summary refs log tree commit diff stats
path: root/compiler/dfa.nim
blob: f97d8f298d790eb13352a5d9558823995c323f4d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
pre { line-height: 125%; }
td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
.highlight .hll { background-color: #ffffcc }
.highlight .c { color: #888888 } /* Comment */
.highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */
.highlight .k { color: #008800; font-weight: bold } /* Keyword */
.highlight .ch { color: #888888 } /* Comment.Hashbang */
.highlight .cm { color: #888888 } /* Comment.Multiline */
.highlight .cp { color: #cc0000; font-weight: bold } /* Comment.Preproc */
.highlight .cpf { color: #888888 } /* Comment.PreprocFile */
.highlight .c1 { color: #888888 } /* Comment.Single */
.highlight .cs { color: #cc0000; font-weight: bold; background-color: #fff0f0 } /* Comment.Special */
.highlight .gd { color: #000000; background-color: #ffdddd } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */
.highlight .gr { color: #aa0000 } /* Generic.Error */
.highlight .gh { color: #333333 } /* Generic.Heading */
.highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #555555 } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #666666 } /* Generic.Subheading */
.highlight .gt { color: #aa0000 } /* Generic.Traceback */
.high
#
#
#           The Nim Compiler
#        (c) Copyright 2017 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## Data flow analysis for Nim.
## We transform the AST into a linear list of instructions first to
## make this easier to handle: There are only 2 different branching
## instructions: 'goto X' is an unconditional goto, 'fork X'
## is a conditional goto (either the next instruction or 'X' can be
## taken). Exhaustive case statements are translated
## so that the last branch is transformed into an 'else' branch.
## ``return`` and ``break`` are all covered by 'goto'.
##
## Control flow through exception handling:
## Contrary to popular belief, exception handling doesn't cause
## many problems for this DFA representation, ``raise`` is a statement
## that ``goes to`` the outer ``finally`` or ``except`` if there is one,
## otherwise it is the same as ``return``. Every call is treated as
## a call that can potentially ``raise``. However, without a surrounding
## ``try`` we don't emit these ``fork ReturnLabel`` instructions in order
## to speed up the dataflow analysis passes.
##
## The data structures and algorithms used here are inspired by
## "A Graph–Free Approach to Data–Flow Analysis" by Markus Mohnen.
## https://link.springer.com/content/pdf/10.1007/3-540-45937-5_6.pdf

import ast, astalgo, types, intsets, tables, msgs, options, lineinfos, renderer

from patterns import sameTrees

type
  InstrKind* = enum
    goto, fork, join, def, use
  Instr* = object
    n*: PNode
    case kind*: InstrKind
    of def, use: sym*: PSym # 'sym' can also be 'nil' and
                            # then 'n' contains the def/use location.
                            # This is used so that we can track object
                            # and tuple field accesses precisely.
    of goto, fork, join: dest*: int

  ControlFlowGraph* = seq[Instr]

  TPosition = distinct int
  TBlock = object
    label: PSym
    fixups: seq[TPosition]

  Con = object
    code: ControlFlowGraph
    inCall, inTryStmt: int
    blocks: seq[TBlock]
    tryStmtFixups: seq[TPosition]
    forks: seq[TPosition]
    owner: PSym

proc debugInfo(info: TLineInfo): string =
  result = $info.line #info.toFilename & ":" & $info.line

proc codeListing(c: ControlFlowGraph, result: var string, start=0; last = -1) =
  # for debugging purposes
  # first iteration: compute all necessary labels:
  var jumpTargets = initIntSet()
  let last = if last < 0: c.len-1 else: min(last, c.len-1)
  for i in start..last:
    if c[i].kind in {goto, fork, join}:
      jumpTargets.incl(i+c[i].dest)
  var i = start
  while i <= last:
    if i in jumpTargets: result.add("L" & $i & ":\n")
    result.add "\t"
    result.add ($i & " " & $c[i].kind)
    result.add "\t"
    case c[i].kind
    of def, use:
      result.add renderTree(c[i].n)
    of goto, fork, join:
      result.add "L"
      result.addInt c[i].dest+i
    result.add("\t#")
    result.add(debugInfo(c[i].n.info))
    result.add("\n")
    inc i
  if i in jumpTargets: result.add("L" & $i & ": End\n")
  # consider calling `asciitables.alignTable`

proc echoCfg*(c: ControlFlowGraph; start=0; last = -1) {.deprecated.} =
  ## echos the ControlFlowGraph for debugging purposes.
  var buf = ""
  codeListing(c, buf, start, last)
  when declared(echo):
    echo buf

proc forkI(c: var Con; n: PNode): TPosition =
  result = TPosition(c.code.len)
  c.code.add Instr(n: n, kind: fork, dest: 0)
  c.forks.add result

proc gotoI(c: var Con; n: PNode): TPosition =
  result = TPosition(c.code.len)
  c.code.add Instr(n: n, kind: goto, dest: 0)

#[

Design of join
==============

block:
  if cond: break
  def(x)

use(x)

Generates:

L0: fork lab1
  join L0  # patched.
  goto Louter
lab1:
  def x
  join L0
Louter:
  use x


block outer:
  while a:
    while b:
      if foo:
        if bar:
          break outer # --> we need to 'join' every pushed 'fork' here


This works and then our abstract interpretation needs to deal with 'fork'
differently. It really causes a split in execution. Two threads are
"spawned" and both need to reach the 'join L' instruction. Afterwards
the abstract interpretations are joined and execution resumes single
threaded.


Abstract Interpretation
-----------------------

proc interpret(pc, state, comesFrom): state =
  result = state
  # we need an explicit 'create' instruction (an explicit heap), in order
  # to deal with 'var x = create(); var y = x; var z = y; destroy(z)'
  while true:
    case pc
    of fork:
      let a = interpret(pc+1, result, pc)
      let b = interpret(forkTarget, result, pc)
      result = a ++ b # ++ is a union operation
      inc pc
    of join:
      if joinTarget == comesFrom: return result
      else: inc pc
    of use X:
      if not result.contains(x):
        error "variable not initialized " & x
      inc pc
    of def X:
      if not result.contains(x):
        result.incl X
      else:
        error "overwrite of variable causes memory leak " & x
      inc pc
    of destroy X:
      result.excl X

This is correct but still can lead to false positives:

proc p(cond: bool) =
  if cond:
    new(x)
  otherThings()
  if cond:
    destroy x

Is not a leak. We should find a way to model *data* flow, not just
control flow. One solution is to rewrite the 'if' without a fork
instruction. The unstructured aspect can now be easily dealt with
the 'goto' and 'join' instructions.

proc p(cond: bool) =
  L0: fork Lend
    new(x)
    # do not 'join' here!

  Lend:
    otherThings()
    join L0  # SKIP THIS FOR new(x) SOMEHOW
  destroy x
  join L0 # but here.



But if we follow 'goto Louter' we will never come to the join point.
We restore the bindings after popping pc from the stack then there
"no" problem?!


while cond:
  prelude()
  if not condB: break
  postlude()

--->
var setFlag = true
while cond and not setFlag:
  prelude()
  if not condB:
    setFlag = true   # BUT: Dependency
  if not setFlag:    # HERE
    postlude()

--->
var setFlag = true
while cond and not setFlag:
  prelude()
  if not condB:
    postlude()
    setFlag = true


-------------------------------------------------

while cond:
  prelude()
  if more:
    if not condB: break
    stuffHere()
  postlude()

-->
var setFlag = true
while cond and not setFlag:
  prelude()
  if more:
    if not condB:
      setFlag = false
    else:
      stuffHere()
      postlude()
  else:
    postlude()

This is getting complicated. Instead we keep the whole 'join' idea but
duplicate the 'join' instructions on breaks and return exits!

]#

proc joinI(c: var Con; fromFork: TPosition; n: PNode) =
  let dist = fromFork.int - c.code.len
  c.code.add Instr(n: n, kind: join, dest: dist)

proc genLabel(c: Con): TPosition =
  result = TPosition(c.code.len)

proc jmpBack(c: var Con, n: PNode, p = TPosition(0)) =
  let dist = p.int - c.code.len
  doAssert(low(int) div 2 + 1 < dist and dist < high(int) div 2)
  c.code.add Instr(n: n, kind: goto, dest: dist)

proc patch(c: var Con, p: TPosition) =
  # patch with current index
  let p = p.int
  let diff = c.code.len - p
  doAssert(low(int) div 2 + 1 < diff and diff < high(int) div 2)
  c.code[p].dest = diff

proc popBlock(c: var Con; oldLen: int) =
  for f in c.blocks[oldLen].fixups:
    c.patch(f)
  c.blocks.setLen(oldLen)

template withBlock(labl: PSym; body: untyped) {.dirty.} =
  var oldLen {.gensym.} = c.blocks.len
  c.blocks.add TBlock(label: labl, fixups: @[])
  body
  popBlock(c, oldLen)

proc isTrue(n: PNode): bool =
  n.kind == nkSym and n.sym.kind == skEnumField and n.sym.position != 0 or
    n.kind == nkIntLit and n.intVal != 0

proc gen(c: var Con; n: PNode) # {.noSideEffect.}

when true:
  proc genWhile(c: var Con; n: PNode) =
    # We unroll every loop 3 times. We emulate 0, 1, 2 iterations
    # through the loop. We need to prove this is correct for our
    # purposes. But Herb Sutter claims it is. (Proof by authority.)
    #[
    while cond:
      body

    Becomes:

    if cond:
      body
      if cond:
        body
        if cond:
          body

    We still need to ensure 'break' resolves properly, so an AST to AST
    translation is impossible.

    So the code to generate is:

      cond
      fork L4  # F1
      body
      cond
      fork L5  # F2
      body
      cond
      fork L6  # F3
      body
    L6:
      join F3
    L5:
      join F2
    L4:
      join F1
    ]#
    if isTrue(n.sons[0]):
      # 'while true' is an idiom in Nim and so we produce
      # better code for it:
      for i in 0..2:
        withBlock(nil):
          c.gen(n.sons[1])
    else:
      let oldForksLen = c.forks.len
      var endings: array[3, TPosition]
      for i in 0..2:
        withBlock(nil):
          c.gen(n.sons[0])
          endings[i] = c.forkI(n)
          c.gen(n.sons[1])
      for i in countdown(endings.high, 0):
        let endPos = endings[i]
        c.patch(endPos)
        c.joinI(c.forks.pop(), n)
      doAssert(c.forks.len == oldForksLen)

else:

  proc genWhile(c: var Con; n: PNode) =
    # lab1:
    #   cond, tmp
    #   fork tmp, lab2
    #   body
    #   jmp lab1
    # lab2:
    let oldForksLen = c.forks.len
    let lab1 = c.genLabel
    withBlock(nil):
      if isTrue(n.sons[0]):
        c.gen(n.sons[1])
        c.jmpBack(n, lab1)
      else:
        c.gen(n.sons[0])
        let lab2 = c.forkI(n)
        c.gen(n.sons[1])
        c.jmpBack(n, lab1)
        c.patch(lab2)
    setLen(c.forks, oldForksLen)

proc genBlock(c: var Con; n: PNode) =
  withBlock(n.sons[0].sym):
    c.gen(n.sons[1])

proc genJoins(c: var Con; n: PNode) =
  for i in countdown(c.forks.high, 0): joinI(c, c.forks[i], n)

proc genBreak(c: var Con; n: PNode) =
  genJoins(c, n)
  let lab1 = c.gotoI(n)
  if n.sons[0].kind == nkSym:
    #echo cast[int](n.sons[0].sym)
    for i in countdown(c.blocks.len-1, 0):
      if c.blocks[i].label == n.sons[0].sym:
        c.blocks[i].fixups.add lab1
        return
    #globalError(n.info, "VM problem: cannot find 'break' target")
  else:
    c.blocks[c.blocks.high].fixups.add lab1

template forkT(n, body) =
  let oldLen = c.forks.len
  let lab1 = c.forkI(n)
  body
  c.patch(lab1)
  c.joinI(lab1, n)
  setLen(c.forks, oldLen)

proc genIf(c: var Con, n: PNode) =
  #[

  if cond:
    A
  elif condB:
    B
  elif condC:
    C
  else:
    D

  cond
  fork lab1
  A
  goto Lend
  lab1:
    condB
    fork lab2
    B
    goto Lend2
  lab2:
    condC
    fork L3
    C
    goto Lend3
  L3:
    D
    goto Lend3 # not eliminated to simplify the join generation
  Lend3:
    join F3
  Lend2:
    join F2
  Lend:
    join F1

  ]#
  let oldLen = c.forks.len
  var endings: seq[TPosition] = @[]
  for i in 0 ..< len(n):
    var it = n.sons[i]
    c.gen(it.sons[0])
    if it.len == 2:
      let elsePos = forkI(c, it[1])
      c.gen(it.sons[1])
      endings.add(c.gotoI(it.sons[1]))
      c.patch(elsePos)
  for i in countdown(endings.high, 0):
    let endPos = endings[i]
    c.patch(endPos)
    c.joinI(c.forks.pop(), n)
  doAssert(c.forks.len == oldLen)

proc genAndOr(c: var Con; n: PNode) =
  #   asgn dest, a
  #   fork lab1
  #   asgn dest, b
  # lab1:
  #   join F1
  c.gen(n.sons[1])
  forkT(n):
    c.gen(n.sons[2])

proc genCase(c: var Con; n: PNode) =
  #  if (!expr1) goto lab1;
  #    thenPart
  #    goto LEnd
  #  lab1:
  #  if (!expr2) goto lab2;
  #    thenPart2
  #    goto LEnd
  #  lab2:
  #    elsePart
  #  Lend:
  let isExhaustive = skipTypes(n.sons[0].typ,
    abstractVarRange-{tyTypeDesc}).kind notin {tyFloat..tyFloat128, tyString}

  var endings: seq[TPosition] = @[]
  let oldLen = c.forks.len
  c.gen(n.sons[0])
  for i in 1 ..< n.len:
    let it = n.sons[i]
    if it.len == 1:
      c.gen(it.sons[0])
    elif i == n.len-1 and isExhaustive:
      # treat the last branch as 'else' if this is an exhaustive case statement.
      c.gen(it.lastSon)
    else:
      let elsePos = c.forkI(it.lastSon)
      c.gen(it.lastSon)
      endings.add(c.gotoI(it.lastSon))
      c.patch(elsePos)
  for i in countdown(endings.high, 0):
    let endPos = endings[i]
    c.patch(endPos)
    c.joinI(c.forks.pop(), n)
  doAssert(c.forks.len == oldLen)

proc genTry(c: var Con; n: PNode) =
  let oldLen = c.forks.len
  var endings: seq[TPosition] = @[]
  inc c.inTryStmt
  let oldFixups = c.tryStmtFixups.len

  #let elsePos = c.forkI(n)
  c.gen(n.sons[0])
  dec c.inTryStmt
  for i in oldFixups..c.tryStmtFixups.high:
    let f = c.tryStmtFixups[i]
    c.patch(f)
    # we also need to produce join instructions
    # for the 'fork' that might preceed the goto instruction
    if f.int-1 >= 0 and c.code[f.int-1].kind == fork:
      c.joinI(TPosition(f.int-1), n)

  setLen(c.tryStmtFixups, oldFixups)

  #c.patch(elsePos)
  for i in 1 ..< n.len:
    let it = n.sons[i]
    if it.kind != nkFinally:
      var blen = len(it)
      let endExcept = c.forkI(it)
      c.gen(it.lastSon)
      endings.add(c.gotoI(it))
      c.patch(endExcept)
  for i in countdown(endings.high, 0):
    let endPos = endings[i]
    c.patch(endPos)
    c.joinI(c.forks.pop(), n)

  # join the 'elsePos' forkI instruction:
  #c.joinI(c.forks.pop(), n)

  let fin = lastSon(n)
  if fin.kind == nkFinally:
    c.gen(fin.sons[0])
  doAssert(c.forks.len == oldLen)

template genNoReturn(c: var Con; n: PNode) =
  # leave the graph
  c.code.add Instr(n: n, kind: goto, dest: high(int) - c.code.len)

proc genRaise(c: var Con; n: PNode) =
  genJoins(c, n)
  gen(c, n.sons[0])
  if c.inTryStmt > 0:
    c.tryStmtFixups.add c.gotoI(n)
  else:
    genNoReturn(c, n)

proc genImplicitReturn(c: var Con) =
  if c.owner.kind in {skProc, skFunc, skMethod, skIterator, skConverter} and resultPos < c.owner.ast.len:
    gen(c, c.owner.ast.sons[resultPos])

proc genReturn(c: var Con; n: PNode) =
  genJoins(c, n)
  if n.sons[0].kind != nkEmpty:
    gen(c, n.sons[0])
  else:
    genImplicitReturn(c)
  genNoReturn(c, n)

const
  InterestingSyms = {skVar, skResult, skLet, skParam, skForVar, skTemp}
  PathKinds0 = {nkDotExpr, nkCheckedFieldExpr,
                nkBracketExpr, nkDerefExpr, nkHiddenDeref,
                nkAddr, nkHiddenAddr,
                nkObjDownConv, nkObjUpConv}
  PathKinds1 = {nkHiddenStdConv, nkHiddenSubConv}

proc getRoot(n: PNode): PNode =
  result = n
  while true:
    case result.kind
    of PathKinds0:
      result = result[0]
    of PathKinds1:
      result = result[1]
    else: break

proc skipConvDfa*(n: PNode): PNode =
  result = n
  while true:
    case result.kind
    of nkObjDownConv, nkObjUpConv:
      result = result[0]
    of PathKinds1:
      result = result[1]
    else: break

proc genUse(c: var Con; orig: PNode) =
  let n = dfa.getRoot(orig)
  if n.kind == nkSym and n.sym.kind in InterestingSyms:
    c.code.add Instr(n: orig, kind: use, sym: if orig != n: nil else: n.sym)

proc aliases(obj, field: PNode): bool =
  var n = field
  var obj = obj
  while obj.kind in {nkHiddenSubConv, nkHiddenStdConv, nkObjDownConv, nkObjUpConv}:
    obj = obj[0]
  while true:
    if sameTrees(obj, n): return true
    case n.kind
    of nkDotExpr, nkCheckedFieldExpr, nkHiddenSubConv, nkHiddenStdConv,
       nkObjDownConv, nkObjUpConv, nkHiddenDeref, nkDerefExpr:
      n = n[0]
    of nkBracketExpr:
      let x = n[0]
      if x.typ != nil and x.typ.skipTypes(abstractInst).kind == tyTuple:
        n = x
      else:
        break
    else:
      break
  return false

proc useInstrTargets*(ins: Instr; loc: PNode): bool =
  assert ins.kind == use
  if ins.sym != nil and loc.kind == nkSym:
    result = ins.sym == loc.sym
  else:
    result = ins.n == loc or sameTrees(ins.n, loc)
  if not result:
    # We can come here if loc is 'x.f' and ins.n is 'x' or the other way round.
    # def x.f; question: does it affect the full 'x'? No.
    # def x; question: does it affect the 'x.f'? Yes.
    # use x.f;  question: does it affect the full 'x'? No.
    # use x; question does it affect 'x.f'? Yes.
    result = aliases(ins.n, loc) or aliases(loc, ins.n)

proc defInstrTargets*(ins: Instr; loc: PNode): bool =
  assert ins.kind == def
  if ins.sym != nil and loc.kind == nkSym:
    result = ins.sym == loc.sym
  else:
    result = ins.n == loc or sameTrees(ins.n, loc)
  if not result:
    # We can come here if loc is 'x.f' and ins.n is 'x' or the other way round.
    # def x.f; question: does it affect the full 'x'? No.
    # def x; question: does it affect the 'x.f'? Yes.
    # use x.f;  question: does it affect the full 'x'? No.
    # use x; question does it affect 'x.f'? Yes.
    result = aliases(ins.n, loc)

proc isAnalysableFieldAccess*(orig: PNode; owner: PSym): bool =
  var n = orig
  while true:
    case n.kind
    of nkDotExpr, nkCheckedFieldExpr, nkHiddenSubConv, nkHiddenStdConv,
       nkObjDownConv, nkObjUpConv:
      n = n[0]
    of nkHiddenDeref, nkDerefExpr:
      # We "own" sinkparam[].loc but not ourVar[].location as it is a nasty
      # pointer indirection.
      n = n[0]
      return n.kind == nkSym and n.sym.owner == owner and (isSinkParam(n.sym) or
          n.sym.typ.skipTypes(abstractInst-{tyOwned}).kind in {tyOwned})
    of nkBracketExpr:
      let x = n[0]
      if x.typ != nil and x.typ.skipTypes(abstractInst).kind == tyTuple:
        n = x
      else:
        break
    else:
      break
  # XXX Allow closure deref operations here if we know
  # the owner controlled the closure allocation?
  result = n.kind == nkSym and n.sym.owner == owner and
    owner.kind != skModule and
    (n.sym.kind != skParam or isSinkParam(n.sym)) # or n.sym.typ.kind == tyVar)
  # Note: There is a different move analyzer possible that checks for
  # consume(param.key); param.key = newValue  for all paths. Then code like
  #
  #   let splited = split(move self.root, x)
  #   self.root = merge(splited.lower, splited.greater)
  #
  # could be written without the ``move self.root``. However, this would be
  # wrong! Then the write barrier for the ``self.root`` assignment would
  # free the old data and all is lost! Lesson: Don't be too smart, trust the
  # lower level C++ optimizer to specialize this code.

proc genDef(c: var Con; n: PNode) =
  if n.kind == nkSym and n.sym.kind in InterestingSyms:
    c.code.add Instr(n: n, kind: def, sym: n.sym)
  elif isAnalysableFieldAccess(n, c.owner):
    c.code.add Instr(n: n, kind: def, sym: nil)

proc canRaise(fn: PNode): bool =
  const magicsThatCanRaise = {
    mNone, mSlurp, mStaticExec, mParseExprToAst, mParseStmtToAst}
  if fn.kind == nkSym and fn.sym.magic notin magicsThatCanRaise:
    result = false
  else:
    result = true

proc genCall(c: var Con; n: PNode) =
  gen(c, n[0])
  var t = n[0].typ
  if t != nil: t = t.skipTypes(abstractInst)
  inc c.inCall
  for i in 1..<n.len:
    gen(c, n[i])
    when false:
      if t != nil and i < t.len and t.sons[i].kind == tyVar:
        # This is wrong! Pass by var is a 'might def', not a 'must def'
        # like the other defs we emit. This is not good enough for a move
        # optimizer.
        genDef(c, n[i])
  # every call can potentially raise:
  if c.inTryStmt > 0 and canRaise(n[0]):
    # we generate the instruction sequence:
    # fork lab1
    # goto exceptionHandler (except or finally)
    # lab1:
    # join F1
    let endGoto = c.forkI(n)
    c.tryStmtFixups.add c.gotoI(n)
    c.patch(endGoto)
    c.joinI(c.forks.pop(), n)
  dec c.inCall

proc genMagic(c: var Con; n: PNode; m: TMagic) =
  case m
  of mAnd, mOr: c.genAndOr(n)
  of mNew, mNewFinalize:
    genDef(c, n[1])
    for i in 2..<n.len: gen(c, n[i])
  else:
    genCall(c, n)

proc genVarSection(c: var Con; n: PNode) =
  for a in n:
    if a.kind == nkCommentStmt:
      discard
    elif a.kind == nkVarTuple:
      gen(c, a.lastSon)
      for i in 0 .. a.len-3: genDef(c, a[i])
    else:
      gen(c, a.lastSon)
      if a.lastSon.kind != nkEmpty:
        genDef(c, a.sons[0])

proc gen(c: var Con; n: PNode) =
  case n.kind
  of nkSym: genUse(c, n)
  of nkCallKinds:
    if n.sons[0].kind == nkSym:
      let s = n.sons[0].sym
      if s.magic != mNone:
        genMagic(c, n, s.magic)
      else:
        genCall(c, n)
      if sfNoReturn in n.sons[0].sym.flags:
        genNoReturn(c, n)
    else:
      genCall(c, n)
  of nkCharLit..nkNilLit: discard
  of nkAsgn, nkFastAsgn:
    gen(c, n[1])
    # watch out: 'obj[i].f2 = value' sets 'f2' but
    # "uses" 'i'. But we are only talking about builtin array indexing so
    # it doesn't matter and 'x = 34' is NOT a usage of 'x'.
    genDef(c, n[0])
  of PathKinds0 - {nkHiddenStdConv, nkHiddenSubConv, nkObjDownConv, nkObjUpConv}:
    genUse(c, n)
  of nkIfStmt, nkIfExpr: genIf(c, n)
  of nkWhenStmt:
    # This is "when nimvm" node. Chose the first branch.
    gen(c, n.sons[0].sons[1])
  of nkCaseStmt: genCase(c, n)
  of nkWhileStmt: genWhile(c, n)
  of nkBlockExpr, nkBlockStmt: genBlock(c, n)
  of nkReturnStmt: genReturn(c, n)
  of nkRaiseStmt: genRaise(c, n)
  of nkBreakStmt: genBreak(c, n)
  of nkTryStmt, nkHiddenTryStmt: genTry(c, n)
  of nkStmtList, nkStmtListExpr, nkChckRangeF, nkChckRange64, nkChckRange,
     nkBracket, nkCurly, nkPar, nkTupleConstr, nkClosure, nkObjConstr, nkYieldStmt:
    for x in n: gen(c, x)
  of nkPragmaBlock: gen(c, n.lastSon)
  of nkDiscardStmt, nkObjDownConv, nkObjUpConv: gen(c, n.sons[0])
  of nkConv, nkExprColonExpr, nkExprEqExpr, nkCast, nkHiddenSubConv, nkHiddenStdConv:
    gen(c, n.sons[1])
  of nkStringToCString, nkCStringToString: gen(c, n.sons[0])
  of nkVarSection, nkLetSection: genVarSection(c, n)
  of nkDefer:
    doAssert false, "dfa construction pass requires the elimination of 'defer'"
  else: discard

proc constructCfg*(s: PSym; body: PNode): ControlFlowGraph =
  ## constructs a control flow graph for ``body``.
  var c = Con(code: @[], blocks: @[], owner: s)
  gen(c, body)
  genImplicitReturn(c)
  shallowCopy(result, c.code)