1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
|
#
#
# The Nim Compiler
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module implements the 'implies' relation for guards.
import ast, astalgo, msgs, magicsys, nimsets, trees, types, renderer, idents,
saturate, modulegraphs, options, configuration
const
someEq = {mEqI, mEqF64, mEqEnum, mEqCh, mEqB, mEqRef, mEqProc,
mEqUntracedRef, mEqStr, mEqSet, mEqCString}
# set excluded here as the semantics are vastly different:
someLe = {mLeI, mLeF64, mLeU, mLeU64, mLeEnum,
mLeCh, mLeB, mLePtr, mLeStr}
someLt = {mLtI, mLtF64, mLtU, mLtU64, mLtEnum,
mLtCh, mLtB, mLtPtr, mLtStr}
someLen = {mLengthOpenArray, mLengthStr, mLengthArray, mLengthSeq,
mXLenStr, mXLenSeq}
someIn = {mInRange, mInSet}
someHigh = {mHigh}
# we don't list unsigned here because wrap around semantics suck for
# proving anything:
someAdd = {mAddI, mAddF64, mSucc}
someSub = {mSubI, mSubF64, mPred}
someMul = {mMulI, mMulF64}
someDiv = {mDivI, mDivF64}
someMod = {mModI}
someMax = {mMaxI, mMaxF64}
someMin = {mMinI, mMinF64}
someBinaryOp = someAdd+someSub+someMul+someMax+someMin
proc isValue(n: PNode): bool = n.kind in {nkCharLit..nkNilLit}
proc isLocation(n: PNode): bool = not n.isValue
proc isLet(n: PNode): bool =
if n.kind == nkSym:
if n.sym.kind in {skLet, skTemp, skForVar}:
result = true
elif n.sym.kind == skParam and skipTypes(n.sym.typ,
abstractInst).kind != tyVar:
result = true
proc isVar(n: PNode): bool =
n.kind == nkSym and n.sym.kind in {skResult, skVar} and
{sfAddrTaken} * n.sym.flags == {}
proc isLetLocation(m: PNode, isApprox: bool): bool =
# consider: 'n[].kind' --> we really need to support 1 deref op even if this
# is technically wrong due to aliasing :-( We could introduce "soft" facts
# for this; this would still be very useful for warnings and also nicely
# solves the 'var' problems. For now we fix this by requiring much more
# restrictive expressions for the 'not nil' checking.
var n = m
var derefs = 0
while true:
case n.kind
of nkDotExpr, nkCheckedFieldExpr, nkObjUpConv, nkObjDownConv:
n = n.sons[0]
of nkDerefExpr, nkHiddenDeref:
n = n.sons[0]
inc derefs
of nkBracketExpr:
if isConstExpr(n.sons[1]) or isLet(n.sons[1]):
n = n.sons[0]
else: return
of nkHiddenStdConv, nkHiddenSubConv, nkConv:
n = n.sons[1]
else:
break
result = n.isLet and derefs <= ord(isApprox)
if not result and isApprox:
result = isVar(n)
proc interestingCaseExpr*(m: PNode): bool = isLetLocation(m, true)
type
Operators* = object
opNot, opContains, opLe, opLt, opAnd, opOr, opIsNil, opEq: PSym
opAdd, opSub, opMul, opDiv, opLen: PSym
proc initOperators*(g: ModuleGraph): Operators =
result.opLe = createMagic(g, "<=", mLeI)
result.opLt = createMagic(g, "<", mLtI)
result.opAnd = createMagic(g, "and", mAnd)
result.opOr = createMagic(g, "or", mOr)
result.opIsNil = createMagic(g, "isnil", mIsNil)
result.opEq = createMagic(g, "==", mEqI)
result.opAdd = createMagic(g, "+", mAddI)
result.opSub = createMagic(g, "-", mSubI)
result.opMul = createMagic(g, "*", mMulI)
result.opDiv = createMagic(g, "div", mDivI)
result.opLen = createMagic(g, "len", mLengthSeq)
result.opNot = createMagic(g, "not", mNot)
result.opContains = createMagic(g, "contains", mInSet)
proc swapArgs(fact: PNode, newOp: PSym): PNode =
result = newNodeI(nkCall, fact.info, 3)
result.sons[0] = newSymNode(newOp)
result.sons[1] = fact.sons[2]
result.sons[2] = fact.sons[1]
proc neg(n: PNode; o: Operators): PNode =
if n == nil: return nil
case n.getMagic
of mNot:
result = n.sons[1]
of someLt:
# not (a < b) == a >= b == b <= a
result = swapArgs(n, o.opLe)
of someLe:
result = swapArgs(n, o.opLt)
of mInSet:
if n.sons[1].kind != nkCurly: return nil
let t = n.sons[2].typ.skipTypes(abstractInst)
result = newNodeI(nkCall, n.info, 3)
result.sons[0] = n.sons[0]
result.sons[2] = n.sons[2]
if t.kind == tyEnum:
var s = newNodeIT(nkCurly, n.info, n.sons[1].typ)
for e in t.n:
let eAsNode = newIntNode(nkIntLit, e.sym.position)
if not inSet(n.sons[1], eAsNode): s.add eAsNode
result.sons[1] = s
#elif t.kind notin {tyString, tySequence} and lengthOrd(t) < 1000:
# result.sons[1] = complement(n.sons[1])
else:
# not ({2, 3, 4}.contains(x)) x != 2 and x != 3 and x != 4
# XXX todo
result = nil
of mOr:
# not (a or b) --> not a and not b
let
a = n.sons[1].neg(o)
b = n.sons[2].neg(o)
if a != nil and b != nil:
result = newNodeI(nkCall, n.info, 3)
result.sons[0] = newSymNode(o.opAnd)
result.sons[1] = a
result.sons[2] = b
elif a != nil:
result = a
elif b != nil:
result = b
else:
# leave not (a == 4) as it is
result = newNodeI(nkCall, n.info, 2)
result.sons[0] = newSymNode(o.opNot)
result.sons[1] = n
proc buildCall(op: PSym; a: PNode): PNode =
result = newNodeI(nkCall, a.info, 2)
result.sons[0] = newSymNode(op)
result.sons[1] = a
proc buildCall(op: PSym; a, b: PNode): PNode =
result = newNodeI(nkInfix, a.info, 3)
result.sons[0] = newSymNode(op)
result.sons[1] = a
result.sons[2] = b
proc `|+|`(a, b: PNode): PNode =
result = copyNode(a)
if a.kind in {nkCharLit..nkUInt64Lit}: result.intVal = a.intVal |+| b.intVal
else: result.floatVal = a.floatVal + b.floatVal
proc `|-|`(a, b: PNode): PNode =
result = copyNode(a)
if a.kind in {nkCharLit..nkUInt64Lit}: result.intVal = a.intVal |-| b.intVal
else: result.floatVal = a.floatVal - b.floatVal
proc `|*|`(a, b: PNode): PNode =
result = copyNode(a)
if a.kind in {nkCharLit..nkUInt64Lit}: result.intVal = a.intVal |*| b.intVal
else: result.floatVal = a.floatVal * b.floatVal
proc `|div|`(a, b: PNode): PNode =
result = copyNode(a)
if a.kind in {nkCharLit..nkUInt64Lit}: result.intVal = a.intVal div b.intVal
else: result.floatVal = a.floatVal / b.floatVal
proc negate(a, b, res: PNode; o: Operators): PNode =
if b.kind in {nkCharLit..nkUInt64Lit} and b.intVal != low(BiggestInt):
var b = copyNode(b)
b.intVal = -b.intVal
if a.kind in {nkCharLit..nkUInt64Lit}:
b.intVal = b.intVal |+| a.intVal
result = b
else:
result = buildCall(o.opAdd, a, b)
elif b.kind in {nkFloatLit..nkFloat64Lit}:
var b = copyNode(b)
b.floatVal = -b.floatVal
result = buildCall(o.opAdd, a, b)
else:
result = res
proc zero(): PNode = nkIntLit.newIntNode(0)
proc one(): PNode = nkIntLit.newIntNode(1)
proc minusOne(): PNode = nkIntLit.newIntNode(-1)
proc lowBound*(conf: ConfigRef; x: PNode): PNode =
result = nkIntLit.newIntNode(firstOrd(conf, x.typ))
result.info = x.info
proc highBound*(conf: ConfigRef; x: PNode; o: Operators): PNode =
let typ = x.typ.skipTypes(abstractInst)
result = if typ.kind == tyArray:
nkIntLit.newIntNode(lastOrd(conf, typ))
elif typ.kind == tySequence and x.kind == nkSym and
x.sym.kind == skConst:
nkIntLit.newIntNode(x.sym.ast.len-1)
else:
o.opAdd.buildCall(o.opLen.buildCall(x), minusOne())
result.info = x.info
proc reassociation(n: PNode; o: Operators): PNode =
result = n
# (foo+5)+5 --> foo+10; same for '*'
case result.getMagic
of someAdd:
if result[2].isValue and
result[1].getMagic in someAdd and result[1][2].isValue:
result = o.opAdd.buildCall(result[1][1], result[1][2] |+| result[2])
if result[2].intVal == 0:
result = result[1]
of someMul:
if result[2].isValue and
result[1].getMagic in someMul and result[1][2].isValue:
result = o.opMul.buildCall(result[1][1], result[1][2] |*| result[2])
if result[2].intVal == 1:
result = result[1]
elif result[2].intVal == 0:
result = zero()
else: discard
proc pred(n: PNode): PNode =
if n.kind in {nkCharLit..nkUInt64Lit} and n.intVal != low(BiggestInt):
result = copyNode(n)
dec result.intVal
else:
result = n
proc canon*(n: PNode; o: Operators): PNode =
# XXX for now only the new code in 'semparallel' uses this
if n.safeLen >= 1:
result = shallowCopy(n)
for i in 0 ..< n.len:
result.sons[i] = canon(n.sons[i], o)
elif n.kind == nkSym and n.sym.kind == skLet and
n.sym.ast.getMagic in (someEq + someAdd + someMul + someMin +
someMax + someHigh + {mUnaryLt} + someSub + someLen + someDiv):
result = n.sym.ast.copyTree
else:
result = n
case result.getMagic
of someEq, someAdd, someMul, someMin, someMax:
# these are symmetric; put value as last:
if result.sons[1].isValue and not result.sons[2].isValue:
result = swapArgs(result, result.sons[0].sym)
# (4 + foo) + 2 --> (foo + 4) + 2
of someHigh:
# high == len+(-1)
result = o.opAdd.buildCall(o.opLen.buildCall(result[1]), minusOne())
of mUnaryLt:
result = buildCall(o.opAdd, result[1], minusOne())
of someSub:
# x - 4 --> x + (-4)
result = negate(result[1], result[2], result, o)
of someLen:
result.sons[0] = o.opLen.newSymNode
of someLt:
# x < y same as x <= y-1:
let y = n[2].canon(o)
let p = pred(y)
let minus = if p != y: p else: o.opAdd.buildCall(y, minusOne()).canon(o)
result = o.opLe.buildCall(n[1].canon(o), minus)
else: discard
result = skipConv(result)
result = reassociation(result, o)
# most important rule: (x-4) <= a.len --> x <= a.len+4
case result.getMagic
of someLe:
let x = result[1]
let y = result[2]
if x.kind in nkCallKinds and x.len == 3 and x[2].isValue and
isLetLocation(x[1], true):
case x.getMagic
of someSub:
result = buildCall(result[0].sym, x[1],
reassociation(o.opAdd.buildCall(y, x[2]), o))
of someAdd:
# Rule A:
let plus = negate(y, x[2], nil, o).reassociation(o)
if plus != nil: result = buildCall(result[0].sym, x[1], plus)
else: discard
elif y.kind in nkCallKinds and y.len == 3 and y[2].isValue and
isLetLocation(y[1], true):
# a.len < x-3
case y.getMagic
of someSub:
result = buildCall(result[0].sym, y[1],
reassociation(o.opAdd.buildCall(x, y[2]), o))
of someAdd:
let plus = negate(x, y[2], nil, o).reassociation(o)
# ensure that Rule A will not trigger afterwards with the
# additional 'not isLetLocation' constraint:
if plus != nil and not isLetLocation(x, true):
result = buildCall(result[0].sym, plus, y[1])
else: discard
elif x.isValue and y.getMagic in someAdd and y[2].isValue:
# 0 <= a.len + 3
# -3 <= a.len
result.sons[1] = x |-| y[2]
result.sons[2] = y[1]
elif x.isValue and y.getMagic in someSub and y[2].isValue:
# 0 <= a.len - 3
# 3 <= a.len
result.sons[1] = x |+| y[2]
result.sons[2] = y[1]
else: discard
proc buildAdd*(a: PNode; b: BiggestInt; o: Operators): PNode =
canon(if b != 0: o.opAdd.buildCall(a, nkIntLit.newIntNode(b)) else: a, o)
proc usefulFact(n: PNode; o: Operators): PNode =
case n.getMagic
of someEq:
if skipConv(n.sons[2]).kind == nkNilLit and (
isLetLocation(n.sons[1], false) or isVar(n.sons[1])):
result = o.opIsNil.buildCall(n.sons[1])
else:
if isLetLocation(n.sons[1], true) or isLetLocation(n.sons[2], true):
# XXX algebraic simplifications! 'i-1 < a.len' --> 'i < a.len+1'
result = n
of someLe+someLt:
if isLetLocation(n.sons[1], true) or isLetLocation(n.sons[2], true):
# XXX algebraic simplifications! 'i-1 < a.len' --> 'i < a.len+1'
result = n
elif n[1].getMagic in someLen or n[2].getMagic in someLen:
# XXX Rethink this whole idea of 'usefulFact' for semparallel
result = n
of mIsNil:
if isLetLocation(n.sons[1], false) or isVar(n.sons[1]):
result = n
of someIn:
if isLetLocation(n.sons[1], true):
result = n
of mAnd:
let
a = usefulFact(n.sons[1], o)
b = usefulFact(n.sons[2], o)
if a != nil and b != nil:
result = newNodeI(nkCall, n.info, 3)
result.sons[0] = newSymNode(o.opAnd)
result.sons[1] = a
result.sons[2] = b
elif a != nil:
result = a
elif b != nil:
result = b
of mNot:
let a = usefulFact(n.sons[1], o)
if a != nil:
result = a.neg(o)
of mOr:
# 'or' sucks! (p.isNil or q.isNil) --> hard to do anything
# with that knowledge...
# DeMorgan helps a little though:
# not a or not b --> not (a and b)
# (x == 3) or (y == 2) ---> not ( not (x==3) and not (y == 2))
# not (x != 3 and y != 2)
let
a = usefulFact(n.sons[1], o).neg(o)
b = usefulFact(n.sons[2], o).neg(o)
if a != nil and b != nil:
result = newNodeI(nkCall, n.info, 3)
result.sons[0] = newSymNode(o.opAnd)
result.sons[1] = a
result.sons[2] = b
result = result.neg(o)
elif n.kind == nkSym and n.sym.kind == skLet:
# consider:
# let a = 2 < x
# if a:
# ...
# We make can easily replace 'a' by '2 < x' here:
if n.sym.ast != nil:
result = usefulFact(n.sym.ast, o)
elif n.kind == nkStmtListExpr:
result = usefulFact(n.lastSon, o)
type
TModel* = object
s*: seq[PNode] # the "knowledge base"
o*: Operators
proc addFact*(m: var TModel, nn: PNode) =
let n = usefulFact(nn, m.o)
if n != nil: m.s.add n
proc addFactNeg*(m: var TModel, n: PNode) =
let n = n.neg(m.o)
if n != nil: addFact(m, n)
proc sameOpr(a, b: PSym): bool =
case a.magic
of someEq: result = b.magic in someEq
of someLe: result = b.magic in someLe
of someLt: result = b.magic in someLt
of someLen: result = b.magic in someLen
of someAdd: result = b.magic in someAdd
of someSub: result = b.magic in someSub
of someMul: result = b.magic in someMul
of someDiv: result = b.magic in someDiv
else: result = a == b
proc sameTree*(a, b: PNode): bool =
result = false
if a == b:
result = true
elif a != nil and b != nil and a.kind == b.kind:
case a.kind
of nkSym:
result = a.sym == b.sym
if not result and a.sym.magic != mNone:
result = a.sym.magic == b.sym.magic or sameOpr(a.sym, b.sym)
of nkIdent: result = a.ident.id == b.ident.id
of nkCharLit..nkInt64Lit: result = a.intVal == b.intVal
of nkFloatLit..nkFloat64Lit: result = a.floatVal == b.floatVal
of nkStrLit..nkTripleStrLit: result = a.strVal == b.strVal
of nkType: result = a.typ == b.typ
of nkEmpty, nkNilLit: result = true
else:
if sonsLen(a) == sonsLen(b):
for i in countup(0, sonsLen(a) - 1):
if not sameTree(a.sons[i], b.sons[i]): return
result = true
proc hasSubTree(n, x: PNode): bool =
if n.sameTree(x): result = true
else:
for i in 0..safeLen(n)-1:
if hasSubTree(n.sons[i], x): return true
proc invalidateFacts*(m: var TModel, n: PNode) =
# We are able to guard local vars (as opposed to 'let' variables)!
# 'while p != nil: f(p); p = p.next'
# This is actually quite easy to do:
# Re-assignments (incl. pass to a 'var' param) trigger an invalidation
# of every fact that contains 'v'.
#
# if x < 4:
# if y < 5
# x = unknown()
# # we invalidate 'x' here but it's known that x >= 4
# # for the else anyway
# else:
# echo x
#
# The same mechanism could be used for more complex data stored on the heap;
# procs that 'write: []' cannot invalidate 'n.kind' for instance. In fact, we
# could CSE these expressions then and help C's optimizer.
for i in 0..high(m.s):
if m.s[i] != nil and m.s[i].hasSubTree(n): m.s[i] = nil
proc valuesUnequal(a, b: PNode): bool =
if a.isValue and b.isValue:
result = not sameValue(a, b)
proc impliesEq(fact, eq: PNode): TImplication =
let (loc, val) = if isLocation(eq.sons[1]): (1, 2) else: (2, 1)
case fact.sons[0].sym.magic
of someEq:
if sameTree(fact.sons[1], eq.sons[loc]):
# this is not correct; consider: a == b; a == 1 --> unknown!
if sameTree(fact.sons[2], eq.sons[val]): result = impYes
elif valuesUnequal(fact.sons[2], eq.sons[val]): result = impNo
elif sameTree(fact.sons[2], eq.sons[loc]):
if sameTree(fact.sons[1], eq.sons[val]): result = impYes
elif valuesUnequal(fact.sons[1], eq.sons[val]): result = impNo
of mInSet:
# remember: mInSet is 'contains' so the set comes first!
if sameTree(fact.sons[2], eq.sons[loc]) and isValue(eq.sons[val]):
if inSet(fact.sons[1], eq.sons[val]): result = impYes
else: result = impNo
of mNot, mOr, mAnd: assert(false, "impliesEq")
else: discard
proc leImpliesIn(x, c, aSet: PNode): TImplication =
if c.kind in {nkCharLit..nkUInt64Lit}:
# fact: x <= 4; question x in {56}?
# --> true if every value <= 4 is in the set {56}
#
var value = newIntNode(c.kind, firstOrd(nil, x.typ))
# don't iterate too often:
if c.intVal - value.intVal < 1000:
var i, pos, neg: int
while value.intVal <= c.intVal:
if inSet(aSet, value): inc pos
else: inc neg
inc i; inc value.intVal
if pos == i: result = impYes
elif neg == i: result = impNo
proc geImpliesIn(x, c, aSet: PNode): TImplication =
if c.kind in {nkCharLit..nkUInt64Lit}:
# fact: x >= 4; question x in {56}?
# --> true iff every value >= 4 is in the set {56}
#
var value = newIntNode(c.kind, c.intVal)
let max = lastOrd(nil, x.typ)
# don't iterate too often:
if max - value.intVal < 1000:
var i, pos, neg: int
while value.intVal <= max:
if inSet(aSet, value): inc pos
else: inc neg
inc i; inc value.intVal
if pos == i: result = impYes
elif neg == i: result = impNo
proc compareSets(a, b: PNode): TImplication =
if equalSets(nil, a, b): result = impYes
elif intersectSets(nil, a, b).len == 0: result = impNo
proc impliesIn(fact, loc, aSet: PNode): TImplication =
case fact.sons[0].sym.magic
of someEq:
if sameTree(fact.sons[1], loc):
if inSet(aSet, fact.sons[2]): result = impYes
else: result = impNo
elif sameTree(fact.sons[2], loc):
if inSet(aSet, fact.sons[1]): result = impYes
else: result = impNo
of mInSet:
if sameTree(fact.sons[2], loc):
result = compareSets(fact.sons[1], aSet)
of someLe:
if sameTree(fact.sons[1], loc):
result = leImpliesIn(fact.sons[1], fact.sons[2], aSet)
elif sameTree(fact.sons[2], loc):
result = geImpliesIn(fact.sons[2], fact.sons[1], aSet)
of someLt:
if sameTree(fact.sons[1], loc):
result = leImpliesIn(fact.sons[1], fact.sons[2].pred, aSet)
elif sameTree(fact.sons[2], loc):
# 4 < x --> 3 <= x
result = geImpliesIn(fact.sons[2], fact.sons[1].pred, aSet)
of mNot, mOr, mAnd: assert(false, "impliesIn")
else: discard
proc valueIsNil(n: PNode): TImplication =
if n.kind == nkNilLit: impYes
elif n.kind in {nkStrLit..nkTripleStrLit, nkBracket, nkObjConstr}: impNo
else: impUnknown
proc impliesIsNil(fact, eq: PNode): TImplication =
case fact.sons[0].sym.magic
of mIsNil:
if sameTree(fact.sons[1], eq.sons[1]):
result = impYes
of someEq:
if sameTree(fact.sons[1], eq.sons[1]):
result = valueIsNil(fact.sons[2].skipConv)
elif sameTree(fact.sons[2], eq.sons[1]):
result = valueIsNil(fact.sons[1].skipConv)
of mNot, mOr, mAnd: assert(false, "impliesIsNil")
else: discard
proc impliesGe(fact, x, c: PNode): TImplication =
assert isLocation(x)
case fact.sons[0].sym.magic
of someEq:
if sameTree(fact.sons[1], x):
if isValue(fact.sons[2]) and isValue(c):
# fact: x = 4; question x >= 56? --> true iff 4 >= 56
if leValue(c, fact.sons[2]): result = impYes
else: result = impNo
elif sameTree(fact.sons[2], x):
if isValue(fact.sons[1]) and isValue(c):
if leValue(c, fact.sons[1]): result = impYes
else: result = impNo
of someLt:
if sameTree(fact.sons[1], x):
if isValue(fact.sons[2]) and isValue(c):
# fact: x < 4; question N <= x? --> false iff N <= 4
if leValue(fact.sons[2], c): result = impNo
# fact: x < 4; question 2 <= x? --> we don't know
elif sameTree(fact.sons[2], x):
# fact: 3 < x; question: N-1 < x ? --> true iff N-1 <= 3
if isValue(fact.sons[1]) and isValue(c):
if leValue(c.pred, fact.sons[1]): result = impYes
of someLe:
if sameTree(fact.sons[1], x):
if isValue(fact.sons[2]) and isValue(c):
# fact: x <= 4; question x >= 56? --> false iff 4 <= 56
if leValue(fact.sons[2], c): result = impNo
# fact: x <= 4; question x >= 2? --> we don't know
elif sameTree(fact.sons[2], x):
# fact: 3 <= x; question: x >= 2 ? --> true iff 2 <= 3
if isValue(fact.sons[1]) and isValue(c):
if leValue(c, fact.sons[1]): result = impYes
of mNot, mOr, mAnd: assert(false, "impliesGe")
else: discard
proc impliesLe(fact, x, c: PNode): TImplication =
if not isLocation(x):
return impliesGe(fact, c, x)
case fact.sons[0].sym.magic
of someEq:
if sameTree(fact.sons[1], x):
if isValue(fact.sons[2]) and isValue(c):
# fact: x = 4; question x <= 56? --> true iff 4 <= 56
if leValue(fact.sons[2], c): result = impYes
else: result = impNo
elif sameTree(fact.sons[2], x):
if isValue(fact.sons[1]) and isValue(c):
if leValue(fact.sons[1], c): result = impYes
else: result = impNo
of someLt:
if sameTree(fact.sons[1], x):
if isValue(fact.sons[2]) and isValue(c):
# fact: x < 4; question x <= N? --> true iff N-1 <= 4
if leValue(fact.sons[2], c.pred): result = impYes
# fact: x < 4; question x <= 2? --> we don't know
elif sameTree(fact.sons[2], x):
# fact: 3 < x; question: x <= 1 ? --> false iff 1 <= 3
if isValue(fact.sons[1]) and isValue(c):
if leValue(c, fact.sons[1]): result = impNo
of someLe:
if sameTree(fact.sons[1], x):
if isValue(fact.sons[2]) and isValue(c):
# fact: x <= 4; question x <= 56? --> true iff 4 <= 56
if leValue(fact.sons[2], c): result = impYes
# fact: x <= 4; question x <= 2? --> we don't know
elif sameTree(fact.sons[2], x):
# fact: 3 <= x; question: x <= 2 ? --> false iff 2 < 3
if isValue(fact.sons[1]) and isValue(c):
if leValue(c, fact.sons[1].pred): result = impNo
of mNot, mOr, mAnd: assert(false, "impliesLe")
else: discard
proc impliesLt(fact, x, c: PNode): TImplication =
# x < 3 same as x <= 2:
let p = c.pred
if p != c:
result = impliesLe(fact, x, p)
else:
# 4 < x same as 3 <= x
let q = x.pred
if q != x:
result = impliesLe(fact, q, c)
proc `~`(x: TImplication): TImplication =
case x
of impUnknown: impUnknown
of impNo: impYes
of impYes: impNo
proc factImplies(fact, prop: PNode): TImplication =
case fact.getMagic
of mNot:
# Consider:
# enum nkBinary, nkTernary, nkStr
# fact: not (k <= nkBinary)
# question: k in {nkStr}
# --> 'not' for facts is entirely different than 'not' for questions!
# it's provably wrong if every value > 4 is in the set {56}
# That's because we compute the implication and 'a -> not b' cannot
# be treated the same as 'not a -> b'
# (not a) -> b compute as not (a -> b) ???
# == not a or not b == not (a and b)
let arg = fact.sons[1]
case arg.getMagic
of mIsNil, mEqRef:
return ~factImplies(arg, prop)
of mAnd:
# not (a and b) means not a or not b:
# a or b --> both need to imply 'prop'
let a = factImplies(arg.sons[1], prop)
let b = factImplies(arg.sons[2], prop)
if a == b: return ~a
return impUnknown
else:
return impUnknown
of mAnd:
result = factImplies(fact.sons[1], prop)
if result != impUnknown: return result
return factImplies(fact.sons[2], prop)
else: discard
case prop.sons[0].sym.magic
of mNot: result = ~fact.factImplies(prop.sons[1])
of mIsNil: result = impliesIsNil(fact, prop)
of someEq: result = impliesEq(fact, prop)
of someLe: result = impliesLe(fact, prop.sons[1], prop.sons[2])
of someLt: result = impliesLt(fact, prop.sons[1], prop.sons[2])
of mInSet: result = impliesIn(fact, prop.sons[2], prop.sons[1])
else: result = impUnknown
proc doesImply*(facts: TModel, prop: PNode): TImplication =
assert prop.kind in nkCallKinds
for f in facts.s:
# facts can be invalidated, in which case they are 'nil':
if not f.isNil:
result = f.factImplies(prop)
if result != impUnknown: return
proc impliesNotNil*(m: TModel, arg: PNode): TImplication =
result = doesImply(m, m.o.opIsNil.buildCall(arg).neg(m.o))
proc simpleSlice*(a, b: PNode): BiggestInt =
# returns 'c' if a..b matches (i+c)..(i+c), -1 otherwise. (i)..(i) is matched
# as if it is (i+0)..(i+0).
if guards.sameTree(a, b):
if a.getMagic in someAdd and a[2].kind in {nkCharLit..nkUInt64Lit}:
result = a[2].intVal
else:
result = 0
else:
result = -1
template isMul(x): untyped = x.getMagic in someMul
template isDiv(x): untyped = x.getMagic in someDiv
template isAdd(x): untyped = x.getMagic in someAdd
template isSub(x): untyped = x.getMagic in someSub
template isVal(x): untyped = x.kind in {nkCharLit..nkUInt64Lit}
template isIntVal(x, y): untyped = x.intVal == y
import macros
macro `=~`(x: PNode, pat: untyped): bool =
proc m(x, pat, conds: NimNode) =
case pat.kind
of nnkInfix:
case $pat[0]
of "*": conds.add getAst(isMul(x))
of "/": conds.add getAst(isDiv(x))
of "+": conds.add getAst(isAdd(x))
of "-": conds.add getAst(isSub(x))
else:
error("invalid pattern")
m(newTree(nnkBracketExpr, x, newLit(1)), pat[1], conds)
m(newTree(nnkBracketExpr, x, newLit(2)), pat[2], conds)
of nnkPar:
if pat.len == 1:
m(x, pat[0], conds)
else:
error("invalid pattern")
of nnkIdent:
let c = newTree(nnkStmtListExpr, newLetStmt(pat, x))
conds.add c
# XXX why is this 'isVal(pat)' and not 'isVal(x)'?
if ($pat)[^1] == 'c': c.add(getAst(isVal(x)))
else: c.add bindSym"true"
of nnkIntLit:
conds.add(getAst(isIntVal(x, pat.intVal)))
else:
error("invalid pattern")
var conds = newTree(nnkBracket)
m(x, pat, conds)
when compiles(nestList(ident"and", conds)):
result = nestList(ident"and", conds)
#elif declared(macros.toNimIdent):
# result = nestList(toNimIdent"and", conds)
else:
result = nestList(!"and", conds)
proc isMinusOne(n: PNode): bool =
n.kind in {nkCharLit..nkUInt64Lit} and n.intVal == -1
proc pleViaModel(model: TModel; aa, bb: PNode): TImplication
proc ple(m: TModel; a, b: PNode): TImplication =
template `<=?`(a,b): untyped = ple(m,a,b) == impYes
template `>=?`(a,b): untyped = ple(m, nkIntLit.newIntNode(b), a) == impYes
# 0 <= 3
if a.isValue and b.isValue:
return if leValue(a, b): impYes else: impNo
# use type information too: x <= 4 iff high(x) <= 4
if b.isValue and a.typ != nil and a.typ.isOrdinalType:
if lastOrd(nil, a.typ) <= b.intVal: return impYes
# 3 <= x iff low(x) <= 3
if a.isValue and b.typ != nil and b.typ.isOrdinalType:
if firstOrd(nil, b.typ) <= a.intVal: return impYes
# x <= x
if sameTree(a, b): return impYes
# 0 <= x.len
if b.getMagic in someLen and a.isValue:
if a.intVal <= 0: return impYes
# x <= y+c if 0 <= c and x <= y
# x <= y+(-c) if c <= 0 and y >= x
if b.getMagic in someAdd and zero() <=? b[2] and a <=? b[1]: return impYes
# x+c <= y if c <= 0 and x <= y
if a.getMagic in someAdd and a[2] <=? zero() and a[1] <=? b: return impYes
# x <= y*c if 1 <= c and x <= y and 0 <= y
if b.getMagic in someMul:
if a <=? b[1] and one() <=? b[2] and zero() <=? b[1]: return impYes
if a.getMagic in someMul and a[2].isValue and a[1].getMagic in someDiv and
a[1][2].isValue:
# simplify (x div 4) * 2 <= y to x div (c div d) <= y
if ple(m, buildCall(m.o.opDiv, a[1][1], `|div|`(a[1][2], a[2])), b) == impYes:
return impYes
# x*3 + x == x*4. It follows that:
# x*3 + y <= x*4 if y <= x and 3 <= 4
if a =~ x*dc + y and b =~ x2*ec:
if sameTree(x, x2):
let ec1 = m.o.opAdd.buildCall(ec, minusOne())
if x >=? 1 and ec >=? 1 and dc >=? 1 and dc <=? ec1 and y <=? x:
return impYes
elif a =~ x*dc and b =~ x2*ec + y:
#echo "BUG cam ehrer e ", a, " <=? ", b
if sameTree(x, x2):
let ec1 = m.o.opAdd.buildCall(ec, minusOne())
if x >=? 1 and ec >=? 1 and dc >=? 1 and dc <=? ec1 and y <=? zero():
return impYes
# x+c <= x+d if c <= d. Same for *, - etc.
if a.getMagic in someBinaryOp and a.getMagic == b.getMagic:
if sameTree(a[1], b[1]) and a[2] <=? b[2]: return impYes
elif sameTree(a[2], b[2]) and a[1] <=? b[1]: return impYes
# x div c <= y if 1 <= c and 0 <= y and x <= y:
if a.getMagic in someDiv:
if one() <=? a[2] and zero() <=? b and a[1] <=? b: return impYes
# x div c <= x div d if d <= c
if b.getMagic in someDiv:
if sameTree(a[1], b[1]) and b[2] <=? a[2]: return impYes
# x div z <= x - 1 if z <= x
if a[2].isValue and b.getMagic in someAdd and b[2].isMinusOne:
if a[2] <=? a[1] and sameTree(a[1], b[1]): return impYes
# slightly subtle:
# x <= max(y, z) iff x <= y or x <= z
# note that 'x <= max(x, z)' is a special case of the above rule
if b.getMagic in someMax:
if a <=? b[1] or a <=? b[2]: return impYes
# min(x, y) <= z iff x <= z or y <= z
if a.getMagic in someMin:
if a[1] <=? b or a[2] <=? b: return impYes
# use the knowledge base:
return pleViaModel(m, a, b)
#return doesImply(m, o.opLe.buildCall(a, b))
type TReplacements = seq[tuple[a, b: PNode]]
proc replaceSubTree(n, x, by: PNode): PNode =
if sameTree(n, x):
result = by
elif hasSubTree(n, x):
result = shallowCopy(n)
for i in 0 .. safeLen(n)-1:
result.sons[i] = replaceSubTree(n.sons[i], x, by)
else:
result = n
proc applyReplacements(n: PNode; rep: TReplacements): PNode =
result = n
for x in rep: result = result.replaceSubTree(x.a, x.b)
proc pleViaModelRec(m: var TModel; a, b: PNode): TImplication =
# now check for inferrable facts: a <= b and b <= c implies a <= c
for i in 0..m.s.high:
let fact = m.s[i]
if fact != nil and fact.getMagic in someLe:
# mark as used:
m.s[i] = nil
# i <= len-100
# i <=? len-1
# --> true if (len-100) <= (len-1)
let x = fact[1]
let y = fact[2]
if sameTree(x, a) and y.getMagic in someAdd and b.getMagic in someAdd and
sameTree(y[1], b[1]):
if ple(m, b[2], y[2]) == impYes:
return impYes
# x <= y implies a <= b if a <= x and y <= b
if ple(m, a, x) == impYes:
if ple(m, y, b) == impYes:
return impYes
#if pleViaModelRec(m, y, b): return impYes
# fact: 16 <= i
# x y
# question: i <= 15? no!
result = impliesLe(fact, a, b)
if result != impUnknown:
return result
when false:
# given: x <= y; y==a; x <= a this means: a <= b if x <= b
if sameTree(y, a):
result = ple(m, b, x)
if result != impUnknown:
return result
proc pleViaModel(model: TModel; aa, bb: PNode): TImplication =
# compute replacements:
var replacements: TReplacements = @[]
for fact in model.s:
if fact != nil and fact.getMagic in someEq:
let a = fact[1]
let b = fact[2]
if a.kind == nkSym: replacements.add((a,b))
else: replacements.add((b,a))
var m: TModel
var a = aa
var b = bb
if replacements.len > 0:
m.s = @[]
m.o = model.o
# make the other facts consistent:
for fact in model.s:
if fact != nil and fact.getMagic notin someEq:
# XXX 'canon' should not be necessary here, but it is
m.s.add applyReplacements(fact, replacements).canon(m.o)
a = applyReplacements(aa, replacements)
b = applyReplacements(bb, replacements)
else:
# we have to make a copy here, because the model will be modified:
m = model
result = pleViaModelRec(m, a, b)
proc proveLe*(m: TModel; a, b: PNode): TImplication =
let x = canon(m.o.opLe.buildCall(a, b), m.o)
#echo "ROOT ", renderTree(x[1]), " <=? ", renderTree(x[2])
result = ple(m, x[1], x[2])
if result == impUnknown:
# try an alternative: a <= b iff not (b < a) iff not (b+1 <= a):
let y = canon(m.o.opLe.buildCall(m.o.opAdd.buildCall(b, one()), a), m.o)
result = ~ple(m, y[1], y[2])
proc addFactLe*(m: var TModel; a, b: PNode) =
m.s.add canon(m.o.opLe.buildCall(a, b), m.o)
proc settype(n: PNode): PType =
result = newType(tySet, n.typ.owner)
addSonSkipIntLit(result, n.typ)
proc buildOf(it, loc: PNode; o: Operators): PNode =
var s = newNodeI(nkCurly, it.info, it.len-1)
s.typ = settype(loc)
for i in 0..it.len-2: s.sons[i] = it.sons[i]
result = newNodeI(nkCall, it.info, 3)
result.sons[0] = newSymNode(o.opContains)
result.sons[1] = s
result.sons[2] = loc
proc buildElse(n: PNode; o: Operators): PNode =
var s = newNodeIT(nkCurly, n.info, settype(n.sons[0]))
for i in 1..n.len-2:
let branch = n.sons[i]
assert branch.kind == nkOfBranch
for j in 0..branch.len-2:
s.add(branch.sons[j])
result = newNodeI(nkCall, n.info, 3)
result.sons[0] = newSymNode(o.opContains)
result.sons[1] = s
result.sons[2] = n.sons[0]
proc addDiscriminantFact*(m: var TModel, n: PNode) =
var fact = newNodeI(nkCall, n.info, 3)
fact.sons[0] = newSymNode(m.o.opEq)
fact.sons[1] = n.sons[0]
fact.sons[2] = n.sons[1]
m.s.add fact
proc addAsgnFact*(m: var TModel, key, value: PNode) =
var fact = newNodeI(nkCall, key.info, 3)
fact.sons[0] = newSymNode(m.o.opEq)
fact.sons[1] = key
fact.sons[2] = value
m.s.add fact
proc sameSubexprs*(m: TModel; a, b: PNode): bool =
# This should be used to check whether two *path expressions* refer to the
# same memory location according to 'm'. This is tricky:
# lock a[i].guard:
# ...
# access a[i].guarded
#
# Here a[i] is the same as a[i] iff 'i' and 'a' are not changed via '...'.
# However, nil checking requires exactly the same mechanism! But for now
# we simply use sameTree and live with the unsoundness of the analysis.
var check = newNodeI(nkCall, a.info, 3)
check.sons[0] = newSymNode(m.o.opEq)
check.sons[1] = a
check.sons[2] = b
result = m.doesImply(check) == impYes
proc addCaseBranchFacts*(m: var TModel, n: PNode, i: int) =
let branch = n.sons[i]
if branch.kind == nkOfBranch:
m.s.add buildOf(branch, n.sons[0], m.o)
else:
m.s.add n.buildElse(m.o).neg(m.o)
proc buildProperFieldCheck(access, check: PNode; o: Operators): PNode =
if check.sons[1].kind == nkCurly:
result = copyTree(check)
if access.kind == nkDotExpr:
var a = copyTree(access)
a.sons[1] = check.sons[2]
result.sons[2] = a
# 'access.kind != nkDotExpr' can happen for object constructors
# which we don't check yet
else:
# it is some 'not'
assert check.getMagic == mNot
result = buildProperFieldCheck(access, check.sons[1], o).neg(o)
proc checkFieldAccess*(m: TModel, n: PNode; conf: ConfigRef) =
for i in 1..n.len-1:
let check = buildProperFieldCheck(n.sons[0], n.sons[i], m.o)
if check != nil and m.doesImply(check) != impYes:
message(conf, n.info, warnProveField, renderTree(n.sons[0])); break
|