1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
|
#
#
# The Nim Compiler
# (c) Copyright 2017 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## Data flow analysis for Nim. For now the task is to prove that every
## usage of a local variable 'v' is covered by an initialization to 'v'
## first.
## We transform the AST into a linear list of instructions first to
## make this easier to handle: There are only 2 different branching
## instructions: 'goto X' is an unconditional goto, 'fork X'
## is a conditional goto (either the next instruction or 'X' can be
## taken). Exhaustive case statements are translated
## so that the last branch is transformed into an 'else' branch.
## ``return`` and ``break`` are all covered by 'goto'.
## The case to detect is ``use v`` that is not dominated by
## a ``def v``.
## The data structures and algorithms used here are inspired by
## "A Graph–Free Approach to Data–Flow Analysis" by Markus Mohnen.
## https://link.springer.com/content/pdf/10.1007/3-540-45937-5_6.pdf
import ast, astalgo, types, intsets, tables, msgs, options
type
InstrKind* = enum
goto, fork, def, use,
useWithinCall # this strange special case is used to get more
# move optimizations out of regular code
# XXX This is still overly pessimistic in
# call(let x = foo; bar(x))
Instr* = object
n*: PNode
case kind*: InstrKind
of def, use, useWithinCall: sym*: PSym
of goto, fork: dest*: int
ControlFlowGraph* = seq[Instr]
TPosition = distinct int
TBlock = object
label: PSym
fixups: seq[TPosition]
ValueKind = enum
undef, value, valueOrUndef
Con = object
code: ControlFlowGraph
inCall: int
blocks: seq[TBlock]
proc debugInfo(info: TLineInfo): string =
result = info.toFilename & ":" & $info.line
proc codeListing(c: ControlFlowGraph, result: var string, start=0; last = -1) =
# for debugging purposes
# first iteration: compute all necessary labels:
var jumpTargets = initIntSet()
let last = if last < 0: c.len-1 else: min(last, c.len-1)
for i in start..last:
if c[i].kind in {goto, fork}:
jumpTargets.incl(i+c[i].dest)
var i = start
while i <= last:
if i in jumpTargets: result.add("L" & $i & ":\n")
result.add "\t"
result.add $c[i].kind
result.add "\t"
case c[i].kind
of def, use, useWithinCall:
result.add c[i].sym.name.s
of goto, fork:
result.add "L"
result.add c[i].dest+i
result.add("\t#")
result.add(debugInfo(c[i].n.info))
result.add("\n")
inc i
if i in jumpTargets: result.add("L" & $i & ": End\n")
proc echoCfg*(c: ControlFlowGraph; start=0; last = -1) {.deprecated.} =
## echos the ControlFlowGraph for debugging purposes.
var buf = ""
codeListing(c, buf, start, last)
echo buf
proc forkI(c: var Con; n: PNode): TPosition =
result = TPosition(c.code.len)
c.code.add Instr(n: n, kind: fork, dest: 0)
proc gotoI(c: var Con; n: PNode): TPosition =
result = TPosition(c.code.len)
c.code.add Instr(n: n, kind: goto, dest: 0)
proc genLabel(c: Con): TPosition =
result = TPosition(c.code.len)
proc jmpBack(c: var Con, n: PNode, p = TPosition(0)) =
let dist = p.int - c.code.len
doAssert(-0x7fff < dist and dist < 0x7fff)
c.code.add Instr(n: n, kind: goto, dest: dist)
proc patch(c: var Con, p: TPosition) =
# patch with current index
let p = p.int
let diff = c.code.len - p
doAssert(-0x7fff < diff and diff < 0x7fff)
c.code[p].dest = diff
proc popBlock(c: var Con; oldLen: int) =
for f in c.blocks[oldLen].fixups:
c.patch(f)
c.blocks.setLen(oldLen)
template withBlock(labl: PSym; body: untyped) {.dirty.} =
var oldLen {.gensym.} = c.blocks.len
c.blocks.add TBlock(label: labl, fixups: @[])
body
popBlock(c, oldLen)
proc isTrue(n: PNode): bool =
n.kind == nkSym and n.sym.kind == skEnumField and n.sym.position != 0 or
n.kind == nkIntLit and n.intVal != 0
proc gen(c: var Con; n: PNode) # {.noSideEffect.}
proc genWhile(c: var Con; n: PNode) =
# L1:
# cond, tmp
# fork tmp, L2
# body
# jmp L1
# L2:
let L1 = c.genLabel
withBlock(nil):
if isTrue(n.sons[0]):
c.gen(n.sons[1])
c.jmpBack(n, L1)
else:
c.gen(n.sons[0])
let L2 = c.forkI(n)
c.gen(n.sons[1])
c.jmpBack(n, L1)
c.patch(L2)
proc genBlock(c: var Con; n: PNode) =
withBlock(n.sons[0].sym):
c.gen(n.sons[1])
proc genBreak(c: var Con; n: PNode) =
let L1 = c.gotoI(n)
if n.sons[0].kind == nkSym:
#echo cast[int](n.sons[0].sym)
for i in countdown(c.blocks.len-1, 0):
if c.blocks[i].label == n.sons[0].sym:
c.blocks[i].fixups.add L1
return
#globalError(n.info, "VM problem: cannot find 'break' target")
else:
c.blocks[c.blocks.high].fixups.add L1
proc genIf(c: var Con, n: PNode) =
var endings: seq[TPosition] = @[]
for i in countup(0, len(n) - 1):
var it = n.sons[i]
c.gen(it.sons[0])
if it.len == 2:
let elsePos = c.forkI(it.sons[1])
c.gen(it.sons[1])
if i < sonsLen(n)-1:
endings.add(c.gotoI(it.sons[1]))
c.patch(elsePos)
for endPos in endings: c.patch(endPos)
proc genAndOr(c: var Con; n: PNode) =
# asgn dest, a
# fork L1
# asgn dest, b
# L1:
c.gen(n.sons[1])
let L1 = c.forkI(n)
c.gen(n.sons[2])
c.patch(L1)
proc genCase(c: var Con; n: PNode) =
# if (!expr1) goto L1;
# thenPart
# goto LEnd
# L1:
# if (!expr2) goto L2;
# thenPart2
# goto LEnd
# L2:
# elsePart
# Lend:
var endings: seq[TPosition] = @[]
c.gen(n.sons[0])
for i in 1 ..< n.len:
let it = n.sons[i]
if it.len == 1:
c.gen(it.sons[0])
else:
let elsePos = c.forkI(it.lastSon)
c.gen(it.lastSon)
if i < sonsLen(n)-1:
endings.add(c.gotoI(it.lastSon))
c.patch(elsePos)
for endPos in endings: c.patch(endPos)
proc genTry(c: var Con; n: PNode) =
var endings: seq[TPosition] = @[]
let elsePos = c.forkI(n)
c.gen(n.sons[0])
c.patch(elsePos)
for i in 1 ..< n.len:
let it = n.sons[i]
if it.kind != nkFinally:
var blen = len(it)
let endExcept = c.forkI(it)
c.gen(it.lastSon)
if i < sonsLen(n)-1:
endings.add(c.gotoI(it))
c.patch(endExcept)
for endPos in endings: c.patch(endPos)
let fin = lastSon(n)
if fin.kind == nkFinally:
c.gen(fin.sons[0])
proc genRaise(c: var Con; n: PNode) =
gen(c, n.sons[0])
c.code.add Instr(n: n, kind: goto, dest: high(int) - c.code.len)
proc genReturn(c: var Con; n: PNode) =
if n.sons[0].kind != nkEmpty: gen(c, n.sons[0])
c.code.add Instr(n: n, kind: goto, dest: high(int) - c.code.len)
const
InterestingSyms = {skVar, skResult, skLet}
proc genUse(c: var Con; n: PNode) =
var n = n
while n.kind in {nkDotExpr, nkCheckedFieldExpr,
nkBracketExpr, nkDerefExpr, nkHiddenDeref,
nkAddr, nkHiddenAddr}:
n = n[0]
if n.kind == nkSym and n.sym.kind in InterestingSyms:
if c.inCall > 0:
c.code.add Instr(n: n, kind: useWithinCall, sym: n.sym)
else:
c.code.add Instr(n: n, kind: use, sym: n.sym)
proc genDef(c: var Con; n: PNode) =
if n.kind == nkSym and n.sym.kind in InterestingSyms:
c.code.add Instr(n: n, kind: def, sym: n.sym)
proc genCall(c: var Con; n: PNode) =
gen(c, n[0])
var t = n[0].typ
if t != nil: t = t.skipTypes(abstractInst)
inc c.inCall
for i in 1..<n.len:
gen(c, n[i])
if t != nil and i < t.len and t.sons[i].kind == tyVar:
genDef(c, n[i])
dec c.inCall
proc genMagic(c: var Con; n: PNode; m: TMagic) =
case m
of mAnd, mOr: c.genAndOr(n)
of mNew, mNewFinalize:
genDef(c, n[1])
for i in 2..<n.len: gen(c, n[i])
of mExit:
genCall(c, n)
c.code.add Instr(n: n, kind: goto, dest: high(int) - c.code.len)
else:
genCall(c, n)
proc genVarSection(c: var Con; n: PNode) =
for a in n:
if a.kind == nkCommentStmt: continue
if a.kind == nkVarTuple:
gen(c, a.lastSon)
for i in 0 .. a.len-3: genDef(c, a[i])
else:
gen(c, a.lastSon)
if a.lastSon.kind != nkEmpty:
genDef(c, a.sons[0])
proc gen(c: var Con; n: PNode) =
case n.kind
of nkSym: genUse(c, n)
of nkCallKinds:
if n.sons[0].kind == nkSym:
let s = n.sons[0].sym
if s.magic != mNone:
genMagic(c, n, s.magic)
else:
genCall(c, n)
else:
genCall(c, n)
of nkCharLit..nkNilLit: discard
of nkAsgn, nkFastAsgn:
gen(c, n[1])
genDef(c, n[0])
of nkDotExpr, nkCheckedFieldExpr, nkBracketExpr,
nkDerefExpr, nkHiddenDeref, nkAddr, nkHiddenAddr:
gen(c, n[0])
of nkIfStmt, nkIfExpr: genIf(c, n)
of nkWhenStmt:
# This is "when nimvm" node. Chose the first branch.
gen(c, n.sons[0].sons[1])
of nkCaseStmt: genCase(c, n)
of nkWhileStmt: genWhile(c, n)
of nkBlockExpr, nkBlockStmt: genBlock(c, n)
of nkReturnStmt: genReturn(c, n)
of nkRaiseStmt: genRaise(c, n)
of nkBreakStmt: genBreak(c, n)
of nkTryStmt: genTry(c, n)
of nkStmtList, nkStmtListExpr, nkChckRangeF, nkChckRange64, nkChckRange,
nkBracket, nkCurly, nkPar, nkTupleConstr, nkClosure, nkObjConstr:
for x in n: gen(c, x)
of nkPragmaBlock: gen(c, n.lastSon)
of nkDiscardStmt: gen(c, n.sons[0])
of nkHiddenStdConv, nkHiddenSubConv, nkConv, nkExprColonExpr, nkExprEqExpr,
nkCast:
gen(c, n.sons[1])
of nkObjDownConv, nkStringToCString, nkCStringToString: gen(c, n.sons[0])
of nkVarSection, nkLetSection: genVarSection(c, n)
else: discard
proc dfa(code: seq[Instr]; conf: ConfigRef) =
var u = newSeq[IntSet](code.len) # usages
var d = newSeq[IntSet](code.len) # defs
var c = newSeq[IntSet](code.len) # consumed
var backrefs = initTable[int, int]()
for i in 0..<code.len:
u[i] = initIntSet()
d[i] = initIntSet()
c[i] = initIntSet()
case code[i].kind
of use, useWithinCall: u[i].incl(code[i].sym.id)
of def: d[i].incl(code[i].sym.id)
of fork, goto:
let d = i+code[i].dest
backrefs.add(d, i)
var w = @[0]
var maxIters = 50
var someChange = true
var takenGotos = initIntSet()
var consuming = -1
while w.len > 0 and maxIters > 0: # and someChange:
dec maxIters
var pc = w.pop() # w[^1]
var prevPc = -1
# this simulates a single linear control flow execution:
while pc < code.len:
if prevPc >= 0:
someChange = false
# merge step and test for changes (we compute the fixpoints here):
# 'u' needs to be the union of prevPc, pc
# 'd' needs to be the intersection of 'pc'
for id in u[prevPc]:
if not u[pc].containsOrIncl(id):
someChange = true
# in (a; b) if ``a`` sets ``v`` so does ``b``. The intersection
# is only interesting on merge points:
for id in d[prevPc]:
if not d[pc].containsOrIncl(id):
someChange = true
# if this is a merge point, we take the intersection of the 'd' sets:
if backrefs.hasKey(pc):
var intersect = initIntSet()
assign(intersect, d[pc])
var first = true
for prevPc in backrefs.allValues(pc):
for def in d[pc]:
if def notin d[prevPc]:
excl(intersect, def)
someChange = true
when defined(debugDfa):
echo "Excluding ", pc, " prev ", prevPc
assign d[pc], intersect
if consuming >= 0:
if not c[pc].containsOrIncl(consuming):
someChange = true
consuming = -1
# our interpretation ![I!]:
prevPc = pc
case code[pc].kind
of goto:
# we must leave endless loops eventually:
if not takenGotos.containsOrIncl(pc) or someChange:
pc = pc + code[pc].dest
else:
inc pc
of fork:
# we follow the next instruction but push the dest onto our "work" stack:
#if someChange:
w.add pc + code[pc].dest
inc pc
of use, useWithinCall:
#if not d[prevPc].missingOrExcl():
# someChange = true
consuming = code[pc].sym.id
inc pc
of def:
if not d[pc].containsOrIncl(code[pc].sym.id):
someChange = true
inc pc
when defined(useDfa) and defined(debugDfa):
for i in 0..<code.len:
echo "PC ", i, ": defs: ", d[i], "; uses ", u[i], "; consumes ", c[i]
# now check the condition we're interested in:
for i in 0..<code.len:
case code[i].kind
of use, useWithinCall:
let s = code[i].sym
if s.id notin d[i]:
localError(conf, code[i].n.info, "usage of uninitialized variable: " & s.name.s)
if s.id in c[i]:
localError(conf, code[i].n.info, "usage of an already consumed variable: " & s.name.s)
else: discard
proc dataflowAnalysis*(s: PSym; body: PNode; conf: ConfigRef) =
var c = Con(code: @[], blocks: @[])
gen(c, body)
when defined(useDfa) and defined(debugDfa): echoCfg(c.code)
dfa(c.code, conf)
proc constructCfg*(s: PSym; body: PNode): ControlFlowGraph =
## constructs a control flow graph for ``body``.
var c = Con(code: @[], blocks: @[])
shallowCopy(result, c.code)
|