1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
|
#
#
# The Nim Compiler
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This file implements the FFI part of the evaluator for Nim code.
import ast, astalgo, ropes, types, options, tables, dynlib, libffi, msgs, os
when defined(windows):
const libcDll = "msvcrt.dll"
else:
const libcDll = "libc.so(.6|.5|)"
type
TDllCache = tables.TTable[string, TLibHandle]
var
gDllCache = initTable[string, TLibHandle]()
when defined(windows):
var gExeHandle = loadLib(os.getAppFilename())
else:
var gExeHandle = loadLib()
proc getDll(cache: var TDllCache; dll: string; info: TLineInfo): pointer =
result = cache[dll]
if result.isNil:
var libs: seq[string] = @[]
libCandidates(dll, libs)
for c in libs:
result = loadLib(c)
if not result.isNil: break
if result.isNil:
globalError(info, "cannot load: " & dll)
cache[dll] = result
const
nkPtrLit = nkIntLit # hopefully we can get rid of this hack soon
var myerrno {.importc: "errno", header: "<errno.h>".}: cint ## error variable
proc importcSymbol*(sym: PSym): PNode =
let name = ropeToStr(sym.loc.r)
# the AST does not support untyped pointers directly, so we use an nkIntLit
# that contains the address instead:
result = newNodeIT(nkPtrLit, sym.info, sym.typ)
case name
of "stdin": result.intVal = cast[ByteAddress](system.stdin)
of "stdout": result.intVal = cast[ByteAddress](system.stdout)
of "stderr": result.intVal = cast[ByteAddress](system.stderr)
of "vmErrnoWrapper": result.intVal = cast[ByteAddress](myerrno)
else:
let lib = sym.annex
if lib != nil and lib.path.kind notin {nkStrLit..nkTripleStrLit}:
globalError(sym.info, "dynlib needs to be a string lit for the REPL")
var theAddr: pointer
if lib.isNil and not gExehandle.isNil:
# first try this exe itself:
theAddr = gExehandle.symAddr(name)
# then try libc:
if theAddr.isNil:
let dllhandle = gDllCache.getDll(libcDll, sym.info)
theAddr = dllhandle.symAddr(name)
elif not lib.isNil:
let dllhandle = gDllCache.getDll(if lib.kind == libHeader: libcDll
else: lib.path.strVal, sym.info)
theAddr = dllhandle.symAddr(name)
if theAddr.isNil: globalError(sym.info, "cannot import: " & sym.name.s)
result.intVal = cast[ByteAddress](theAddr)
proc mapType(t: ast.PType): ptr libffi.TType =
if t == nil: return addr libffi.type_void
case t.kind
of tyBool, tyEnum, tyChar, tyInt..tyInt64, tyUInt..tyUInt64, tySet:
case t.getSize
of 1: result = addr libffi.type_uint8
of 2: result = addr libffi.type_sint16
of 4: result = addr libffi.type_sint32
of 8: result = addr libffi.type_sint64
else: result = nil
of tyFloat, tyFloat64: result = addr libffi.type_double
of tyFloat32: result = addr libffi.type_float
of tyVar, tyLent, tyPointer, tyPtr, tyRef, tyCString, tySequence, tyString, tyExpr,
tyStmt, tyTypeDesc, tyProc, tyArray, tyStatic, tyNil:
result = addr libffi.type_pointer
of tyDistinct, tyAlias, tySink:
result = mapType(t.sons[0])
else:
result = nil
# too risky:
#of tyFloat128: result = addr libffi.type_longdouble
proc mapCallConv(cc: TCallingConvention, info: TLineInfo): TABI =
case cc
of ccDefault: result = DEFAULT_ABI
of ccStdCall: result = when defined(windows): STDCALL else: DEFAULT_ABI
of ccCDecl: result = DEFAULT_ABI
else:
globalError(info, "cannot map calling convention to FFI")
template rd(T, p: untyped): untyped = (cast[ptr T](p))[]
template wr(T, p, v: untyped): untyped = (cast[ptr T](p))[] = v
template `+!`(x, y: untyped): untyped =
cast[pointer](cast[ByteAddress](x) + y)
proc packSize(v: PNode, typ: PType): int =
## computes the size of the blob
case typ.kind
of tyPtr, tyRef, tyVar, tyLent:
if v.kind in {nkNilLit, nkPtrLit}:
result = sizeof(pointer)
else:
result = sizeof(pointer) + packSize(v.sons[0], typ.lastSon)
of tyDistinct, tyGenericInst, tyAlias, tySink:
result = packSize(v, typ.sons[0])
of tyArray:
# consider: ptr array[0..1000_000, int] which is common for interfacing;
# we use the real length here instead
if v.kind in {nkNilLit, nkPtrLit}:
result = sizeof(pointer)
elif v.len != 0:
result = v.len * packSize(v.sons[0], typ.sons[1])
else:
result = typ.getSize.int
proc pack(v: PNode, typ: PType, res: pointer)
proc getField(n: PNode; position: int): PSym =
case n.kind
of nkRecList:
for i in countup(0, sonsLen(n) - 1):
result = getField(n.sons[i], position)
if result != nil: return
of nkRecCase:
result = getField(n.sons[0], position)
if result != nil: return
for i in countup(1, sonsLen(n) - 1):
case n.sons[i].kind
of nkOfBranch, nkElse:
result = getField(lastSon(n.sons[i]), position)
if result != nil: return
else: internalError(n.info, "getField(record case branch)")
of nkSym:
if n.sym.position == position: result = n.sym
else: discard
proc packObject(x: PNode, typ: PType, res: pointer) =
internalAssert x.kind in {nkObjConstr, nkPar, nkTupleConstr}
# compute the field's offsets:
discard typ.getSize
for i in countup(ord(x.kind == nkObjConstr), sonsLen(x) - 1):
var it = x.sons[i]
if it.kind == nkExprColonExpr:
internalAssert it.sons[0].kind == nkSym
let field = it.sons[0].sym
pack(it.sons[1], field.typ, res +! field.offset)
elif typ.n != nil:
let field = getField(typ.n, i)
pack(it, field.typ, res +! field.offset)
else:
# XXX: todo
globalError(x.info, "cannot pack unnamed tuple")
const maxPackDepth = 20
var packRecCheck = 0
proc pack(v: PNode, typ: PType, res: pointer) =
template awr(T, v: untyped): untyped =
wr(T, res, v)
case typ.kind
of tyBool: awr(bool, v.intVal != 0)
of tyChar: awr(char, v.intVal.chr)
of tyInt: awr(int, v.intVal.int)
of tyInt8: awr(int8, v.intVal.int8)
of tyInt16: awr(int16, v.intVal.int16)
of tyInt32: awr(int32, v.intVal.int32)
of tyInt64: awr(int64, v.intVal.int64)
of tyUInt: awr(uint, v.intVal.uint)
of tyUInt8: awr(uint8, v.intVal.uint8)
of tyUInt16: awr(uint16, v.intVal.uint16)
of tyUInt32: awr(uint32, v.intVal.uint32)
of tyUInt64: awr(uint64, v.intVal.uint64)
of tyEnum, tySet:
case v.typ.getSize
of 1: awr(uint8, v.intVal.uint8)
of 2: awr(uint16, v.intVal.uint16)
of 4: awr(int32, v.intVal.int32)
of 8: awr(int64, v.intVal.int64)
else:
globalError(v.info, "cannot map value to FFI (tyEnum, tySet)")
of tyFloat: awr(float, v.floatVal)
of tyFloat32: awr(float32, v.floatVal)
of tyFloat64: awr(float64, v.floatVal)
of tyPointer, tyProc, tyCString, tyString:
if v.kind == nkNilLit:
# nothing to do since the memory is 0 initialized anyway
discard
elif v.kind == nkPtrLit:
awr(pointer, cast[pointer](v.intVal))
elif v.kind in {nkStrLit..nkTripleStrLit}:
awr(cstring, cstring(v.strVal))
else:
globalError(v.info, "cannot map pointer/proc value to FFI")
of tyPtr, tyRef, tyVar, tyLent:
if v.kind == nkNilLit:
# nothing to do since the memory is 0 initialized anyway
discard
elif v.kind == nkPtrLit:
awr(pointer, cast[pointer](v.intVal))
else:
if packRecCheck > maxPackDepth:
packRecCheck = 0
globalError(v.info, "cannot map value to FFI " & typeToString(v.typ))
inc packRecCheck
pack(v.sons[0], typ.lastSon, res +! sizeof(pointer))
dec packRecCheck
awr(pointer, res +! sizeof(pointer))
of tyArray:
let baseSize = typ.sons[1].getSize
for i in 0 ..< v.len:
pack(v.sons[i], typ.sons[1], res +! i * baseSize)
of tyObject, tyTuple:
packObject(v, typ, res)
of tyNil:
discard
of tyDistinct, tyGenericInst, tyAlias, tySink:
pack(v, typ.sons[0], res)
else:
globalError(v.info, "cannot map value to FFI " & typeToString(v.typ))
proc unpack(x: pointer, typ: PType, n: PNode): PNode
proc unpackObjectAdd(x: pointer, n, result: PNode) =
case n.kind
of nkRecList:
for i in countup(0, sonsLen(n) - 1):
unpackObjectAdd(x, n.sons[i], result)
of nkRecCase:
globalError(result.info, "case objects cannot be unpacked")
of nkSym:
var pair = newNodeI(nkExprColonExpr, result.info, 2)
pair.sons[0] = n
pair.sons[1] = unpack(x +! n.sym.offset, n.sym.typ, nil)
#echo "offset: ", n.sym.name.s, " ", n.sym.offset
result.add pair
else: discard
proc unpackObject(x: pointer, typ: PType, n: PNode): PNode =
# compute the field's offsets:
discard typ.getSize
# iterate over any actual field of 'n' ... if n is nil we need to create
# the nkPar node:
if n.isNil:
result = newNode(nkTupleConstr)
result.typ = typ
if typ.n.isNil:
internalError("cannot unpack unnamed tuple")
unpackObjectAdd(x, typ.n, result)
else:
result = n
if result.kind notin {nkObjConstr, nkPar, nkTupleConstr}:
globalError(n.info, "cannot map value from FFI")
if typ.n.isNil:
globalError(n.info, "cannot unpack unnamed tuple")
for i in countup(ord(n.kind == nkObjConstr), sonsLen(n) - 1):
var it = n.sons[i]
if it.kind == nkExprColonExpr:
internalAssert it.sons[0].kind == nkSym
let field = it.sons[0].sym
it.sons[1] = unpack(x +! field.offset, field.typ, it.sons[1])
else:
let field = getField(typ.n, i)
n.sons[i] = unpack(x +! field.offset, field.typ, it)
proc unpackArray(x: pointer, typ: PType, n: PNode): PNode =
if n.isNil:
result = newNode(nkBracket)
result.typ = typ
newSeq(result.sons, lengthOrd(typ).int)
else:
result = n
if result.kind != nkBracket:
globalError(n.info, "cannot map value from FFI")
let baseSize = typ.sons[1].getSize
for i in 0 ..< result.len:
result.sons[i] = unpack(x +! i * baseSize, typ.sons[1], result.sons[i])
proc canonNodeKind(k: TNodeKind): TNodeKind =
case k
of nkCharLit..nkUInt64Lit: result = nkIntLit
of nkFloatLit..nkFloat128Lit: result = nkFloatLit
of nkStrLit..nkTripleStrLit: result = nkStrLit
else: result = k
proc unpack(x: pointer, typ: PType, n: PNode): PNode =
template aw(k, v, field: untyped): untyped =
if n.isNil:
result = newNode(k)
result.typ = typ
else:
# check we have the right field:
result = n
if result.kind.canonNodeKind != k.canonNodeKind:
#echo "expected ", k, " but got ", result.kind
#debug result
return newNodeI(nkExceptBranch, n.info)
#globalError(n.info, "cannot map value from FFI")
result.field = v
template setNil() =
if n.isNil:
result = newNode(nkNilLit)
result.typ = typ
else:
reset n[]
result = n
result.kind = nkNilLit
result.typ = typ
template awi(kind, v: untyped): untyped = aw(kind, v, intVal)
template awf(kind, v: untyped): untyped = aw(kind, v, floatVal)
template aws(kind, v: untyped): untyped = aw(kind, v, strVal)
case typ.kind
of tyBool: awi(nkIntLit, rd(bool, x).ord)
of tyChar: awi(nkCharLit, rd(char, x).ord)
of tyInt: awi(nkIntLit, rd(int, x))
of tyInt8: awi(nkInt8Lit, rd(int8, x))
of tyInt16: awi(nkInt16Lit, rd(int16, x))
of tyInt32: awi(nkInt32Lit, rd(int32, x))
of tyInt64: awi(nkInt64Lit, rd(int64, x))
of tyUInt: awi(nkUIntLit, rd(uint, x).BiggestInt)
of tyUInt8: awi(nkUInt8Lit, rd(uint8, x).BiggestInt)
of tyUInt16: awi(nkUInt16Lit, rd(uint16, x).BiggestInt)
of tyUInt32: awi(nkUInt32Lit, rd(uint32, x).BiggestInt)
of tyUInt64: awi(nkUInt64Lit, rd(uint64, x).BiggestInt)
of tyEnum:
case typ.getSize
of 1: awi(nkIntLit, rd(uint8, x).BiggestInt)
of 2: awi(nkIntLit, rd(uint16, x).BiggestInt)
of 4: awi(nkIntLit, rd(int32, x).BiggestInt)
of 8: awi(nkIntLit, rd(int64, x).BiggestInt)
else:
globalError(n.info, "cannot map value from FFI (tyEnum, tySet)")
of tyFloat: awf(nkFloatLit, rd(float, x))
of tyFloat32: awf(nkFloat32Lit, rd(float32, x))
of tyFloat64: awf(nkFloat64Lit, rd(float64, x))
of tyPointer, tyProc:
let p = rd(pointer, x)
if p.isNil:
setNil()
elif n != nil and n.kind == nkStrLit:
# we passed a string literal as a pointer; however strings are already
# in their unboxed representation so nothing it to be unpacked:
result = n
else:
awi(nkPtrLit, cast[ByteAddress](p))
of tyPtr, tyRef, tyVar, tyLent:
let p = rd(pointer, x)
if p.isNil:
setNil()
elif n == nil or n.kind == nkPtrLit:
awi(nkPtrLit, cast[ByteAddress](p))
elif n != nil and n.len == 1:
internalAssert n.kind == nkRefTy
n.sons[0] = unpack(p, typ.lastSon, n.sons[0])
result = n
else:
globalError(n.info, "cannot map value from FFI " & typeToString(typ))
of tyObject, tyTuple:
result = unpackObject(x, typ, n)
of tyArray:
result = unpackArray(x, typ, n)
of tyCString, tyString:
let p = rd(cstring, x)
if p.isNil:
setNil()
else:
aws(nkStrLit, $p)
of tyNil:
setNil()
of tyDistinct, tyGenericInst, tyAlias, tySink:
result = unpack(x, typ.lastSon, n)
else:
# XXX what to do with 'array' here?
globalError(n.info, "cannot map value from FFI " & typeToString(typ))
proc fficast*(x: PNode, destTyp: PType): PNode =
if x.kind == nkPtrLit and x.typ.kind in {tyPtr, tyRef, tyVar, tyLent, tyPointer,
tyProc, tyCString, tyString,
tySequence}:
result = newNodeIT(x.kind, x.info, destTyp)
result.intVal = x.intVal
elif x.kind == nkNilLit:
result = newNodeIT(x.kind, x.info, destTyp)
else:
# we play safe here and allocate the max possible size:
let size = max(packSize(x, x.typ), packSize(x, destTyp))
var a = alloc0(size)
pack(x, x.typ, a)
# cast through a pointer needs a new inner object:
let y = if x.kind == nkRefTy: newNodeI(nkRefTy, x.info, 1)
else: x.copyTree
y.typ = x.typ
result = unpack(a, destTyp, y)
dealloc a
proc callForeignFunction*(call: PNode): PNode =
internalAssert call.sons[0].kind == nkPtrLit
var cif: TCif
var sig: TParamList
# use the arguments' types for varargs support:
for i in 1..call.len-1:
sig[i-1] = mapType(call.sons[i].typ)
if sig[i-1].isNil:
globalError(call.info, "cannot map FFI type")
let typ = call.sons[0].typ
if prep_cif(cif, mapCallConv(typ.callConv, call.info), cuint(call.len-1),
mapType(typ.sons[0]), sig) != OK:
globalError(call.info, "error in FFI call")
var args: TArgList
let fn = cast[pointer](call.sons[0].intVal)
for i in 1 .. call.len-1:
var t = call.sons[i].typ
args[i-1] = alloc0(packSize(call.sons[i], t))
pack(call.sons[i], t, args[i-1])
let retVal = if isEmptyType(typ.sons[0]): pointer(nil)
else: alloc(typ.sons[0].getSize.int)
libffi.call(cif, fn, retVal, args)
if retVal.isNil:
result = emptyNode
else:
result = unpack(retVal, typ.sons[0], nil)
result.info = call.info
if retVal != nil: dealloc retVal
for i in 1 .. call.len-1:
call.sons[i] = unpack(args[i-1], typ.sons[i], call[i])
dealloc args[i-1]
proc callForeignFunction*(fn: PNode, fntyp: PType,
args: var TNodeSeq, start, len: int,
info: TLineInfo): PNode =
internalAssert fn.kind == nkPtrLit
var cif: TCif
var sig: TParamList
for i in 0..len-1:
var aTyp = args[i+start].typ
if aTyp.isNil:
internalAssert i+1 < fntyp.len
aTyp = fntyp.sons[i+1]
args[i+start].typ = aTyp
sig[i] = mapType(aTyp)
if sig[i].isNil: globalError(info, "cannot map FFI type")
if prep_cif(cif, mapCallConv(fntyp.callConv, info), cuint(len),
mapType(fntyp.sons[0]), sig) != OK:
globalError(info, "error in FFI call")
var cargs: TArgList
let fn = cast[pointer](fn.intVal)
for i in 0 .. len-1:
let t = args[i+start].typ
cargs[i] = alloc0(packSize(args[i+start], t))
pack(args[i+start], t, cargs[i])
let retVal = if isEmptyType(fntyp.sons[0]): pointer(nil)
else: alloc(fntyp.sons[0].getSize.int)
libffi.call(cif, fn, retVal, cargs)
if retVal.isNil:
result = emptyNode
else:
result = unpack(retVal, fntyp.sons[0], nil)
result.info = info
if retVal != nil: dealloc retVal
for i in 0 .. len-1:
let t = args[i+start].typ
args[i+start] = unpack(cargs[i], t, args[i+start])
dealloc cargs[i]
|