1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
|
#
#
# The Nim Compiler
# (c) Copyright 2017 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## Data flow analysis for Nim.
## We transform the AST into a linear list of instructions first to
## make this easier to handle: There are only 2 different branching
## instructions: 'goto X' is an unconditional goto, 'fork X'
## is a conditional goto (either the next instruction or 'X' can be
## taken). Exhaustive case statements are translated
## so that the last branch is transformed into an 'else' branch.
## ``return`` and ``break`` are all covered by 'goto'.
##
## Control flow through exception handling:
## Contrary to popular belief, exception handling doesn't cause
## many problems for this DFA representation, ``raise`` is a statement
## that ``goes to`` the outer ``finally`` or ``except`` if there is one,
## otherwise it is the same as ``return``. Every call is treated as
## a call that can potentially ``raise``. However, without a surrounding
## ``try`` we don't emit these ``fork ReturnLabel`` instructions in order
## to speed up the dataflow analysis passes.
##
## The data structures and algorithms used here are inspired by
## "A Graph–Free Approach to Data–Flow Analysis" by Markus Mohnen.
## https://link.springer.com/content/pdf/10.1007/3-540-45937-5_6.pdf
import ast, types, intsets, lineinfos, renderer
from patterns import sameTrees
type
InstrKind* = enum
goto, fork, def, use
Instr* = object
n*: PNode # contains the def/use location.
case kind*: InstrKind
of goto, fork: dest*: int
else: discard
ControlFlowGraph* = seq[Instr]
TPosition = distinct int
TBlock = object
case isTryBlock: bool
of false:
label: PSym
breakFixups: seq[(TPosition, seq[PNode])] #Contains the gotos for the breaks along with their pending finales
of true:
finale: PNode
raiseFixups: seq[TPosition] #Contains the gotos for the raises
Con = object
code: ControlFlowGraph
inCall, inTryStmt: int
blocks: seq[TBlock]
owner: PSym
proc debugInfo(info: TLineInfo): string =
result = $info.line #info.toFilename & ":" & $info.line
proc codeListing(c: ControlFlowGraph, result: var string, start=0; last = -1) =
# for debugging purposes
# first iteration: compute all necessary labels:
var jumpTargets = initIntSet()
let last = if last < 0: c.len-1 else: min(last, c.len-1)
for i in start..last:
if c[i].kind in {goto, fork}:
jumpTargets.incl(i+c[i].dest)
var i = start
while i <= last:
if i in jumpTargets: result.add("L" & $i & ":\n")
result.add "\t"
result.add ($i & " " & $c[i].kind)
result.add "\t"
case c[i].kind
of def, use:
result.add renderTree(c[i].n)
of goto, fork:
result.add "L"
result.addInt c[i].dest+i
result.add("\t#")
result.add(debugInfo(c[i].n.info))
result.add("\n")
inc i
if i in jumpTargets: result.add("L" & $i & ": End\n")
# consider calling `asciitables.alignTable`
proc echoCfg*(c: ControlFlowGraph; start=0; last = -1) {.deprecated.} =
## echos the ControlFlowGraph for debugging purposes.
var buf = ""
codeListing(c, buf, start, last)
echo buf
proc forkI(c: var Con; n: PNode): TPosition =
result = TPosition(c.code.len)
c.code.add Instr(n: n, kind: fork, dest: 0)
proc gotoI(c: var Con; n: PNode): TPosition =
result = TPosition(c.code.len)
c.code.add Instr(n: n, kind: goto, dest: 0)
#[
Join is no more
===============
Instead of generating join instructions we adapt our traversal of the CFG.
When encountering a fork we split into two paths, we follow the path
starting at "pc + 1" until it encounters the joinpoint: "pc + forkInstr.dest".
If we encounter gotos that would jump further than the current joinpoint,
as can happen with gotos generated by unstructured controlflow such as break, raise or return,
we simply suspend following the current path, and follow the other path until the new joinpoint
which is simply the instruction pointer returned to us by the now suspended path.
If the path we are following now, also encounters a goto that exceeds the joinpoint
we repeat the process; suspending the current path and evaluating the other one with a new joinpoint.
If we eventually reach a common joinpoint we join the two paths.
This new "ping-pong" approach has the obvious advantage of not requiring join instructions, as such
cutting down on the CFG size but is also mandatory for correctly handling complicated cases
of unstructured controlflow.
Design of join
==============
block:
if cond: break
def(x)
use(x)
Generates:
L0: fork lab1
join L0 # patched.
goto Louter
lab1:
def x
join L0
Louter:
use x
block outer:
while a:
while b:
if foo:
if bar:
break outer # --> we need to 'join' every pushed 'fork' here
This works and then our abstract interpretation needs to deal with 'fork'
differently. It really causes a split in execution. Two threads are
"spawned" and both need to reach the 'join L' instruction. Afterwards
the abstract interpretations are joined and execution resumes single
threaded.
Abstract Interpretation
-----------------------
proc interpret(pc, state, comesFrom): state =
result = state
# we need an explicit 'create' instruction (an explicit heap), in order
# to deal with 'var x = create(); var y = x; var z = y; destroy(z)'
while true:
case pc
of fork:
let a = interpret(pc+1, result, pc)
let b = interpret(forkTarget, result, pc)
result = a ++ b # ++ is a union operation
inc pc
of join:
if joinTarget == comesFrom: return result
else: inc pc
of use X:
if not result.contains(x):
error "variable not initialized " & x
inc pc
of def X:
if not result.contains(x):
result.incl X
else:
error "overwrite of variable causes memory leak " & x
inc pc
of destroy X:
result.excl X
This is correct but still can lead to false positives:
proc p(cond: bool) =
if cond:
new(x)
otherThings()
if cond:
destroy x
Is not a leak. We should find a way to model *data* flow, not just
control flow. One solution is to rewrite the 'if' without a fork
instruction. The unstructured aspect can now be easily dealt with
the 'goto' and 'join' instructions.
proc p(cond: bool) =
L0: fork Lend
new(x)
# do not 'join' here!
Lend:
otherThings()
join L0 # SKIP THIS FOR new(x) SOMEHOW
destroy x
join L0 # but here.
But if we follow 'goto Louter' we will never come to the join point.
We restore the bindings after popping pc from the stack then there
"no" problem?!
while cond:
prelude()
if not condB: break
postlude()
--->
var setFlag = true
while cond and not setFlag:
prelude()
if not condB:
setFlag = true # BUT: Dependency
if not setFlag: # HERE
postlude()
--->
var setFlag = true
while cond and not setFlag:
prelude()
if not condB:
postlude()
setFlag = true
-------------------------------------------------
while cond:
prelude()
if more:
if not condB: break
stuffHere()
postlude()
-->
var setFlag = true
while cond and not setFlag:
prelude()
if more:
if not condB:
setFlag = false
else:
stuffHere()
postlude()
else:
postlude()
This is getting complicated. Instead we keep the whole 'join' idea but
duplicate the 'join' instructions on breaks and return exits!
]#
proc genLabel(c: Con): TPosition =
result = TPosition(c.code.len)
proc jmpBack(c: var Con, n: PNode, p = TPosition(0)) =
let dist = p.int - c.code.len
doAssert(low(int) div 2 + 1 < dist and dist < high(int) div 2)
c.code.add Instr(n: n, kind: goto, dest: dist)
proc patch(c: var Con, p: TPosition) =
# patch with current index
let p = p.int
let diff = c.code.len - p
doAssert(low(int) div 2 + 1 < diff and diff < high(int) div 2)
c.code[p].dest = diff
proc gen(c: var Con; n: PNode) # {.noSideEffect.}
proc popBlock(c: var Con; oldLen: int) =
var exits: seq[TPosition]
exits.add c.gotoI(newNode(nkEmpty))
for f in c.blocks[oldLen].breakFixups:
c.patch(f[0])
for finale in f[1]:
c.gen(finale)
exits.add c.gotoI(newNode(nkEmpty))
for e in exits:
c.patch e
c.blocks.setLen(oldLen)
template withBlock(labl: PSym; body: untyped) {.dirty.} =
var oldLen {.gensym.} = c.blocks.len
c.blocks.add TBlock(isTryBlock: false, label: labl)
body
popBlock(c, oldLen)
proc isTrue(n: PNode): bool =
n.kind == nkSym and n.sym.kind == skEnumField and n.sym.position != 0 or
n.kind == nkIntLit and n.intVal != 0
when true:
proc genWhile(c: var Con; n: PNode) =
# We unroll every loop 3 times. We emulate 0, 1, 2 iterations
# through the loop. We need to prove this is correct for our
# purposes. But Herb Sutter claims it is. (Proof by authority.)
#[
while cond:
body
Becomes:
block:
if cond:
body
if cond:
body
if cond:
body
We still need to ensure 'break' resolves properly, so an AST to AST
translation is impossible.
So the code to generate is:
cond
fork L4 # F1
body
cond
fork L5 # F2
body
cond
fork L6 # F3
body
L6:
join F3
L5:
join F2
L4:
join F1
]#
if isTrue(n[0]):
# 'while true' is an idiom in Nim and so we produce
# better code for it:
withBlock(nil):
for i in 0..2:
c.gen(n[1])
else:
withBlock(nil):
var endings: array[3, TPosition]
for i in 0..2:
c.gen(n[0])
endings[i] = c.forkI(n)
c.gen(n[1])
for i in countdown(endings.high, 0):
let endPos = endings[i]
c.patch(endPos)
else:
proc genWhile(c: var Con; n: PNode) =
# lab1:
# cond, tmp
# fork tmp, lab2
# body
# jmp lab1
# lab2:
let lab1 = c.genLabel
withBlock(nil):
if isTrue(n[0]):
c.gen(n[1])
c.jmpBack(n, lab1)
else:
c.gen(n[0])
let lab2 = c.forkI(n)
c.gen(n[1])
c.jmpBack(n, lab1)
c.patch(lab2)
template forkT(n, body) =
let lab1 = c.forkI(n)
body
c.patch(lab1)
proc genIf(c: var Con, n: PNode) =
#[
if cond:
A
elif condB:
B
elif condC:
C
else:
D
cond
fork lab1
A
goto Lend
lab1:
condB
fork lab2
B
goto Lend2
lab2:
condC
fork L3
C
goto Lend3
L3:
D
goto Lend3 # not eliminated to simplify the join generation
Lend3:
join F3
Lend2:
join F2
Lend:
join F1
]#
var endings: seq[TPosition] = @[]
for i in 0..<n.len:
var it = n[i]
c.gen(it[0])
if it.len == 2:
let elsePos = forkI(c, it[1])
c.gen(it[1])
endings.add(c.gotoI(it[1]))
c.patch(elsePos)
for i in countdown(endings.high, 0):
let endPos = endings[i]
c.patch(endPos)
proc genAndOr(c: var Con; n: PNode) =
# asgn dest, a
# fork lab1
# asgn dest, b
# lab1:
# join F1
c.gen(n[1])
forkT(n):
c.gen(n[2])
proc genCase(c: var Con; n: PNode) =
# if (!expr1) goto lab1;
# thenPart
# goto LEnd
# lab1:
# if (!expr2) goto lab2;
# thenPart2
# goto LEnd
# lab2:
# elsePart
# Lend:
let isExhaustive = skipTypes(n[0].typ,
abstractVarRange-{tyTypeDesc}).kind notin {tyFloat..tyFloat128, tyString}
var endings: seq[TPosition] = @[]
c.gen(n[0])
for i in 1..<n.len:
let it = n[i]
if it.len == 1:
c.gen(it[0])
elif i == n.len-1 and isExhaustive:
# treat the last branch as 'else' if this is an exhaustive case statement.
c.gen(it.lastSon)
else:
let elsePos = c.forkI(it.lastSon)
c.gen(it.lastSon)
endings.add(c.gotoI(it.lastSon))
c.patch(elsePos)
for i in countdown(endings.high, 0):
let endPos = endings[i]
c.patch(endPos)
proc genBlock(c: var Con; n: PNode) =
withBlock(n[0].sym):
c.gen(n[1])
proc genBreakOrRaiseAux(c: var Con, i: int, n: PNode) =
let lab1 = c.gotoI(n)
if c.blocks[i].isTryBlock:
c.blocks[i].raiseFixups.add lab1
else:
var trailingFinales: seq[PNode]
if c.inTryStmt > 0: #Ok, we are in a try, lets see which (if any) try's we break out from:
for b in countdown(c.blocks.high, i):
if c.blocks[b].isTryBlock:
trailingFinales.add c.blocks[b].finale
c.blocks[i].breakFixups.add (lab1, trailingFinales)
proc genBreak(c: var Con; n: PNode) =
if n[0].kind == nkSym:
#echo cast[int](n[0].sym)
for i in countdown(c.blocks.high, 0):
if not c.blocks[i].isTryBlock and c.blocks[i].label == n[0].sym:
genBreakOrRaiseAux(c, i, n)
return
#globalError(n.info, "VM problem: cannot find 'break' target")
else:
for i in countdown(c.blocks.high, 0):
if not c.blocks[i].isTryBlock:
genBreakOrRaiseAux(c, i, n)
return
proc genTry(c: var Con; n: PNode) =
var endings: seq[TPosition] = @[]
let oldLen = c.blocks.len
c.blocks.add TBlock(isTryBlock: true, finale: if n[^1].kind == nkFinally: n[^1] else: newNode(nkEmpty))
inc c.inTryStmt
#let elsePos = c.forkI(n)
c.gen(n[0])
dec c.inTryStmt
for f in c.blocks[oldLen].raiseFixups:
c.patch(f)
c.blocks.setLen oldLen
#c.patch(elsePos)
for i in 1..<n.len:
let it = n[i]
if it.kind != nkFinally:
let endExcept = c.forkI(it)
c.gen(it.lastSon)
endings.add(c.gotoI(it))
c.patch(endExcept)
for i in countdown(endings.high, 0):
let endPos = endings[i]
c.patch(endPos)
# join the 'elsePos' forkI instruction:
#c.joinI(c.blocks[^1].forks.pop(), n)
let fin = lastSon(n)
if fin.kind == nkFinally:
c.gen(fin[0])
template genNoReturn(c: var Con; n: PNode) =
# leave the graph
c.code.add Instr(n: n, kind: goto, dest: high(int) - c.code.len)
proc genRaise(c: var Con; n: PNode) =
gen(c, n[0])
if c.inTryStmt > 0:
for i in countdown(c.blocks.high, 0):
if c.blocks[i].isTryBlock:
genBreakOrRaiseAux(c, i, n)
return
assert false #Unreachable
else:
genNoReturn(c, n)
proc genImplicitReturn(c: var Con) =
if c.owner.kind in {skProc, skFunc, skMethod, skIterator, skConverter} and resultPos < c.owner.ast.len:
gen(c, c.owner.ast[resultPos])
proc genReturn(c: var Con; n: PNode) =
if n[0].kind != nkEmpty:
gen(c, n[0])
else:
genImplicitReturn(c)
genBreakOrRaiseAux(c, 0, n)
const
InterestingSyms = {skVar, skResult, skLet, skParam, skForVar, skTemp}
PathKinds0 = {nkDotExpr, nkCheckedFieldExpr,
nkBracketExpr, nkDerefExpr, nkHiddenDeref,
nkAddr, nkHiddenAddr,
nkObjDownConv, nkObjUpConv}
PathKinds1 = {nkHiddenStdConv, nkHiddenSubConv}
proc skipConvDfa*(n: PNode): PNode =
result = n
while true:
case result.kind
of nkObjDownConv, nkObjUpConv:
result = result[0]
of PathKinds1:
result = result[1]
else: break
proc genUse(c: var Con; orig: PNode) =
var n = orig
while true:
case n.kind
of PathKinds0 - {nkBracketExpr}:
n = n[0]
of nkBracketExpr:
gen(c, n[1])
n = n[0]
of PathKinds1:
n = n[1]
else: break
if n.kind in nkCallKinds:
gen(c, n)
if n.kind == nkSym and n.sym.kind in InterestingSyms:
c.code.add Instr(n: orig, kind: use)
proc aliases*(obj, field: PNode): bool =
var n = field
var obj = obj
while obj.kind in {nkHiddenSubConv, nkHiddenStdConv, nkObjDownConv, nkObjUpConv,
nkAddr, nkHiddenAddr, nkDerefExpr, nkHiddenDeref}:
obj = obj[0]
while true:
if sameTrees(obj, n): return true
case n.kind
of PathKinds0, PathKinds1:
n = n[0]
else:
break
proc useInstrTargets*(ins: Instr; loc: PNode): bool =
assert ins.kind == use
result = sameTrees(ins.n, loc) or
ins.n.aliases(loc) or loc.aliases(ins.n)
# We can come here if loc is 'x.f' and ins.n is 'x' or the other way round.
# use x.f; question: does it affect the full 'x'? No.
# use x; question does it affect 'x.f'? Yes.
proc defInstrTargets*(ins: Instr; loc: PNode): bool =
assert ins.kind == def
result = sameTrees(ins.n, loc) or ins.n.aliases(loc)
# We can come here if loc is 'x.f' and ins.n is 'x' or the other way round.
# def x.f; question: does it affect the full 'x'? No.
# def x; question: does it affect the 'x.f'? Yes.
proc isAnalysableFieldAccess*(orig: PNode; owner: PSym): bool =
var n = orig
while true:
case n.kind
of nkDotExpr, nkCheckedFieldExpr, nkHiddenSubConv, nkHiddenStdConv,
nkObjDownConv, nkObjUpConv, nkHiddenAddr, nkAddr:
n = n[0]
of nkBracketExpr:
# in a[i] the 'i' must be known
if n.len > 1 and n[1].kind in {nkCharLit..nkUInt64Lit}:
n = n[0]
else:
return false
of nkHiddenDeref, nkDerefExpr:
# We "own" sinkparam[].loc but not ourVar[].location as it is a nasty
# pointer indirection.
# bug #14159, we cannot reason about sinkParam[].location as it can
# still be shared for tyRef.
n = n[0]
return n.kind == nkSym and n.sym.owner == owner and (
n.sym.typ.skipTypes(abstractInst-{tyOwned}).kind in {tyOwned})
else:
break
# XXX Allow closure deref operations here if we know
# the owner controlled the closure allocation?
result = n.kind == nkSym and n.sym.owner == owner and
owner.kind != skModule and
(n.sym.kind != skParam or isSinkParam(n.sym)) # or n.sym.typ.kind == tyVar)
# Note: There is a different move analyzer possible that checks for
# consume(param.key); param.key = newValue for all paths. Then code like
#
# let splited = split(move self.root, x)
# self.root = merge(splited.lower, splited.greater)
#
# could be written without the ``move self.root``. However, this would be
# wrong! Then the write barrier for the ``self.root`` assignment would
# free the old data and all is lost! Lesson: Don't be too smart, trust the
# lower level C++ optimizer to specialize this code.
proc genDef(c: var Con; n: PNode) =
var m = n
# XXX do something about this duplicated logic here.
while true:
case m.kind
of nkDotExpr, nkCheckedFieldExpr, nkHiddenSubConv, nkHiddenStdConv,
nkObjDownConv, nkObjUpConv, nkHiddenAddr, nkAddr:
m = m[0]
of nkBracketExpr:
gen(c, m[1])
m = m[0]
of nkHiddenDeref, nkDerefExpr:
m = m[0]
else:
break
if n.kind == nkSym and n.sym.kind in InterestingSyms:
c.code.add Instr(n: n, kind: def)
elif isAnalysableFieldAccess(n, c.owner):
c.code.add Instr(n: n, kind: def)
else:
# bug #13314: An assignment to t5.w = -5 is a usage of 't5'
# we still need to gather the use information:
gen(c, n)
proc genCall(c: var Con; n: PNode) =
gen(c, n[0])
var t = n[0].typ
if t != nil: t = t.skipTypes(abstractInst)
inc c.inCall
for i in 1..<n.len:
gen(c, n[i])
when false:
if t != nil and i < t.len and t[i].kind == tyVar:
# This is wrong! Pass by var is a 'might def', not a 'must def'
# like the other defs we emit. This is not good enough for a move
# optimizer.
genDef(c, n[i])
# every call can potentially raise:
if c.inTryStmt > 0 and canRaiseConservative(n[0]):
# we generate the instruction sequence:
# fork lab1
# goto exceptionHandler (except or finally)
# lab1:
# join F1
let endGoto = c.forkI(n)
for i in countdown(c.blocks.high, 0):
if c.blocks[i].isTryBlock:
genBreakOrRaiseAux(c, i, n)
break
c.patch(endGoto)
dec c.inCall
proc genMagic(c: var Con; n: PNode; m: TMagic) =
case m
of mAnd, mOr: c.genAndOr(n)
of mNew, mNewFinalize:
genDef(c, n[1])
for i in 2..<n.len: gen(c, n[i])
else:
genCall(c, n)
proc genVarSection(c: var Con; n: PNode) =
for a in n:
if a.kind == nkCommentStmt:
discard
elif a.kind == nkVarTuple:
gen(c, a.lastSon)
for i in 0..<a.len-2: genDef(c, a[i])
else:
gen(c, a.lastSon)
if a.lastSon.kind != nkEmpty:
genDef(c, a[0])
proc gen(c: var Con; n: PNode) =
case n.kind
of nkSym: genUse(c, n)
of nkCallKinds:
if n[0].kind == nkSym:
let s = n[0].sym
if s.magic != mNone:
genMagic(c, n, s.magic)
else:
genCall(c, n)
if sfNoReturn in n[0].sym.flags:
genNoReturn(c, n)
else:
genCall(c, n)
of nkCharLit..nkNilLit: discard
of nkAsgn, nkFastAsgn:
gen(c, n[1])
# watch out: 'obj[i].f2 = value' sets 'f2' but
# "uses" 'i'. But we are only talking about builtin array indexing so
# it doesn't matter and 'x = 34' is NOT a usage of 'x'.
genDef(c, n[0])
of PathKinds0 - {nkHiddenStdConv, nkHiddenSubConv, nkObjDownConv, nkObjUpConv}:
genUse(c, n)
of nkIfStmt, nkIfExpr: genIf(c, n)
of nkWhenStmt:
# This is "when nimvm" node. Chose the first branch.
gen(c, n[0][1])
of nkCaseStmt: genCase(c, n)
of nkWhileStmt: genWhile(c, n)
of nkBlockExpr, nkBlockStmt: genBlock(c, n)
of nkReturnStmt: genReturn(c, n)
of nkRaiseStmt: genRaise(c, n)
of nkBreakStmt: genBreak(c, n)
of nkTryStmt, nkHiddenTryStmt: genTry(c, n)
of nkStmtList, nkStmtListExpr, nkChckRangeF, nkChckRange64, nkChckRange,
nkBracket, nkCurly, nkPar, nkTupleConstr, nkClosure, nkObjConstr, nkYieldStmt:
for x in n: gen(c, x)
of nkPragmaBlock: gen(c, n.lastSon)
of nkDiscardStmt, nkObjDownConv, nkObjUpConv: gen(c, n[0])
of nkConv, nkExprColonExpr, nkExprEqExpr, nkCast, nkHiddenSubConv, nkHiddenStdConv:
gen(c, n[1])
of nkStringToCString, nkCStringToString: gen(c, n[0])
of nkVarSection, nkLetSection: genVarSection(c, n)
of nkDefer:
doAssert false, "dfa construction pass requires the elimination of 'defer'"
else: discard
proc constructCfg*(s: PSym; body: PNode): ControlFlowGraph =
## constructs a control flow graph for ``body``.
var c = Con(code: @[], blocks: @[], owner: s)
withBlock(s):
gen(c, body)
genImplicitReturn(c)
shallowCopy(result, c.code)
|