawAlloc 3"
      c.size = size
      c.acc = size
      c.free = SmallChunkSize - smallChunkOverhead() - size
      c.next = nil
      c.prev = nil
      listAdd(a.freeSmallChunks[s], c)
      result = addr(c.data)
      sysAssert((cast[ByteAddress](result) and (MemAlign-1)) == 0, "rawAlloc 4")
    else:
      sysAssert(allocInv(a), "rawAlloc: begin c != nil")
      sysAssert c.next != c, "rawAlloc 5"
      #if c.size != size:
      #  c_fprintf(stdout, "csize: %lld; size %lld\n", c.size, size)
      sysAssert c.size == size, "rawAlloc 6"
      if c.freeList == nil:
        sysAssert(c.acc + smallChunkOverhead() + size <= SmallChunkSize,
                  "rawAlloc 7")
        result = cast[pointer](cast[ByteAddress](addr(c.data)) +% c.acc)
        inc(c.acc, size)
      else:
        result = c.freeList
        sysAssert(c.freeList.zeroField == 0, "rawAlloc 8")
        c.freeList = c.freeList.next
      dec(c.free, size)
      sysAssert((cast[ByteAddress](result) and (MemAlign-1)) == 0, "rawAlloc 9")
      sysAssert(allocInv(a), "rawAlloc: end c != nil")
    sysAssert(allocInv(a), "rawAlloc: before c.free < size")
    if c.free < size:
      sysAssert(allocInv(a), "rawAlloc: before listRemove test")
      listRemove(a.freeSmallChunks[s], c)
      sysAssert(allocInv(a), "rawAlloc: end listRemove test")
    sysAssert(((cast[ByteAddress](result) and PageMask) - smallChunkOverhead()) %%
               size == 0, "rawAlloc 21")
    sysAssert(allocInv(a), "rawAlloc: end small size")
  else:
    size = roundup(requestedSize+bigChunkOverhead(), PageSize)
    # allocate a large block
    var c = getBigChunk(a, size)
    sysAssert c.prev == nil, "rawAlloc 10"
    sysAssert c.next == nil, "rawAlloc 11"
    sysAssert c.size == size, "rawAlloc 12"
    result = addr(c.data)
    sysAssert((cast[ByteAddress](result) and (MemAlign-1)) == 0, "rawAlloc 13")
    if a.root == nil: a.root = bottom
    add(a, a.root, cast[ByteAddress](result), cast[ByteAddress](result)+%size)
  sysAssert(isAccessible(a, result), "rawAlloc 14")
  sysAssert(allocInv(a), "rawAlloc: end")
  when logAlloc: cprintf("rawAlloc: %ld %p\n", requestedSize, result)

proc rawAlloc0(a: var MemRegion, requestedSize: int): pointer =
  result = rawAlloc(a, requestedSize)
  zeroMem(result, requestedSize)

proc rawDealloc(a: var MemRegion, p: pointer) =
  #sysAssert(isAllocatedPtr(a, p), "rawDealloc: no allocated pointer")
  sysAssert(allocInv(a), "rawDealloc: begin")
  var c = pageAddr(p)
  if isSmallChunk(c):
    # `p` is within a small chunk:
    var c = cast[PSmallChunk](c)
    var s = c.size
    sysAssert(((cast[ByteAddress](p) and PageMask) - smallChunkOverhead()) %%
               s == 0, "rawDealloc 3")
    var f = cast[ptr FreeCell](p)
    #echo("setting to nil: ", $cast[ByteAddress](addr(f.zeroField)))
    sysAssert(f.zeroField != 0, "rawDealloc 1")
    f.zeroField = 0
    f.next = c.freeList
    c.freeList = f
    when overwriteFree:
      # set to 0xff to check for usage after free bugs:
      c_memset(cast[pointer](cast[int](p) +% sizeof(FreeCell)), -1'i32,
               s -% sizeof(FreeCell))
    # check if it is not in the freeSmallChunks[s] list:
    if c.free < s:
      # add it to the freeSmallChunks[s] array:
      listAdd(a.freeSmallChunks[s div MemAlign], c)
      inc(c.free, s)
    else:
      inc(c.free, s)
      if c.free == SmallChunkSize-smallChunkOverhead():
        listRemove(a.freeSmallChunks[s div MemAlign], c)
        c.size = SmallChunkSize
        freeBigChunk(a, cast[PBigChunk](c))
    sysAssert(((cast[ByteAddress](p) and PageMask) - smallChunkOverhead()) %%
               s == 0, "rawDealloc 2")
  else:
    # set to 0xff to check for usage after free bugs:
    when overwriteFree: c_memset(p, -1'i32, c.size -% bigChunkOverhead())
    # free big chunk
    var c = cast[PBigChunk](c)
    a.deleted = bottom
    del(a, a.root, cast[int](addr(c.data)))
    freeBigChunk(a, c)
  sysAssert(allocInv(a), "rawDealloc: end")
  when logAlloc: cprintf("rawDealloc: %p\n", p)

proc isAllocatedPtr(a: MemRegion, p: pointer): bool =
  if isAccessible(a, p):
    var c = pageAddr(p)
    if not chunkUnused(c):
      if isSmallChunk(c):
        var c = cast[PSmallChunk](c)
        var offset = (cast[ByteAddress](p) and (PageSize-1)) -%
                     smallChunkOverhead()
        result = (c.acc >% offset) and (offset %% c.size == 0) and
          (cast[ptr FreeCell](p).zeroField >% 1)
      else:
        var c = cast[PBigChunk](c)
        result = p == addr(c.data) and cast[ptr FreeCell](p).zeroField >% 1

proc prepareForInteriorPointerChecking(a: var MemRegion) {.inline.} =
  a.minLargeObj = lowGauge(a.root)
  a.maxLargeObj = highGauge(a.root)

proc interiorAllocatedPtr(a: MemRegion, p: pointer): pointer =
  if isAccessible(a, p):
    var c = pageAddr(p)
    if not chunkUnused(c):
      if isSmallChunk(c):
        var c = cast[PSmallChunk](c)
        var offset = (cast[ByteAddress](p) and (PageSize-1)) -%
                     smallChunkOverhead()
        if c.acc >% offset:
          sysAssert(cast[ByteAddress](addr(c.data)) +% offset ==
                    cast[ByteAddress](p), "offset is not what you think it is")
          var d = cast[ptr FreeCell](cast[ByteAddress](addr(c.data)) +%
                    offset -% (offset %% c.size))
          if d.zeroField >% 1:
            result = d
            sysAssert isAllocatedPtr(a, result), " result wrong pointer!"
      else:
        var c = cast[PBigChunk](c)
        var d = addr(c.data)
        if p >= d and cast[ptr FreeCell](d).zeroField >% 1:
          result = d
          sysAssert isAllocatedPtr(a, result), " result wrong pointer!"
  else:
    var q = cast[int](p)
    if q >=% a.minLargeObj and q <=% a.maxLargeObj:
      # this check is highly effective! Test fails for 99,96% of all checks on
      # an x86-64.
      var avlNode = inRange(a.root, q)
      if avlNode != nil:
        var k = cast[pointer](avlNode.key)
        var c = cast[PBigChunk](pageAddr(k))
        sysAssert(addr(c.data) == k, " k is not the same as addr(c.data)!")
        if cast[ptr FreeCell](k).zeroField >% 1:
          result = k
          sysAssert isAllocatedPtr(a, result), " result wrong pointer!"

proc ptrSize(p: pointer): int =
  var x = cast[pointer](cast[ByteAddress](p) -% sizeof(FreeCell))
  var c = pageAddr(p)
  sysAssert(not chunkUnused(c), "ptrSize")
  result = c.size -% sizeof(FreeCell)
  if not isSmallChunk(c):
    dec result, bigChunkOverhead()

proc alloc(allocator: var MemRegion, size: Natural): pointer =
  result = rawAlloc(allocator, size+sizeof(FreeCell))
  cast[ptr FreeCell](result).zeroField = 1 # mark it as used
  sysAssert(not isAllocatedPtr(allocator, result), "alloc")
  result = cast[pointer](cast[ByteAddress](result) +% sizeof(FreeCell))
  track("alloc", result, size)

proc alloc0(allocator: var MemRegion, size: Natural): pointer =
  result = alloc(allocator, size)
  zeroMem(result, size)

proc dealloc(allocator: var MemRegion, p: pointer) =
  sysAssert(p != nil, "dealloc 0")
  var x = cast[pointer](cast[ByteAddress](p) -% sizeof(FreeCell))
  sysAssert(x != nil, "dealloc 1")
  sysAssert(isAccessible(allocator, x), "is not accessible")
  sysAssert(cast[ptr FreeCell](x).zeroField == 1, "dealloc 2")
  rawDealloc(allocator, x)
  sysAssert(not isAllocatedPtr(allocator, x), "dealloc 3")
  track("dealloc", p, 0)

proc realloc(allocator: var MemRegion, p: pointer, newsize: Natural): pointer =
  if newsize > 0:
    result = alloc0(allocator, newsize)
    if p != nil:
      copyMem(result, p, ptrSize(p))
      dealloc(allocator, p)
  elif p != nil:
    dealloc(allocator, p)

proc deallocOsPages(a: var MemRegion) =
  # we free every 'ordinarily' allocated page by iterating over the page bits:
  for p in elements(a.chunkStarts):
    var page = cast[PChunk](p shl PageShift)
    when not doNotUnmap:
      var size = if page.size < PageSize: PageSize else: page.size
      osDeallocPages(page, size)
    else:
      # Linux on PowerPC for example frees MORE than asked if 'munmap'
      # receives the start of an originally mmap'ed memory block. This is not
      # too bad, but we must not access 'page.size' then as that could trigger
      # a segfault. But we don't need to access 'page.size' here anyway,
      # because calling munmap with PageSize suffices:
      osDeallocPages(page, PageSize)
  # And then we free the pages that are in use for the page bits:
  llDeallocAll(a)

proc getFreeMem(a: MemRegion): int {.inline.} = result = a.freeMem
proc getTotalMem(a: MemRegion): int {.inline.} = result = a.currMem
proc getOccupiedMem(a: MemRegion): int {.inline.} =
  result = a.currMem - a.freeMem

# ---------------------- thread memory region -------------------------------

template instantiateForRegion(allocator: expr) =
  when defined(fulldebug):
    proc interiorAllocatedPtr*(p: pointer): pointer =
      result = interiorAllocatedPtr(allocator, p)

    proc isAllocatedPtr*(p: pointer): bool =
      let p = cast[pointer](cast[ByteAddress](p)-%ByteAddress(sizeof(Cell)))
      result = isAllocatedPtr(allocator, p)

  proc deallocOsPages = deallocOsPages(allocator)

  proc alloc(size: Natural): pointer =
    result = alloc(allocator, size)

  proc alloc0(size: Natural): pointer =
    result = alloc0(allocator, size)

  proc dealloc(p: pointer) =
    dealloc(allocator, p)

  proc realloc(p: pointer, newsize: Natural): pointer =
    result = realloc(allocator, p, newSize)

  when false:
    proc countFreeMem(): int =
      # only used for assertions
      var it = allocator.freeChunksList
      while it != nil:
        inc(result, it.size)
        it = it.next

  proc getFreeMem(): int =
    result = allocator.freeMem
    #sysAssert(result == countFreeMem())

  proc getTotalMem(): int = return allocator.currMem
  proc getOccupiedMem(): int = return getTotalMem() - getFreeMem()
  proc getMaxMem*(): int = return getMaxMem(allocator)

  # -------------------- shared heap region ----------------------------------
  when hasThreadSupport:
    var sharedHeap: MemRegion
    var heapLock: SysLock
    initSysLock(heapLock)

  proc allocShared(size: Natural): pointer =
    when hasThreadSupport:
      acquireSys(heapLock)
      result = alloc(sharedHeap, size)
      releaseSys(heapLock)
    else:
      result = alloc(size)

  proc allocShared0(size: Natural): pointer =
    result = allocShared(size)
    zeroMem(result, size)

  proc deallocShared(p: pointer) =
    when hasThreadSupport:
      acquireSys(heapLock)
      dealloc(sharedHeap, p)
      releaseSys(heapLock)
    else:
      dealloc(p)

  proc reallocShared(p: pointer, newsize: Natural): pointer =
    when hasThreadSupport:
      acquireSys(heapLock)
      result = realloc(sharedHeap, p, newsize)
      releaseSys(heapLock)
    else:
      result = realloc(p, newSize)

  when hasThreadSupport:

    template sharedMemStatsShared(v: int) {.immediate.} =
      acquireSys(heapLock)
      result = v
      releaseSys(heapLock)

    proc getFreeSharedMem(): int =
      sharedMemStatsShared(sharedHeap.freeMem)

    proc getTotalSharedMem(): int =
      sharedMemStatsShared(sharedHeap.currMem)

    proc getOccupiedSharedMem(): int =
      sharedMemStatsShared(sharedHeap.currMem - sharedHeap.freeMem)

{.pop.}