1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
|
#
#
# The Nim Compiler
# (c) Copyright 2012 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# This module declares some helpers for the C code generator.
import
ast, types, msgs, wordrecg,
platform, trees, options, cgendata, mangleutils
import std/[hashes, strutils, formatfloat]
when defined(nimPreviewSlimSystem):
import std/assertions
proc getPragmaStmt*(n: PNode, w: TSpecialWord): PNode =
case n.kind
of nkStmtList:
result = nil
for i in 0..<n.len:
result = getPragmaStmt(n[i], w)
if result != nil: break
of nkPragma:
result = nil
for i in 0..<n.len:
if whichPragma(n[i]) == w: return n[i]
else:
result = nil
proc stmtsContainPragma*(n: PNode, w: TSpecialWord): bool =
result = getPragmaStmt(n, w) != nil
proc hashString*(conf: ConfigRef; s: string): BiggestInt =
# has to be the same algorithm as strmantle.hashString!
if CPU[conf.target.targetCPU].bit == 64:
# we have to use the same bitwidth
# as the target CPU
var b = 0'u64
for i in 0..<s.len:
b = b + uint(s[i])
b = b + (b shl 10)
b = b xor (b shr 6)
b = b + (b shl 3)
b = b xor (b shr 11)
b = b + (b shl 15)
result = cast[Hash](b)
else:
var a = 0'u32
for i in 0..<s.len:
a = a + uint32(s[i])
a = a + (a shl 10)
a = a xor (a shr 6)
a = a + (a shl 3)
a = a xor (a shr 11)
a = a + (a shl 15)
result = cast[Hash](uint(a))
template getUniqueType*(key: PType): PType = key
proc makeSingleLineCString*(s: string): string =
result = "\""
for c in items(s):
c.toCChar(result)
result.add('\"')
proc mapSetType(conf: ConfigRef; typ: PType): TCTypeKind =
case int(getSize(conf, typ))
of 1: result = ctInt8
of 2: result = ctInt16
of 4: result = ctInt32
of 8: result = ctInt64
else: result = ctArray
proc ccgIntroducedPtr*(conf: ConfigRef; s: PSym, retType: PType): bool =
var pt = skipTypes(s.typ, typedescInst)
assert skResult != s.kind
#note precedence: params override types
if optByRef in s.options: return true
elif sfByCopy in s.flags: return false
elif tfByRef in pt.flags: return true
elif tfByCopy in pt.flags: return false
case pt.kind
of tyObject:
if s.typ.sym != nil and sfForward in s.typ.sym.flags:
# forwarded objects are *always* passed by pointers for consistency!
result = true
elif s.typ.kind == tySink and conf.selectedGC notin {gcArc, gcAtomicArc, gcOrc, gcHooks}:
# bug #23354:
result = false
elif (optByRef in s.options) or (getSize(conf, pt) > conf.target.floatSize * 3):
result = true # requested anyway
elif (tfFinal in pt.flags) and (pt[0] == nil):
result = false # no need, because no subtyping possible
else:
result = true # ordinary objects are always passed by reference,
# otherwise casting doesn't work
of tyTuple:
result = (getSize(conf, pt) > conf.target.floatSize*3) or (optByRef in s.options)
else:
result = false
# first parameter and return type is 'lent T'? --> use pass by pointer
if s.position == 0 and retType != nil and retType.kind == tyLent:
result = not (pt.kind in {tyVar, tyArray, tyOpenArray, tyVarargs, tyRef, tyPtr, tyPointer} or
pt.kind == tySet and mapSetType(conf, pt) == ctArray)
proc encodeName*(name: string): string =
result = mangle(name)
result = $result.len & result
proc makeUnique(m: BModule; s: PSym, name: string = ""): string =
result = if name == "": s.name.s else: name
result.add "__"
result.add m.g.graph.ifaces[s.itemId.module].uniqueName
result.add "_u"
result.add $s.itemId.item
proc encodeSym*(m: BModule; s: PSym; makeUnique: bool = false): string =
#Module::Type
var name = s.name.s
if makeUnique:
name = makeUnique(m, s, name)
"N" & encodeName(s.skipGenericOwner.name.s) & encodeName(name) & "E"
proc encodeType*(m: BModule; t: PType): string =
result = ""
var kindName = ($t.kind)[2..^1]
kindName[0] = toLower($kindName[0])[0]
case t.kind
of tyObject, tyEnum, tyDistinct, tyUserTypeClass, tyGenericParam:
result = encodeSym(m, t.sym)
of tyGenericInst, tyUserTypeClassInst, tyGenericBody:
result = encodeName(t[0].sym.name.s)
result.add "I"
for i in 1..<t.len - 1:
result.add encodeType(m, t[i])
result.add "E"
of tySequence, tyOpenArray, tyArray, tyVarargs, tyTuple, tyProc, tySet, tyTypeDesc,
tyPtr, tyRef, tyVar, tyLent, tySink, tyStatic, tyUncheckedArray, tyOr, tyAnd, tyBuiltInTypeClass:
result =
case t.kind:
of tySequence: encodeName("seq")
else: encodeName(kindName)
result.add "I"
for i in 0..<t.len:
let s = t[i]
if s.isNil: continue
result.add encodeType(m, s)
result.add "E"
of tyRange:
var val = "range_"
if t.n[0].typ.kind in {tyFloat..tyFloat128}:
val.addFloat t.n[0].floatVal
val.add "_"
val.addFloat t.n[1].floatVal
else:
val.add $t.n[0].intVal & "_" & $t.n[1].intVal
result = encodeName(val)
of tyString..tyUInt64, tyPointer, tyBool, tyChar, tyVoid, tyAnything, tyNil, tyEmpty:
result = encodeName(kindName)
of tyAlias, tyInferred, tyOwned:
result = encodeType(m, t.elementType)
else:
assert false, "encodeType " & $t.kind
|