1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
|
#
#
# The Nim Compiler
# (c) Copyright 2017 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## Injects destructor calls into Nim code as well as
## an optimizer that optimizes copies to moves. This is implemented as an
## AST to AST transformation so that every backend benefits from it.
## Rules for destructor injections:
##
## foo(bar(X(), Y()))
## X and Y get destroyed after bar completes:
##
## foo( (tmpX = X(); tmpY = Y(); tmpBar = bar(tmpX, tmpY);
## destroy(tmpX); destroy(tmpY);
## tmpBar))
## destroy(tmpBar)
##
## var x = f()
## body
##
## is the same as:
##
## var x;
## try:
## move(x, f())
## finally:
## destroy(x)
##
## But this really just an optimization that tries to avoid to
## introduce too many temporaries, the 'destroy' is caused by
## the 'f()' call. No! That is not true for 'result = f()'!
##
## x = y where y is read only once
## is the same as: move(x, y)
##
## Actually the more general rule is: The *last* read of ``y``
## can become a move if ``y`` is the result of a construction.
##
## We also need to keep in mind here that the number of reads is
## control flow dependent:
## let x = foo()
## while true:
## y = x # only one read, but the 2nd iteration will fail!
## This also affects recursions! Only usages that do not cross
## a loop boundary (scope) and are not used in function calls
## are safe.
##
##
## x = f() is the same as: move(x, f())
##
## x = y
## is the same as: copy(x, y)
##
## Reassignment works under this scheme:
## var x = f()
## x = y
##
## is the same as:
##
## var x;
## try:
## move(x, f())
## copy(x, y)
## finally:
## destroy(x)
##
## result = f() must not destroy 'result'!
##
## The produced temporaries clutter up the code and might lead to
## inefficiencies. A better strategy is to collect all the temporaries
## in a single object that we put into a single try-finally that
## surrounds the proc body. This means the code stays quite efficient
## when compiled to C. In fact, we do the same for variables, so
## destructors are called when the proc returns, not at scope exit!
## This makes certains idioms easier to support. (Taking the slice
## of a temporary object.)
##
## foo(bar(X(), Y()))
## X and Y get destroyed after bar completes:
##
## var tmp: object
## foo( (move tmp.x, X(); move tmp.y, Y(); tmp.bar = bar(tmpX, tmpY);
## tmp.bar))
## destroy(tmp.bar)
## destroy(tmp.x); destroy(tmp.y)
##
##[
From https://github.com/nim-lang/Nim/wiki/Destructors
Rule Pattern Transformed into
---- ------- ----------------
1.1 var x: T; stmts var x: T; try stmts
finally: `=destroy`(x)
1.2 var x: sink T; stmts var x: sink T; stmts; ensureEmpty(x)
2 x = f() `=sink`(x, f())
3 x = lastReadOf z `=sink`(x, z); wasMoved(z)
4.1 y = sinkParam `=sink`(y, sinkParam)
4.2 x = y `=`(x, y) # a copy
5.1 f_sink(g()) f_sink(g())
5.2 f_sink(y) f_sink(copy y); # copy unless we can see it's the last read
5.3 f_sink(move y) f_sink(y); wasMoved(y) # explicit moves empties 'y'
5.4 f_noSink(g()) var tmp = bitwiseCopy(g()); f(tmp); `=destroy`(tmp)
Remarks: Rule 1.2 is not yet implemented because ``sink`` is currently
not allowed as a local variable.
``move`` builtin needs to be implemented.
]##
import
intsets, ast, astalgo, msgs, renderer, magicsys, types, idents, trees,
strutils, options, dfa, lowerings, tables, modulegraphs, msgs,
lineinfos, parampatterns
const
InterestingSyms = {skVar, skResult, skLet}
type
Con = object
owner: PSym
g: ControlFlowGraph
jumpTargets: IntSet
destroys, topLevelVars: PNode
graph: ModuleGraph
emptyNode: PNode
otherRead: PNode
proc isLastRead(s: PSym; c: var Con; pc, comesFrom: int): int =
var pc = pc
while pc < c.g.len:
case c.g[pc].kind
of def:
if c.g[pc].sym == s:
# the path lead to a redefinition of 's' --> abandon it.
return high(int)
inc pc
of use:
if c.g[pc].sym == s:
c.otherRead = c.g[pc].n
return -1
inc pc
of goto:
pc = pc + c.g[pc].dest
of fork:
# every branch must lead to the last read of the location:
var variantA = isLastRead(s, c, pc+1, pc)
if variantA < 0: return -1
let variantB = isLastRead(s, c, pc + c.g[pc].dest, pc)
if variantB < 0: return -1
elif variantA == high(int):
variantA = variantB
pc = variantA
of InstrKind.join:
let dest = pc + c.g[pc].dest
if dest == comesFrom: return pc + 1
inc pc
return pc
proc isLastRead(n: PNode; c: var Con): bool =
# first we need to search for the instruction that belongs to 'n':
doAssert n.kind == nkSym
c.otherRead = nil
var instr = -1
for i in 0..<c.g.len:
if c.g[i].n == n:
if instr < 0:
instr = i
break
if instr < 0: return false
# we go through all paths beginning from 'instr+1' and need to
# ensure that we don't find another 'use X' instruction.
if instr+1 >= c.g.len: return true
when true:
result = isLastRead(n.sym, c, instr+1, -1) >= 0
else:
let s = n.sym
var pcs: seq[int] = @[instr+1]
var takenGotos: IntSet
var takenForks = initIntSet()
while pcs.len > 0:
var pc = pcs.pop
takenGotos = initIntSet()
while pc < c.g.len:
case c.g[pc].kind
of def:
if c.g[pc].sym == s:
# the path lead to a redefinition of 's' --> abandon it.
break
inc pc
of use:
if c.g[pc].sym == s:
c.otherRead = c.g[pc].n
return false
inc pc
of goto:
# we must leave endless loops eventually:
if not takenGotos.containsOrIncl(pc):
pc = pc + c.g[pc].dest
else:
inc pc
of fork:
# we follow the next instruction but push the dest onto our "work" stack:
if not takenForks.containsOrIncl(pc):
pcs.add pc + c.g[pc].dest
inc pc
of InstrKind.join:
inc pc
#echo c.graph.config $ n.info, " last read here!"
return true
template interestingSym(s: PSym): bool =
s.owner == c.owner and s.kind in InterestingSyms and hasDestructor(s.typ)
template isUnpackedTuple(s: PSym): bool =
## we move out all elements of unpacked tuples,
## hence unpacked tuples themselves don't need to be destroyed
s.kind == skTemp and s.typ.kind == tyTuple
proc patchHead(n: PNode) =
if n.kind in nkCallKinds and n[0].kind == nkSym and n.len > 1:
let s = n[0].sym
if s.name.s[0] == '=' and s.name.s in ["=sink", "=", "=destroy"]:
if sfFromGeneric in s.flags:
excl(s.flags, sfFromGeneric)
patchHead(s.getBody)
let t = n[1].typ.skipTypes({tyVar, tyLent, tyGenericInst, tyAlias, tySink, tyInferred})
template patch(op, field) =
if s.name.s == op and field != nil and field != s:
n.sons[0].sym = field
patch "=sink", t.sink
patch "=", t.assignment
patch "=destroy", t.destructor
for x in n:
patchHead(x)
proc patchHead(s: PSym) =
if sfFromGeneric in s.flags:
patchHead(s.ast[bodyPos])
proc checkForErrorPragma(c: Con; t: PType; ri: PNode; opname: string) =
var m = "'" & opname & "' is not available for type <" & typeToString(t) & ">"
if opname == "=" and ri != nil:
m.add "; requires a copy because it's not the last read of '"
m.add renderTree(ri)
m.add '\''
if c.otherRead != nil:
m.add "; another read is done here: "
m.add c.graph.config $ c.otherRead.info
localError(c.graph.config, ri.info, errGenerated, m)
proc makePtrType(c: Con, baseType: PType): PType =
result = newType(tyPtr, c.owner)
addSonSkipIntLit(result, baseType)
template genOp(opr, opname, ri) =
let op = opr
if op == nil:
globalError(c.graph.config, dest.info, "internal error: '" & opname &
"' operator not found for type " & typeToString(t))
elif op.ast[genericParamsPos].kind != nkEmpty:
globalError(c.graph.config, dest.info, "internal error: '" & opname & "' operator is generic")
patchHead op
if sfError in op.flags: checkForErrorPragma(c, t, ri, opname)
let addrExp = newNodeIT(nkHiddenAddr, dest.info, makePtrType(c, dest.typ))
addrExp.add(dest)
result = newTree(nkCall, newSymNode(op), addrExp)
proc genSink(c: Con; t: PType; dest, ri: PNode): PNode =
let t = t.skipTypes({tyGenericInst, tyAlias, tySink})
genOp(if t.sink != nil: t.sink else: t.assignment, "=sink", ri)
proc genCopy(c: Con; t: PType; dest, ri: PNode): PNode =
let t = t.skipTypes({tyGenericInst, tyAlias, tySink})
genOp(t.assignment, "=", ri)
proc genDestroy(c: Con; t: PType; dest: PNode): PNode =
let t = t.skipTypes({tyGenericInst, tyAlias, tySink})
genOp(t.destructor, "=destroy", nil)
proc addTopVar(c: var Con; v: PNode) =
c.topLevelVars.add newTree(nkIdentDefs, v, c.emptyNode, c.emptyNode)
proc getTemp(c: var Con; typ: PType; info: TLineInfo): PNode =
let sym = newSym(skTemp, getIdent(c.graph.cache, ":tmpD"), c.owner, info)
sym.typ = typ
result = newSymNode(sym)
c.addTopVar(result)
proc p(n: PNode; c: var Con): PNode
template recurse(n, dest) =
for i in 0..<n.len:
dest.add p(n[i], c)
proc isSinkParam(s: PSym): bool {.inline.} =
result = s.kind == skParam and s.typ.kind == tySink
proc genMagicCall(n: PNode; c: var Con; magicname: string; m: TMagic): PNode =
result = newNodeI(nkCall, n.info)
result.add(newSymNode(createMagic(c.graph, magicname, m)))
result.add n
proc genWasMoved(n: PNode; c: var Con): PNode =
# The mWasMoved builtin does not take the address.
result = genMagicCall(n, c, "wasMoved", mWasMoved)
proc destructiveMoveVar(n: PNode; c: var Con): PNode =
# generate: (let tmp = v; reset(v); tmp)
# XXX: Strictly speaking we can only move if there is a ``=sink`` defined
# or if no ``=sink`` is defined and also no assignment.
result = newNodeIT(nkStmtListExpr, n.info, n.typ)
var temp = newSym(skLet, getIdent(c.graph.cache, "blitTmp"), c.owner, n.info)
temp.typ = n.typ
var v = newNodeI(nkLetSection, n.info)
let tempAsNode = newSymNode(temp)
var vpart = newNodeI(nkIdentDefs, tempAsNode.info, 3)
vpart.sons[0] = tempAsNode
vpart.sons[1] = c.emptyNode
vpart.sons[2] = n
add(v, vpart)
result.add v
result.add genWasMoved(n, c)
result.add tempAsNode
proc sinkParamIsLastReadCheck(c: var Con, s: PNode) =
assert s.kind == nkSym and s.sym.kind == skParam
if not isLastRead(s, c):
localError(c.graph.config, c.otherRead.info, "sink parameter `" & $s.sym.name.s &
"` is already consumed at " & toFileLineCol(c. graph.config, s.info))
proc passCopyToSink(n: PNode; c: var Con): PNode =
result = newNodeIT(nkStmtListExpr, n.info, n.typ)
let tmp = getTemp(c, n.typ, n.info)
if hasDestructor(n.typ):
var m = genCopy(c, n.typ, tmp, n)
m.add p(n, c)
result.add m
if isLValue(n):
message(c.graph.config, n.info, hintPerformance,
("passing '$1' to a sink parameter introduces an implicit copy; " &
"use 'move($1)' to prevent it") % $n)
else:
result.add newTree(nkAsgn, tmp, p(n, c))
result.add tmp
proc pArg(arg: PNode; c: var Con; isSink: bool): PNode =
template pArgIfTyped(arg_part: PNode): PNode =
# typ is nil if we are in if/case expr branch with noreturn
if arg_part.typ == nil: p(arg_part, c)
else: pArg(arg_part, c, isSink)
if isSink:
if arg.kind in nkCallKinds:
# recurse but skip the call expression in order to prevent
# destructor injections: Rule 5.1 is different from rule 5.4!
result = copyNode(arg)
let parameters = arg[0].typ
let L = if parameters != nil: parameters.len else: 0
result.add arg[0]
for i in 1..<arg.len:
result.add pArg(arg[i], c, i < L and parameters[i].kind == tySink)
elif arg.kind in {nkBracket, nkObjConstr, nkTupleConstr, nkBracket, nkCharLit..nkFloat128Lit}:
discard "object construction to sink parameter: nothing to do"
result = arg
elif arg.kind == nkSym and isSinkParam(arg.sym):
# Sinked params can be consumed only once. We need to reset the memory
# to disable the destructor which we have not elided
sinkParamIsLastReadCheck(c, arg)
result = destructiveMoveVar(arg, c)
elif arg.kind == nkSym and arg.sym.kind in InterestingSyms and isLastRead(arg, c):
# it is the last read, can be sinked. We need to reset the memory
# to disable the destructor which we have not elided
result = destructiveMoveVar(arg, c)
elif arg.kind in {nkBlockExpr, nkBlockStmt}:
result = copyNode(arg)
result.add arg[0]
result.add pArg(arg[1], c, isSink)
elif arg.kind == nkStmtListExpr:
result = copyNode(arg)
for i in 0..arg.len-2:
result.add p(arg[i], c)
result.add pArg(arg[^1], c, isSink)
elif arg.kind in {nkIfExpr, nkIfStmt}:
result = copyNode(arg)
for i in 0..<arg.len:
var branch = copyNode(arg[i])
if arg[i].kind in {nkElifBranch, nkElifExpr}:
branch.add p(arg[i][0], c)
branch.add pArgIfTyped(arg[i][1])
else:
branch.add pArgIfTyped(arg[i][0])
result.add branch
elif arg.kind == nkCaseStmt:
result = copyNode(arg)
result.add p(arg[0], c)
for i in 1..<arg.len:
var branch: PNode
if arg[i].kind == nkOfbranch:
branch = arg[i] # of branch conditions are constants
branch[^1] = pArgIfTyped(arg[i][^1])
elif arg[i].kind in {nkElifBranch, nkElifExpr}:
branch = copyNode(arg[i])
branch.add p(arg[i][0], c)
branch.add pArgIfTyped(arg[i][1])
else:
branch = copyNode(arg[i])
branch.add pArgIfTyped(arg[i][0])
result.add branch
else:
# an object that is not temporary but passed to a 'sink' parameter
# results in a copy.
result = passCopyToSink(arg, c)
else:
result = p(arg, c)
proc moveOrCopy(dest, ri: PNode; c: var Con): PNode =
template moveOrCopyIfTyped(ri_part: PNode): PNode =
# typ is nil if we are in if/case expr branch with noreturn
if ri_part.typ == nil: p(ri_part, c)
else: moveOrCopy(dest, ri_part, c)
case ri.kind
of nkCallKinds:
result = genSink(c, dest.typ, dest, ri)
# watch out and no not transform 'ri' twice if it's a call:
let ri2 = copyNode(ri)
let parameters = ri[0].typ
let L = if parameters != nil: parameters.len else: 0
ri2.add ri[0]
for i in 1..<ri.len:
ri2.add pArg(ri[i], c, i < L and parameters[i].kind == tySink)
#recurse(ri, ri2)
result.add ri2
of nkBracketExpr:
if ri[0].kind == nkSym and isUnpackedTuple(ri[0].sym):
# unpacking of tuple: move out the elements
result = genSink(c, dest.typ, dest, ri)
else:
result = genCopy(c, dest.typ, dest, ri)
result.add p(ri, c)
of nkStmtListExpr:
result = newNodeI(nkStmtList, ri.info)
for i in 0..ri.len-2:
result.add p(ri[i], c)
result.add moveOrCopy(dest, ri[^1], c)
of nkBlockExpr, nkBlockStmt:
result = newNodeI(nkBlockStmt, ri.info)
result.add ri[0] ## add label
result.add moveOrCopy(dest, ri[1], c)
of nkIfExpr, nkIfStmt:
result = newNodeI(nkIfStmt, ri.info)
for i in 0..<ri.len:
var branch = copyNode(ri[i])
if ri[i].kind in {nkElifBranch, nkElifExpr}:
branch.add p(ri[i][0], c)
branch.add moveOrCopyIfTyped(ri[i][1])
else:
branch.add moveOrCopyIfTyped(ri[i][0])
result.add branch
of nkCaseStmt:
result = newNodeI(nkCaseStmt, ri.info)
result.add p(ri[0], c)
for i in 1..<ri.len:
var branch: PNode
if ri[i].kind == nkOfbranch:
branch = ri[i] # of branch conditions are constants
branch[^1] = moveOrCopyIfTyped(ri[i][^1])
elif ri[i].kind in {nkElifBranch, nkElifExpr}:
branch = copyNode(ri[i])
branch.add p(ri[i][0], c)
branch.add moveOrCopyIfTyped(ri[i][1])
else:
branch = copyNode(ri[i])
branch.add moveOrCopyIfTyped(ri[i][0])
result.add branch
of nkBracket:
# array constructor
result = genSink(c, dest.typ, dest, ri)
let ri2 = copyTree(ri)
for i in 0..<ri.len:
# everything that is passed to an array constructor is consumed,
# so these all act like 'sink' parameters:
ri2[i] = pArg(ri[i], c, isSink = true)
result.add ri2
of nkObjConstr:
result = genSink(c, dest.typ, dest, ri)
let ri2 = copyTree(ri)
for i in 1..<ri.len:
# everything that is passed to an object constructor is consumed,
# so these all act like 'sink' parameters:
ri2[i].sons[1] = pArg(ri[i][1], c, isSink = true)
result.add ri2
of nkTupleConstr:
result = genSink(c, dest.typ, dest, ri)
let ri2 = copyTree(ri)
for i in 0..<ri.len:
# everything that is passed to an tuple constructor is consumed,
# so these all act like 'sink' parameters:
if ri[i].kind == nkExprColonExpr:
ri2[i].sons[1] = pArg(ri[i][1], c, isSink = true)
else:
ri2[i] = pArg(ri[i], c, isSink = true)
result.add ri2
of nkSym:
if isSinkParam(ri.sym):
# Rule 3: `=sink`(x, z); wasMoved(z)
sinkParamIsLastReadCheck(c, ri)
var snk = genSink(c, dest.typ, dest, ri)
snk.add ri
result = newTree(nkStmtList, snk, genMagicCall(ri, c, "wasMoved", mWasMoved))
elif ri.sym.kind != skParam and isLastRead(ri, c):
# Rule 3: `=sink`(x, z); wasMoved(z)
var snk = genSink(c, dest.typ, dest, ri)
snk.add ri
result = newTree(nkStmtList, snk, genMagicCall(ri, c, "wasMoved", mWasMoved))
else:
result = genCopy(c, dest.typ, dest, ri)
result.add p(ri, c)
else:
result = genCopy(c, dest.typ, dest, ri)
result.add p(ri, c)
proc p(n: PNode; c: var Con): PNode =
case n.kind
of nkVarSection, nkLetSection:
discard "transform; var x = y to var x; x op y where op is a move or copy"
result = newNodeI(nkStmtList, n.info)
for i in 0..<n.len:
let it = n[i]
let L = it.len-1
let ri = it[L]
if it.kind == nkVarTuple and hasDestructor(ri.typ):
let x = lowerTupleUnpacking(c.graph, it, c.owner)
result.add p(x, c)
elif it.kind == nkIdentDefs and hasDestructor(it[0].typ):
for j in 0..L-2:
let v = it[j]
doAssert v.kind == nkSym
# move the variable declaration to the top of the frame:
c.addTopVar v
# make sure it's destroyed at the end of the proc:
if not isUnpackedTuple(it[0].sym):
c.destroys.add genDestroy(c, v.typ, v)
if ri.kind != nkEmpty:
let r = moveOrCopy(v, ri, c)
result.add r
else:
# keep it, but transform 'ri':
var varSection = copyNode(n)
var itCopy = copyNode(it)
for j in 0..L-1:
itCopy.add it[j]
itCopy.add p(ri, c)
varSection.add itCopy
result.add varSection
of nkCallKinds:
let parameters = n[0].typ
let L = if parameters != nil: parameters.len else: 0
for i in 1 ..< n.len:
n.sons[i] = pArg(n[i], c, i < L and parameters[i].kind == tySink)
if n.typ != nil and hasDestructor(n.typ):
discard "produce temp creation"
result = newNodeIT(nkStmtListExpr, n.info, n.typ)
let tmp = getTemp(c, n.typ, n.info)
var sinkExpr = genSink(c, n.typ, tmp, n)
sinkExpr.add n
result.add sinkExpr
result.add tmp
c.destroys.add genDestroy(c, n.typ, tmp)
else:
result = n
of nkAsgn, nkFastAsgn:
if hasDestructor(n[0].typ):
result = moveOrCopy(n[0], n[1], c)
else:
result = copyNode(n)
recurse(n, result)
of nkNone..nkNilLit, nkTypeSection, nkProcDef, nkConverterDef, nkMethodDef,
nkIteratorDef, nkMacroDef, nkTemplateDef, nkLambda, nkDo, nkFuncDef:
result = n
else:
result = copyNode(n)
recurse(n, result)
proc injectDestructorCalls*(g: ModuleGraph; owner: PSym; n: PNode): PNode =
when false: # defined(nimDebugDestroys):
echo "injecting into ", n
var c: Con
c.owner = owner
c.destroys = newNodeI(nkStmtList, n.info)
c.topLevelVars = newNodeI(nkVarSection, n.info)
c.graph = g
c.emptyNode = newNodeI(nkEmpty, n.info)
let cfg = constructCfg(owner, n)
shallowCopy(c.g, cfg)
c.jumpTargets = initIntSet()
for i in 0..<c.g.len:
if c.g[i].kind in {goto, fork}:
c.jumpTargets.incl(i+c.g[i].dest)
#if owner.name.s == "test0p1":
# echoCfg(c.g)
if owner.kind in {skProc, skFunc, skMethod, skIterator, skConverter}:
let params = owner.typ.n
for i in 1 ..< params.len:
let param = params[i].sym
if param.typ.kind == tySink and hasDestructor(param.typ):
c.destroys.add genDestroy(c, param.typ.skipTypes({tyGenericInst, tyAlias, tySink}), params[i])
let body = p(n, c)
result = newNodeI(nkStmtList, n.info)
if c.topLevelVars.len > 0:
result.add c.topLevelVars
if c.destroys.len > 0:
result.add newTryFinally(body, c.destroys)
else:
result.add body
when defined(nimDebugDestroys):
if true:
echo "------------------------------------"
echo owner.name.s, " transformed to: "
echo result
|