summary refs log tree commit diff stats
path: root/compiler/ast.nim
blob: c28cb6e0bbcd758042bc922ee81a4e73344ee4e6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26<
import std/[strutils, os, osproc, parseutils, strformat]


proc main() =
  var msg = ""
  const cmd = "./koch boot --gc:orc -d:release"

  let (output, exitCode) = execCmdEx(cmd)

  doAssert exitCode == 0, output

  let start = rfind(output, "Hint: mm")
  doAssert parseUntil(output, msg, "; proj", start) > 0, output

  let (commitHash, _) = execCmdEx("""git log --format="%H" -n 1""")

  let welcomeMessage = fmt"""Thanks for your hard work on this PR!
The lines below are statistics of the Nim compiler built from {commitHash}

{msg}
"""
  createDir "ci/nimcache"
  writeFile "ci/nimcache/results.txt", welcomeMessage

when isMainModule:
  main()
a> 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
#
#
#           The Nimrod Compiler
#        (c) Copyright 2012 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

# abstract syntax tree + symbol table

import 
  msgs, hashes, nversion, options, strutils, crc, ropes, idents, lists, 
  intsets, idgen

const
  ImportTablePos* = 0         # imported symbols are at level 0
  ModuleTablePos* = 1         # module's top level symbols are at level 1

type 
  TCallingConvention* = enum 
    ccDefault,                # proc has no explicit calling convention
    ccStdCall,                # procedure is stdcall
    ccCDecl,                  # cdecl
    ccSafeCall,               # safecall
    ccSysCall,                # system call
    ccInline,                 # proc should be inlined
    ccNoInline,               # proc should not be inlined
    ccFastCall,               # fastcall (pass parameters in registers)
    ccClosure,                # proc has a closure
    ccNoConvention            # needed for generating proper C procs sometimes

const 
  CallingConvToStr*: array[TCallingConvention, string] = ["", "stdcall", 
    "cdecl", "safecall", "syscall", "inline", "noinline", "fastcall",
    "closure", "noconv"]

type 
  TNodeKind* = enum # order is extremely important, because ranges are used
                    # to check whether a node belongs to a certain class
    nkNone,               # unknown node kind: indicates an error
                          # Expressions:
                          # Atoms:
    nkEmpty,              # the node is empty
    nkIdent,              # node is an identifier
    nkSym,                # node is a symbol
    nkType,               # node is used for its typ field

    nkCharLit,            # a character literal ''
    nkIntLit,             # an integer literal
    nkInt8Lit,
    nkInt16Lit,
    nkInt32Lit,
    nkInt64Lit,
    nkUIntLit,            # an unsigned integer literal
    nkUInt8Lit,
    nkUInt16Lit,
    nkUInt32Lit,
    nkUInt64Lit,
    nkFloatLit,           # a floating point literal
    nkFloat32Lit,
    nkFloat64Lit,
    nkFloat128Lit,
    nkStrLit,             # a string literal ""
    nkRStrLit,            # a raw string literal r""
    nkTripleStrLit,       # a triple string literal """
    nkNilLit,             # the nil literal
                          # end of atoms
    nkMetaNode,           # difficult to explain; represents itself
                          # (used for macros)
    nkDotCall,            # used to temporarily flag a nkCall node; 
                          # this is used
                          # for transforming ``s.len`` to ``len(s)``
    nkCommand,            # a call like ``p 2, 4`` without parenthesis
    nkCall,               # a call like p(x, y) or an operation like +(a, b)
    nkCallStrLit,         # a call with a string literal 
                          # x"abc" has two sons: nkIdent, nkRStrLit
                          # x"""abc""" has two sons: nkIdent, nkTripleStrLit
    nkExprEqExpr,         # a named parameter with equals: ''expr = expr''
    nkExprColonExpr,      # a named parameter with colon: ''expr: expr''
    nkIdentDefs,          # a definition like `a, b: typeDesc = expr`
                          # either typeDesc or expr may be nil; used in
                          # formal parameters, var statements, etc.
    nkVarTuple,           # a ``var (a, b) = expr`` construct
    nkInfix,              # a call like (a + b)
    nkPrefix,             # a call like !a
    nkPostfix,            # something like a! (also used for visibility)
    nkPar,                # syntactic (); may be a tuple constructor
    nkCurly,              # syntactic {}
    nkCurlyExpr,          # an expression like a{i}
    nkBracket,            # syntactic []
    nkBracketExpr,        # an expression like a[i..j, k]
    nkPragmaExpr,         # an expression like a{.pragmas.}
    nkRange,              # an expression like i..j
    nkDotExpr,            # a.b
    nkCheckedFieldExpr,   # a.b, but b is a field that needs to be checked
    nkDerefExpr,          # a^
    nkIfExpr,             # if as an expression
    nkElifExpr,
    nkElseExpr,
    nkLambda,             # lambda expression
    nkDo,                 # lambda block appering as trailing proc param
    nkAccQuoted,          # `a` as a node

    nkTableConstr,        # a table constructor {expr: expr}
    nkBind,               # ``bind expr`` node
    nkSymChoice,          # symbol choice node
    nkHiddenStdConv,      # an implicit standard type conversion
    nkHiddenSubConv,      # an implicit type conversion from a subtype
                          # to a supertype
    nkHiddenCallConv,     # an implicit type conversion via a type converter
    nkConv,               # a type conversion
    nkCast,               # a type cast
    nkStaticExpr,         # a static expr
    nkAddr,               # a addr expression
    nkHiddenAddr,         # implicit address operator
    nkHiddenDeref,        # implicit ^ operator
    nkObjDownConv,        # down conversion between object types
    nkObjUpConv,          # up conversion between object types
    nkChckRangeF,         # range check for floats
    nkChckRange64,        # range check for 64 bit ints
    nkChckRange,          # range check for ints
    nkStringToCString,    # string to cstring
    nkCStringToString,    # cstring to string
                          # end of expressions

    nkAsgn,               # a = b
    nkFastAsgn,           # internal node for a fast ``a = b``
                          # (no string copy) 
    nkGenericParams,      # generic parameters
    nkFormalParams,       # formal parameters
    nkOfInherit,          # inherited from symbol

    nkModule,             # the syntax tree of a module
    nkProcDef,            # a proc
    nkMethodDef,          # a method
    nkConverterDef,       # a converter
    nkMacroDef,           # a macro
    nkTemplateDef,        # a template
    nkIteratorDef,        # an iterator

    nkOfBranch,           # used inside case statements
                          # for (cond, action)-pairs
    nkElifBranch,         # used in if statements
    nkExceptBranch,       # an except section
    nkElse,               # an else part
    nkMacroStmt,          # a macro statement
    nkAsmStmt,            # an assembler block
    nkPragma,             # a pragma statement
    nkPragmaBlock,        # a pragma with a block
    nkIfStmt,             # an if statement
    nkWhenStmt,           # a when expression or statement
    nkForStmt,            # a for statement
    nkParForStmt,         # a parallel for statement
    nkWhileStmt,          # a while statement
    nkCaseStmt,           # a case statement
    nkTypeSection,        # a type section (consists of type definitions)
    nkVarSection,         # a var section
    nkLetSection,         # a let section
    nkConstSection,       # a const section
    nkConstDef,           # a const definition
    nkTypeDef,            # a type definition
    nkYieldStmt,          # the yield statement as a tree
    nkTryStmt,            # a try statement
    nkFinally,            # a finally section
    nkRaiseStmt,          # a raise statement
    nkReturnStmt,         # a return statement
    nkBreakStmt,          # a break statement
    nkContinueStmt,       # a continue statement
    nkBlockStmt,          # a block statement
    nkStaticStmt,         # a static statement
    nkDiscardStmt,        # a discard statement
    nkStmtList,           # a list of statements
    nkImportStmt,         # an import statement
    nkFromStmt,           # a from * import statement
    nkIncludeStmt,        # an include statement
    nkBindStmt,           # a bind statement
    nkCommentStmt,        # a comment statement
    nkStmtListExpr,       # a statement list followed by an expr; this is used
                          # to allow powerful multi-line templates
    nkBlockExpr,          # a statement block ending in an expr; this is used
                          # to allowe powerful multi-line templates that open a
                          # temporary scope
    nkStmtListType,       # a statement list ending in a type; for macros
    nkBlockType,          # a statement block ending in a type; for macros
                          # types as syntactic trees:
    nkTypeOfExpr,         # type(1+2)
    nkObjectTy,           # object body
    nkTupleTy,            # tuple body
    nkRecList,            # list of object parts
    nkRecCase,            # case section of object
    nkRecWhen,            # when section of object
    nkRefTy,              # ``ref T``
    nkPtrTy,              # ``ptr T``
    nkVarTy,              # ``var T``
    nkConstTy,            # ``const T``
    nkMutableTy,          # ``mutable T``
    nkDistinctTy,         # distinct type
    nkProcTy,             # proc type
    nkEnumTy,             # enum body
    nkEnumFieldDef,       # `ident = expr` in an enumeration
    nkReturnToken,        # token used for interpretation
    nkClosure             # (prc, env)-pair (internally used for code gen)
  TNodeKinds* = set[TNodeKind]

type
  TSymFlag* = enum    # already 30 flags!
    sfUsed,           # read access of sym (for warnings) or simply used
    sfExported,       # symbol is exported from module
    sfFromGeneric,    # symbol is instantiation of a generic; this is needed 
                      # for symbol file generation; such symbols should always
                      # be written into the ROD file
    sfGlobal,         # symbol is at global scope

    sfForward,        # symbol is forward declared
    sfImportc,        # symbol is external; imported
    sfExportc,        # symbol is exported (under a specified name)
    sfVolatile,       # variable is volatile
    sfRegister,       # variable should be placed in a register
    sfPure,           # object is "pure" that means it has no type-information
    
    sfNoSideEffect,   # proc has no side effects
    sfSideEffect,     # proc may have side effects; cannot prove it has none
    sfMainModule,     # module is the main module
    sfSystemModule,   # module is the system module
    sfNoReturn,       # proc never returns (an exit proc)
    sfAddrTaken,      # the variable's address is taken (ex- or implicitely);
                      # *OR*: a proc is indirectly called (used as first class)
    sfCompilerProc,   # proc is a compiler proc, that is a C proc that is
                      # needed for the code generator
    sfProcvar,        # proc can be passed to a proc var
    sfDiscriminant,   # field is a discriminant in a record/object
    sfDeprecated,     # symbol is deprecated
    sfError,          # usage of symbol should trigger a compile-time error
    sfInnerProc,      # proc is an inner proc
    sfThread,         # proc will run as a thread
                      # variable is a thread variable
    sfCompileTime,    # proc can be evaluated at compile time
    sfMerge,          # proc can be merged with itself
    sfDeadCodeElim,   # dead code elimination for the module is turned on
    sfBorrow,         # proc is borrowed
    sfInfixCall,      # symbol needs infix call syntax in target language;
                      # for interfacing with C++, JS
    sfNamedParamCall, # symbol needs named parameter call syntax in target
                      # language; for interfacing with Objective C
    sfDiscardable     # returned value may be discarded implicitely
    sfDestructor      # proc is destructor
    sfByCopy          # a variable is to be captured by value in a closure

  TSymFlags* = set[TSymFlag]

const
  sfFakeConst* = sfDeadCodeElim  # const cannot be put into a data section
  sfDispatcher* = sfDeadCodeElim # copied method symbol is the dispatcher
  sfNoInit* = sfMainModule       # don't generate code to init the variable

  sfImmediate* = sfDeadCodeElim
    # macro or template is immediately expanded
    # without considering any possible overloads
  
  sfAnon* = sfDiscardable
    # symbol name that was generated by the compiler
    # the compiler will avoid printing such names 
    # in user messages.
  
  sfShadowed* = sfInnerProc
    # a variable that was shadowed in some inner scope
    
  sfHoist* = sfVolatile ## proc return value can be hoisted

const
  # getting ready for the future expr/stmt merge
  nkWhen* = nkWhenStmt
  nkWhenExpr* = nkWhenStmt

type
  TTypeKind* = enum  # order is important!
                     # Don't forget to change hti.nim if you make a change here
                     # XXX put this into an include file to avoid this issue!
    tyNone, tyBool, tyChar,
    tyEmpty, tyArrayConstr, tyNil, tyExpr, tyStmt, tyTypeDesc,
    tyGenericInvokation, # ``T[a, b]`` for types to invoke
    tyGenericBody,       # ``T[a, b, body]`` last parameter is the body
    tyGenericInst,       # ``T[a, b, realInstance]`` instantiated generic type
    tyGenericParam,      # ``a`` in the above patterns
    tyDistinct,
    tyEnum,
    tyOrdinal,           # integer types (including enums and boolean)
    tyArray,
    tyObject,
    tyTuple,
    tySet,
    tyRange,
    tyPtr, tyRef,
    tyVar,
    tySequence,
    tyProc,
    tyPointer, tyOpenArray,
    tyString, tyCString, tyForward,
    tyInt, tyInt8, tyInt16, tyInt32, tyInt64, # signed integers
    tyFloat, tyFloat32, tyFloat64, tyFloat128,
    tyUInt, tyUInt8, tyUInt16, tyUInt32, tyUInt64,
    tyBigNum, 
    tyConst, tyMutable, tyVarargs, 
    tyIter, # unused
    tyProxy # currently unused
    tyTypeClass,

const
  tyPureObject* = tyTuple
  GcTypeKinds* = {tyRef, tySequence, tyString}

type
  TTypeKinds* = set[TTypeKind]

  TNodeFlag* = enum
    nfNone,
    nfBase2,    # nfBase10 is default, so not needed
    nfBase8,
    nfBase16,
    nfAllConst, # used to mark complex expressions constant; easy to get rid of
                # but unfortunately it has measurable impact for compilation
                # efficiency
    nfTransf,   # node has been transformed
    nfSem       # node has been checked for semantics

  TNodeFlags* = set[TNodeFlag]
  TTypeFlag* = enum 
    tfVarargs,        # procedure has C styled varargs
    tfNoSideEffect,   # procedure type does not allow side effects
    tfFinal,          # is the object final?
    tfAcyclic,        # type is acyclic (for GC optimization)
    tfEnumHasHoles,   # enum cannot be mapped into a range
    tfShallow,        # type can be shallow copied on assignment
    tfThread,         # proc type is marked as ``thread``
    tfFromGeneric,    # type is an instantiation of a generic; this is needed
                      # because for instantiations of objects, structural
                      # type equality has to be used
    tfAll,            # type class requires all constraints to be met (default)
    tfAny             # type class requires any constraint to be met

  TTypeFlags* = set[TTypeFlag]

  TSymKind* = enum        # the different symbols (start with the prefix sk);
                          # order is important for the documentation generator!
    skUnknown,            # unknown symbol: used for parsing assembler blocks
                          # and first phase symbol lookup in generics
    skConditional,        # symbol for the preprocessor (may become obsolete)
    skDynLib,             # symbol represents a dynamic library; this is used
                          # internally; it does not exist in Nimrod code
    skParam,              # a parameter
    skGenericParam,       # a generic parameter; eq in ``proc x[eq=`==`]()``
    skTemp,               # a temporary variable (introduced by compiler)
    skModule,             # module identifier
    skType,               # a type
    skVar,                # a variable
    skLet,                # a 'let' symbol
    skConst,              # a constant
    skResult,             # special 'result' variable
    skProc,               # a proc
    skMethod,             # a method
    skIterator,           # an iterator
    skConverter,          # a type converter
    skMacro,              # a macro
    skTemplate,           # a template; currently also misused for user-defined
                          # pragmas
    skField,              # a field in a record or object
    skEnumField,          # an identifier in an enum
    skForVar,             # a for loop variable
    skLabel,              # a label (for block statement)
    skStub                # symbol is a stub and not yet loaded from the ROD
                          # file (it is loaded on demand, which may
                          # mean: never)
  TSymKinds* = set[TSymKind]

const
  routineKinds* = {skProc, skMethod, skIterator, skConverter,
    skMacro, skTemplate}
  tfIncompleteStruct* = tfVarargs

type
  TMagic* = enum # symbols that require compiler magic:
    mNone,
    mDefined, mDefinedInScope, mLow, mHigh, mSizeOf, mTypeTrait, mIs, mOf,
    mEcho, mShallowCopy, mSlurp, mStaticExec,
    mParseExprToAst, mParseStmtToAst, mExpandToAst,
    mUnaryLt, mSucc, 
    mPred, mInc, mDec, mOrd, mNew, mNewFinalize, mNewSeq, mLengthOpenArray, 
    mLengthStr, mLengthArray, mLengthSeq, mIncl, mExcl, mCard, mChr, mGCref, 
    mGCunref, mAddI, mSubI, mMulI, mDivI, mModI, mAddI64, mSubI64, mMulI64, 
    mDivI64, mModI64,
    mAddF64, mSubF64, mMulF64, mDivF64,
    mShrI, mShlI, mBitandI, mBitorI, mBitxorI, mMinI, mMaxI, 
    mShrI64, mShlI64, mBitandI64, mBitorI64, mBitxorI64, mMinI64, mMaxI64,
    mMinF64, mMaxF64, mAddU, mSubU, mMulU, 
    mDivU, mModU, mAddU64, mSubU64, mMulU64, mDivU64, mModU64, mEqI, mLeI,
    mLtI, 
    mEqI64, mLeI64, mLtI64, mEqF64, mLeF64, mLtF64, 
    mLeU, mLtU, mLeU64, mLtU64, 
    mEqEnum, mLeEnum, mLtEnum, mEqCh, mLeCh, mLtCh, mEqB, mLeB, mLtB, mEqRef, 
    mEqUntracedRef, mLePtr, mLtPtr, mEqCString, mXor, mEqProc, mUnaryMinusI,
    mUnaryMinusI64, mAbsI, mAbsI64, mNot, 
    mUnaryPlusI, mBitnotI, mUnaryPlusI64, 
    mBitnotI64, mUnaryPlusF64, mUnaryMinusF64, mAbsF64, mZe8ToI, mZe8ToI64, 
    mZe16ToI, mZe16ToI64, mZe32ToI64, mZeIToI64, mToU8, mToU16, mToU32, 
    mToFloat, mToBiggestFloat, mToInt, mToBiggestInt, mCharToStr, mBoolToStr, 
    mIntToStr, mInt64ToStr, mFloatToStr, mCStrToStr, mStrToStr, mEnumToStr, 
    mAnd, mOr, mEqStr, mLeStr, mLtStr, mEqSet, mLeSet, mLtSet, mMulSet, 
    mPlusSet, mMinusSet, mSymDiffSet, mConStrStr, mConArrArr, mConArrT, 
    mConTArr, mConTT, mSlice, 
    mFields, mFieldPairs, mOmpParFor,
    mAppendStrCh, mAppendStrStr, mAppendSeqElem, 
    mInRange, mInSet, mRepr, mExit, mSetLengthStr, mSetLengthSeq, 
    mIsPartOf, mAstToStr, mRand, 
    mSwap, mIsNil, mArrToSeq, mCopyStr, mCopyStrLast, 
    mNewString, mNewStringOfCap,
    mReset,
    mArray, mOpenArray, mRange, mSet, mSeq, 
    mOrdinal,
    mInt, mInt8, mInt16, mInt32, mInt64,
    mUInt, mUInt8, mUInt16, mUInt32, mUInt64,
    mFloat, mFloat32, mFloat64, mFloat128,
    mBool, mChar, mString, mCstring,
    mPointer, mEmptySet, mIntSetBaseType, mNil, mExpr, mStmt, mTypeDesc, 
    mVoidType, mPNimrodNode,
    mIsMainModule, mCompileDate, mCompileTime, mNimrodVersion, mNimrodMajor, 
    mNimrodMinor, mNimrodPatch, mCpuEndian, mHostOS, mHostCPU, mAppType, 
    mNaN, mInf, mNegInf, 
    mCompileOption, mCompileOptionArg,
    mNLen, mNChild, mNSetChild, mNAdd, mNAddMultiple, mNDel, mNKind, 
    mNIntVal, mNFloatVal, mNSymbol, mNIdent, mNGetType, mNStrVal, mNSetIntVal, 
    mNSetFloatVal, mNSetSymbol, mNSetIdent, mNSetType, mNSetStrVal, mNLineInfo,
    mNNewNimNode, mNCopyNimNode, mNCopyNimTree, mStrToIdent, mIdentToStr, 
    mEqIdent, mEqNimrodNode, mNHint, mNWarning, mNError, 
    mInstantiationInfo, mGetTypeInfo

# things that we can evaluate safely at compile time, even if not asked for it:
const
  ctfeWhitelist* = {mNone, mUnaryLt, mSucc, 
    mPred, mInc, mDec, mOrd, mLengthOpenArray, 
    mLengthStr, mLengthArray, mLengthSeq, mIncl, mExcl, mCard, mChr, 
    mAddI, mSubI, mMulI, mDivI, mModI, mAddI64, mSubI64, mMulI64, 
    mDivI64, mModI64, mAddF64, mSubF64, mMulF64, mDivF64,
    mShrI, mShlI, mBitandI, mBitorI, mBitxorI, mMinI, mMaxI, 
    mShrI64, mShlI64, mBitandI64, mBitorI64, mBitxorI64, mMinI64, mMaxI64,
    mMinF64, mMaxF64, mAddU, mSubU, mMulU, 
    mDivU, mModU, mAddU64, mSubU64, mMulU64, mDivU64, mModU64, mEqI, mLeI,
    mLtI, 
    mEqI64, mLeI64, mLtI64, mEqF64, mLeF64, mLtF64, 
    mLeU, mLtU, mLeU64, mLtU64, 
    mEqEnum, mLeEnum, mLtEnum, mEqCh, mLeCh, mLtCh, mEqB, mLeB, mLtB, mEqRef, 
    mEqProc, mEqUntracedRef, mLePtr, mLtPtr, mEqCString, mXor, mUnaryMinusI, 
    mUnaryMinusI64, mAbsI, mAbsI64, mNot, 
    mUnaryPlusI, mBitnotI, mUnaryPlusI64, 
    mBitnotI64, mUnaryPlusF64, mUnaryMinusF64, mAbsF64, mZe8ToI, mZe8ToI64, 
    mZe16ToI, mZe16ToI64, mZe32ToI64, mZeIToI64, mToU8, mToU16, mToU32, 
    mToFloat, mToBiggestFloat, mToInt, mToBiggestInt, mCharToStr, mBoolToStr, 
    mIntToStr, mInt64ToStr, mFloatToStr, mCStrToStr, mStrToStr, mEnumToStr, 
    mAnd, mOr, mEqStr, mLeStr, mLtStr, mEqSet, mLeSet, mLtSet, mMulSet, 
    mPlusSet, mMinusSet, mSymDiffSet, mConStrStr, mConArrArr, mConArrT, 
    mConTArr, mConTT, mSlice, 
    mAppendStrCh, mAppendStrStr, mAppendSeqElem, 
    mInRange, mInSet, mRepr,
    mRand, 
    mCopyStr, mCopyStrLast}

type 
  PNode* = ref TNode
  TNodeSeq* = seq[PNode]
  PType* = ref TType
  PSym* = ref TSym
  TNode*{.acyclic, final.} = object # on a 32bit machine, this takes 32 bytes
    typ*: PType
    comment*: string
    info*: TLineInfo
    flags*: TNodeFlags
    case Kind*: TNodeKind
    of nkCharLit..nkUInt64Lit:
      intVal*: biggestInt
    of nkFloatLit..nkFloat128Lit:
      floatVal*: biggestFloat
    of nkStrLit..nkTripleStrLit:
      strVal*: string
    of nkSym: 
      sym*: PSym
    of nkIdent: 
      ident*: PIdent
    else: 
      sons*: TNodeSeq
  
  TSymSeq* = seq[PSym]
  TStrTable* = object         # a table[PIdent] of PSym
    counter*: int
    data*: TSymSeq
  
  # -------------- backend information -------------------------------
  TLocKind* = enum 
    locNone,                  # no location
    locTemp,                  # temporary location
    locLocalVar,              # location is a local variable
    locGlobalVar,             # location is a global variable
    locParam,                 # location is a parameter
    locField,                 # location is a record field
    locArrayElem,             # location is an array element
    locExpr,                  # "location" is really an expression
    locProc,                  # location is a proc (an address of a procedure)
    locData,                  # location is a constant
    locCall,                  # location is a call expression
    locOther                  # location is something other
  TLocFlag* = enum 
    lfIndirect,               # backend introduced a pointer
    lfParamCopy,              # backend introduced a parameter copy (LLVM)
    lfNoDeepCopy,             # no need for a deep copy
    lfNoDecl,                 # do not declare it in C
    lfDynamicLib,             # link symbol to dynamic library
    lfExportLib,              # export symbol for dynamic library generation
    lfHeader,                 # include header file for symbol
    lfImportCompilerProc      # ``importc`` of a compilerproc
  TStorageLoc* = enum 
    OnUnknown,                # location is unknown (stack, heap or static)
    OnStack,                  # location is on hardware stack
    OnHeap                    # location is on heap or global
                              # (reference counting needed)
  TLocFlags* = set[TLocFlag]
  TLoc*{.final.} = object     
    k*: TLocKind              # kind of location
    s*: TStorageLoc
    flags*: TLocFlags         # location's flags
    t*: PType                 # type of location
    r*: PRope                 # rope value of location (code generators)
    a*: int                   # location's "address", i.e. slot for temporaries

  # ---------------- end of backend information ------------------------------

  TLibKind* = enum 
    libHeader, libDynamic
  TLib* = object of lists.TListEntry # also misused for headers!
    kind*: TLibKind
    generated*: bool          # needed for the backends:
    name*: PRope
    path*: PNode              # can be a string literal!
    

  PLib* = ref TLib
  TSym* = object of TIdObj
    kind*: TSymKind
    magic*: TMagic
    typ*: PType
    name*: PIdent
    info*: TLineInfo
    owner*: PSym
    flags*: TSymFlags
    tab*: TStrTable           # interface table for modules
    ast*: PNode               # syntax tree of proc, iterator, etc.:
                              # the whole proc including header; this is used
                              # for easy generation of proper error messages
                              # for variant record fields the discriminant
                              # expression
                              # for modules, it's a placeholder for compiler
                              # generated code that will be appended to the
                              # module after the sem pass (see appendToModule)
    options*: TOptions
    position*: int            # used for many different things:
                              # for enum fields its position;
                              # for fields its offset
                              # for parameters its position
                              # for a conditional:
                              # 1 iff the symbol is defined, else 0
                              # (or not in symbol table)
                              # for modules, a unique index correspinding
                              # to the order of compilation 
    offset*: int              # offset of record field
    loc*: TLoc
    annex*: PLib              # additional fields (seldom used, so we use a
                              # reference to another object to safe space)
  
  TTypeSeq* = seq[PType]
  TType* = object of TIdObj   # types are identical iff they have the
                              # same id; there may be multiple copies of a type
                              # in memory!
    kind*: TTypeKind          # kind of type
    callConv*: TCallingConvention # for procs
    flags*: TTypeFlags        # flags of the type
    sons*: TTypeSeq           # base types, etc.
    n*: PNode                 # node for types:
                              # for range types a nkRange node
                              # for record types a nkRecord node
                              # for enum types a list of symbols
                              # for tyInt it can be the int literal
                              # else: unused
    destructor*: PSym         # destructor. warning: nil here may not necessary
                              # mean that there is no destructor.
                              # see instantiateDestructor in types.nim
    owner*: PSym              # the 'owner' of the type
    sym*: PSym                # types have the sym associated with them
                              # it is used for converting types to strings
    size*: BiggestInt         # the size of the type in bytes
                              # -1 means that the size is unkwown
    align*: int               # the type's alignment requirements
    containerID*: int         # used for type checking of generics
    loc*: TLoc

  TPair*{.final.} = object 
    key*, val*: PObject

  TPairSeq* = seq[TPair]
  TTable*{.final.} = object   # the same as table[PObject] of PObject
    counter*: int
    data*: TPairSeq

  TIdPair*{.final.} = object 
    key*: PIdObj
    val*: PObject

  TIdPairSeq* = seq[TIdPair]
  TIdTable*{.final.} = object # the same as table[PIdent] of PObject
    counter*: int
    data*: TIdPairSeq

  TIdNodePair*{.final.} = object 
    key*: PIdObj
    val*: PNode

  TIdNodePairSeq* = seq[TIdNodePair]
  TIdNodeTable*{.final.} = object # the same as table[PIdObj] of PNode
    counter*: int
    data*: TIdNodePairSeq

  TNodePair*{.final.} = object 
    h*: THash                 # because it is expensive to compute!
    key*: PNode
    val*: int

  TNodePairSeq* = seq[TNodePair]
  TNodeTable*{.final.} = object # the same as table[PNode] of int;
                                # nodes are compared by structure!
    counter*: int
    data*: TNodePairSeq

  TObjectSeq* = seq[PObject]
  TObjectSet*{.final.} = object 
    counter*: int
    data*: TObjectSeq

# BUGFIX: a module is overloadable so that a proc can have the
# same name as an imported module. This is necessary because of
# the poor naming choices in the standard library.

const 
  OverloadableSyms* = {skProc, skMethod, skIterator, skConverter,
    skModule, skTemplate, skMacro}

  GenericTypes*: TTypeKinds = {tyGenericInvokation, tyGenericBody, 
    tyGenericParam}
  StructuralEquivTypes*: TTypeKinds = {tyArrayConstr, tyNil, tyTuple, tyArray, 
    tySet, tyRange, tyPtr, tyRef, tyVar, tySequence, tyProc, tyOpenArray}
  ConcreteTypes*: TTypeKinds = { # types of the expr that may occur in::
                                 # var x = expr
    tyBool, tyChar, tyEnum, tyArray, tyObject, 
    tySet, tyTuple, tyRange, tyPtr, tyRef, tyVar, tySequence, tyProc,
    tyPointer, 
    tyOpenArray, tyString, tyCString, tyInt..tyInt64, tyFloat..tyFloat128,
    tyUInt..tyUInt64}
  IntegralTypes* = {tyBool, tyChar, tyEnum, tyInt..tyInt64,
    tyFloat..tyFloat128, tyUInt..tyUInt64}
  ConstantDataTypes*: TTypeKinds = {tyArrayConstr, tyArray, tySet, 
                                    tyTuple, tySequence}
  ExportableSymKinds* = {skVar, skConst, skProc, skMethod, skType, skIterator, 
    skMacro, skTemplate, skConverter, skEnumField, skLet, skStub}
  PersistentNodeFlags*: TNodeFlags = {nfBase2, nfBase8, nfBase16, nfAllConst}
  namePos* = 0
  genericParamsPos* = 1
  paramsPos* = 2
  pragmasPos* = 3
  bodyPos* = 4       # position of body; use rodread.getBody() instead!
  resultPos* = 5
  dispatcherPos* = 6 # caution: if method has no 'result' it can be position 5!

  nkCallKinds* = {nkCall, nkInfix, nkPrefix, nkPostfix,
                  nkCommand, nkCallStrLit}

  nkLambdaKinds* = {nkLambda, nkDo}

  skLocalVars* = {skVar, skLet, skForVar, skParam}


# creator procs:
proc NewSym*(symKind: TSymKind, Name: PIdent, owner: PSym): PSym
proc NewType*(kind: TTypeKind, owner: PSym): PType
proc newNode*(kind: TNodeKind): PNode
proc newIntNode*(kind: TNodeKind, intVal: BiggestInt): PNode
proc newIntTypeNode*(kind: TNodeKind, intVal: BiggestInt, typ: PType): PNode
proc newFloatNode*(kind: TNodeKind, floatVal: BiggestFloat): PNode
proc newStrNode*(kind: TNodeKind, strVal: string): PNode
proc newIdentNode*(ident: PIdent, info: TLineInfo): PNode
proc newSymNode*(sym: PSym): PNode
proc newNodeI*(kind: TNodeKind, info: TLineInfo): PNode
proc newNodeIT*(kind: TNodeKind, info: TLineInfo, typ: PType): PNode
proc initStrTable*(x: var TStrTable)
proc initTable*(x: var TTable)
proc initIdTable*(x: var TIdTable)
proc initObjectSet*(x: var TObjectSet)
proc initIdNodeTable*(x: var TIdNodeTable)
proc initNodeTable*(x: var TNodeTable)
  
# copy procs:
proc copyType*(t: PType, owner: PSym, keepId: bool): PType
proc copySym*(s: PSym, keepId: bool = false): PSym
proc assignType*(dest, src: PType)
proc copyStrTable*(dest: var TStrTable, src: TStrTable)
proc copyTable*(dest: var TTable, src: TTable)
proc copyObjectSet*(dest: var TObjectSet, src: TObjectSet)
proc copyIdTable*(dest: var TIdTable, src: TIdTable)
proc sonsLen*(n: PNode): int {.inline.}
proc sonsLen*(n: PType): int {.inline.}
proc lastSon*(n: PNode): PNode {.inline.}
proc lastSon*(n: PType): PType {.inline.}
proc newSons*(father: PNode, length: int)
proc newSons*(father: PType, length: int)
proc addSon*(father, son: PNode)
proc delSon*(father: PNode, idx: int)
proc hasSonWith*(n: PNode, kind: TNodeKind): bool
proc hasSubnodeWith*(n: PNode, kind: TNodeKind): bool
proc replaceSons*(n: PNode, oldKind, newKind: TNodeKind)
proc copyNode*(src: PNode): PNode
  # does not copy its sons!
proc copyTree*(src: PNode): PNode
  # does copy its sons!

proc isCallExpr*(n: PNode): bool =
  result = n.kind in nkCallKinds

proc discardSons*(father: PNode)

proc len*(n: PNode): int {.inline.} =
  if isNil(n.sons): result = 0
  else: result = len(n.sons)
  
proc safeLen*(n: PNode): int {.inline.} =
  ## works even for leaves.
  if n.kind in {nkNone..nkNilLit} or isNil(n.sons): result = 0
  else: result = len(n.sons)
  
proc add*(father, son: PNode) =
  assert son != nil
  if isNil(father.sons): father.sons = @[]
  add(father.sons, son)
  
proc `[]`*(n: PNode, i: int): PNode {.inline.} =
  result = n.sons[i]

var emptyNode* = newNode(nkEmpty)
# There is a single empty node that is shared! Do not overwrite it!

proc linkTo*(t: PType, s: PSym): PType {.discardable.} =
  t.sym = s
  s.typ = t
  result = t

proc linkTo*(s: PSym, t: PType): PSym {.discardable.} =
  t.sym = s
  s.typ = t
  result = s

proc appendToModule*(m: PSym, n: PNode) =
  ## The compiler will use this internally to add nodes that will be
  ## appended to the module after the sem pass
  if m.ast == nil:
    m.ast = newNode(nkStmtList)
    m.ast.sons = @[n]
  else:
    assert m.ast.kind == nkStmtList
    m.ast.sons.add(n)
  
const                         # for all kind of hash tables:
  GrowthFactor* = 2           # must be power of 2, > 0
  StartSize* = 8              # must be power of 2, > 0

proc ValueToString*(a: PNode): string = 
  case a.kind
  of nkCharLit..nkUInt64Lit: result = $(a.intVal)
  of nkFloatLit..nkFloat128Lit: result = $(a.floatVal)
  of nkStrLit..nkTripleStrLit: result = a.strVal
  else: 
    InternalError(a.info, "valueToString")
    result = ""

proc copyStrTable(dest: var TStrTable, src: TStrTable) = 
  dest.counter = src.counter
  if isNil(src.data): return 
  setlen(dest.data, len(src.data))
  for i in countup(0, high(src.data)): dest.data[i] = src.data[i]
  
proc copyIdTable(dest: var TIdTable, src: TIdTable) = 
  dest.counter = src.counter
  if isNil(src.data): return 
  newSeq(dest.data, len(src.data))
  for i in countup(0, high(src.data)): dest.data[i] = src.data[i]
  
proc copyTable(dest: var TTable, src: TTable) = 
  dest.counter = src.counter
  if isNil(src.data): return 
  setlen(dest.data, len(src.data))
  for i in countup(0, high(src.data)): dest.data[i] = src.data[i]
  
proc copyObjectSet(dest: var TObjectSet, src: TObjectSet) = 
  dest.counter = src.counter
  if isNil(src.data): return 
  setlen(dest.data, len(src.data))
  for i in countup(0, high(src.data)): dest.data[i] = src.data[i]
  
proc discardSons(father: PNode) = 
  father.sons = nil

proc newNode(kind: TNodeKind): PNode = 
  new(result)
  result.kind = kind
  #result.info = UnknownLineInfo() inlined:
  result.info.fileIndex = int32(- 1)
  result.info.col = int16(- 1)
  result.info.line = int16(- 1)

proc newIntNode(kind: TNodeKind, intVal: BiggestInt): PNode = 
  result = newNode(kind)
  result.intVal = intVal

proc newIntTypeNode(kind: TNodeKind, intVal: BiggestInt, typ: PType): PNode = 
  result = newIntNode(kind, intVal)
  result.typ = typ

proc newFloatNode(kind: TNodeKind, floatVal: BiggestFloat): PNode = 
  result = newNode(kind)
  result.floatVal = floatVal

proc newStrNode(kind: TNodeKind, strVal: string): PNode = 
  result = newNode(kind)
  result.strVal = strVal

proc newIdentNode(ident: PIdent, info: TLineInfo): PNode = 
  result = newNode(nkIdent)
  result.ident = ident
  result.info = info

proc newSymNode(sym: PSym): PNode = 
  result = newNode(nkSym)
  result.sym = sym
  result.typ = sym.typ
  result.info = sym.info

proc newSymNode*(sym: PSym, info: TLineInfo): PNode = 
  result = newNode(nkSym)
  result.sym = sym
  result.typ = sym.typ
  result.info = info

proc newNodeI(kind: TNodeKind, info: TLineInfo): PNode = 
  result = newNode(kind)
  result.info = info

proc newNode*(kind: TNodeKind, info: TLineInfo, sons: TNodeSeq = @[],
             typ: PType = nil): PNode =
  result = newNode(kind)
  result.info = info
  result.typ = typ
  result.sons = sons

proc newNodeIT(kind: TNodeKind, info: TLineInfo, typ: PType): PNode = 
  result = newNode(kind)
  result.info = info
  result.typ = typ

proc newMetaNodeIT*(tree: PNode, info: TLineInfo, typ: PType): PNode =
  result = newNodeIT(nkMetaNode, info, typ)
  result.add(tree)

proc NewType(kind: TTypeKind, owner: PSym): PType = 
  new(result)
  result.kind = kind
  result.owner = owner
  result.size = - 1
  result.align = 2            # default alignment
  result.id = getID()
  when debugIds: 
    RegisterId(result)        
  #if result.id < 2000 then
  #  MessageOut(typeKindToStr[kind] & ' has id: ' & toString(result.id))
  
proc mergeLoc(a: var TLoc, b: TLoc) =
  if a.k == low(a.k): a.k = b.k
  if a.s == low(a.s): a.s = b.s
  a.flags = a.flags + b.flags
  if a.t == nil: a.t = b.t
  if a.r == nil: a.r = b.r
  if a.a == 0: a.a = b.a
  
proc assignType(dest, src: PType) = 
  dest.kind = src.kind
  dest.flags = src.flags
  dest.callConv = src.callConv
  dest.n = src.n
  dest.size = src.size
  dest.align = src.align
  dest.containerID = src.containerID
  dest.destructor = src.destructor
  # this fixes 'type TLock = TSysLock':
  if src.sym != nil:
    if dest.sym != nil:
      dest.sym.flags = dest.sym.flags + src.sym.flags
      if dest.sym.annex == nil: dest.sym.annex = src.sym.annex
      mergeLoc(dest.sym.loc, src.sym.loc)
    else:
      dest.sym = src.sym
  newSons(dest, sonsLen(src))
  for i in countup(0, sonsLen(src) - 1): dest.sons[i] = src.sons[i]
  
proc copyType(t: PType, owner: PSym, keepId: bool): PType = 
  result = newType(t.Kind, owner)
  assignType(result, t)
  if keepId: 
    result.id = t.id
  else: 
    result.id = getID()
    when debugIds: RegisterId(result)
  result.sym = t.sym          # backend-info should not be copied
  
proc copySym(s: PSym, keepId: bool = false): PSym = 
  result = newSym(s.kind, s.name, s.owner)
  result.ast = nil            # BUGFIX; was: s.ast which made problems
  result.info = s.info
  result.typ = s.typ
  if keepId: 
    result.id = s.id
  else: 
    result.id = getID()
    when debugIds: RegisterId(result)
  result.flags = s.flags
  result.magic = s.magic
  copyStrTable(result.tab, s.tab)
  result.options = s.options
  result.position = s.position
  result.loc = s.loc
  result.annex = s.annex      # BUGFIX
  
proc NewSym(symKind: TSymKind, Name: PIdent, owner: PSym): PSym = 
  # generates a symbol and initializes the hash field too
  new(result)
  result.Name = Name
  result.Kind = symKind
  result.flags = {}
  result.info = UnknownLineInfo()
  result.options = gOptions
  result.owner = owner
  result.offset = - 1
  result.id = getID()
  when debugIds: 
    RegisterId(result)
  #if result.id < 2000:
  #  MessageOut(name.s & " has id: " & toString(result.id))
  
proc initStrTable(x: var TStrTable) = 
  x.counter = 0
  newSeq(x.data, startSize)

proc initTable(x: var TTable) = 
  x.counter = 0
  newSeq(x.data, startSize)

proc initIdTable(x: var TIdTable) = 
  x.counter = 0
  newSeq(x.data, startSize)

proc initObjectSet(x: var TObjectSet) = 
  x.counter = 0
  newSeq(x.data, startSize)

proc initIdNodeTable(x: var TIdNodeTable) = 
  x.counter = 0
  newSeq(x.data, startSize)

proc initNodeTable(x: var TNodeTable) = 
  x.counter = 0
  newSeq(x.data, startSize)

proc sonsLen(n: PType): int = 
  if isNil(n.sons): result = 0
  else: result = len(n.sons)

proc len*(n: PType): int = 
  if isNil(n.sons): result = 0
  else: result = len(n.sons)
  
proc newSons(father: PType, length: int) = 
  if isNil(father.sons): 
    newSeq(father.sons, length)
  else:
    setlen(father.sons, length)

proc sonsLen(n: PNode): int = 
  if isNil(n.sons): result = 0
  else: result = len(n.sons)
  
proc newSons(father: PNode, length: int) = 
  if isNil(father.sons): 
    newSeq(father.sons, length)
  else:
    setlen(father.sons, length)

proc addSon*(father, son: PType) {.deprecated.} =
  if isNil(father.sons): father.sons = @[]
  add(father.sons, son)
  #assert((father.kind != tyGenericInvokation) or (son.kind != tyGenericInst))

proc rawAddSon*(father, son: PType) =
  if isNil(father.sons): father.sons = @[]
  add(father.sons, son)

proc addSon(father, son: PNode) = 
  assert son != nil
  if isNil(father.sons): father.sons = @[]
  add(father.sons, son)

proc addSonNilAllowed*(father, son: PNode) =
  if isNil(father.sons): father.sons = @[]
  add(father.sons, son)

proc delSon(father: PNode, idx: int) = 
  if isNil(father.sons): return 
  var length = sonsLen(father)
  for i in countup(idx, length - 2): father.sons[i] = father.sons[i + 1]
  setlen(father.sons, length - 1)

proc copyNode(src: PNode): PNode = 
  # does not copy its sons!
  if src == nil: 
    return nil
  result = newNode(src.kind)
  result.info = src.info
  result.typ = src.typ
  result.flags = src.flags * PersistentNodeFlags
  case src.Kind
  of nkCharLit..nkUInt64Lit: result.intVal = src.intVal
  of nkFloatLit..nkFloat128Lit: result.floatVal = src.floatVal
  of nkSym: result.sym = src.sym
  of nkIdent: result.ident = src.ident
  of nkStrLit..nkTripleStrLit: result.strVal = src.strVal
  else: nil

proc shallowCopy*(src: PNode): PNode = 
  # does not copy its sons, but provides space for them:
  if src == nil: return nil
  result = newNode(src.kind)
  result.info = src.info
  result.typ = src.typ
  result.flags = src.flags * PersistentNodeFlags
  case src.Kind
  of nkCharLit..nkUInt64Lit: result.intVal = src.intVal
  of nkFloatLit..nkFloat128Lit: result.floatVal = src.floatVal
  of nkSym: result.sym = src.sym
  of nkIdent: result.ident = src.ident
  of nkStrLit..nkTripleStrLit: result.strVal = src.strVal
  else: newSeq(result.sons, sonsLen(src))

proc copyTree(src: PNode): PNode = 
  # copy a whole syntax tree; performs deep copying
  if src == nil: 
    return nil
  result = newNode(src.kind)
  result.info = src.info
  result.typ = src.typ
  result.flags = src.flags * PersistentNodeFlags
  case src.Kind
  of nkCharLit..nkUInt64Lit: result.intVal = src.intVal
  of nkFloatLit..nkFloat128Lit: result.floatVal = src.floatVal
  of nkSym: result.sym = src.sym
  of nkIdent: result.ident = src.ident
  of nkStrLit..nkTripleStrLit: result.strVal = src.strVal
  else: 
    newSeq(result.sons, sonsLen(src))
    for i in countup(0, sonsLen(src) - 1): 
      result.sons[i] = copyTree(src.sons[i])
  
proc lastSon(n: PNode): PNode = 
  result = n.sons[sonsLen(n) - 1]

proc lastSon(n: PType): PType = 
  result = n.sons[sonsLen(n) - 1]

proc hasSonWith(n: PNode, kind: TNodeKind): bool = 
  for i in countup(0, sonsLen(n) - 1): 
    if n.sons[i].kind == kind: 
      return true
  result = false

proc containsNode*(n: PNode, kinds: TNodeKinds): bool =
  if n == nil: return
  case n.kind
  of nkEmpty..nkNilLit: result = n.kind in kinds
  else:
    for i in countup(0, sonsLen(n) - 1):
      if n.kind in kinds or containsNode(n.sons[i], kinds): return true

proc hasSubnodeWith(n: PNode, kind: TNodeKind): bool = 
  case n.kind
  of nkEmpty..nkNilLit: result = n.kind == kind
  else: 
    for i in countup(0, sonsLen(n) - 1): 
      if (n.sons[i].kind == kind) or hasSubnodeWith(n.sons[i], kind): 
        return true
    result = false

proc replaceSons(n: PNode, oldKind, newKind: TNodeKind) = 
  for i in countup(0, sonsLen(n) - 1): 
    if n.sons[i].kind == oldKind: n.sons[i].kind = newKind
  
proc sonsNotNil(n: PNode): bool = 
  for i in countup(0, sonsLen(n) - 1): 
    if n.sons[i] == nil: 
      return false
  result = true

proc getInt*(a: PNode): biggestInt = 
  case a.kind
  of nkIntLit..nkUInt64Lit: result = a.intVal
  else: 
    internalError(a.info, "getInt")
    result = 0

proc getFloat*(a: PNode): biggestFloat = 
  case a.kind
  of nkFloatLit..nkFloat128Lit: result = a.floatVal
  else: 
    internalError(a.info, "getFloat")
    result = 0.0

proc getStr*(a: PNode): string = 
  case a.kind
  of nkStrLit..nkTripleStrLit: result = a.strVal
  else: 
    internalError(a.info, "getStr")
    result = ""

proc getStrOrChar*(a: PNode): string = 
  case a.kind
  of nkStrLit..nkTripleStrLit: result = a.strVal
  of nkCharLit: result = $chr(int(a.intVal))
  else: 
    internalError(a.info, "getStrOrChar")
    result = ""

proc isGenericRoutine*(s: PSym): bool = 
  case s.kind
  of skProc, skTemplate, skMacro, skIterator, skMethod, skConverter:
    result = s.ast != nil and s.ast[genericParamsPos].kind != nkEmpty
  else: nil

proc isRoutine*(s: PSym): bool {.inline.} =
  result = s.kind in {skProc, skTemplate, skMacro, skIterator, skMethod,
                      skConverter}

iterator items*(n: PNode): PNode =
  for i in 0.. <n.len: yield n.sons[i]