summary refs log tree commit diff stats
path: root/compiler/guards.nim
blob: a2cbdbda2b2a81b5607afebc446a4f4164891d18 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
<
/* -----------------------------------------------------------------*-C-*-
   ffitarget.h - Copyright (c) 2012  Anthony Green
                 Copyright (c) 1996-2003, 2010  Red Hat, Inc.
                 Copyright (C) 2008  Free Software Foundation, Inc.

   Target configuration macros for x86 and x86-64.

   Permission is hereby granted, free of charge, to any person obtaining
   a copy of this software and associated documentation files (the
   ``Software''), to deal in the Software without restriction, including
   without limitation the rights to use, copy, modify, merge, publish,
   distribute, sublicense, and/or sell copies of the Software, and to
   permit persons to whom the Software is furnished to do so, subject to
   the following conditions:

   The above copyright notice and this permission notice shall be included
   in all copies or substantial portions of the Software.

   THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
   EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
   MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
   NONINFRINGEMENT.  IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
   HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
   WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
   OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
   DEALINGS IN THE SOFTWARE.

   ----------------------------------------------------------------------- */

#ifndef LIBFFI_TARGET_H
#define LIBFFI_TARGET_H

#ifndef LIBFFI_H
#error "Please do not include ffitarget.h directly into your source.  Use ffi.h instead."
#endif

/* ---- System specific configurations ----------------------------------- */

/* For code common to all platforms on x86 and x86_64. */
#define X86_ANY

#if (defined(WIN32) || defined(_WIN32) || defined(__WIN32__))
#  if defined(__x86_64__) || defined(__x86_64) || defined(_M_X64)
#    define X86_64
#    define X86_WIN64
#  else
#    define X86_32
#    define X86_WIN32
#  endif
#endif

#if defined (X86_64) && defined (__i386__)
#undef X86_64
#define X86
#endif

#ifdef X86_WIN64
#define FFI_SIZEOF_ARG 8
#define USE_BUILTIN_FFS 0 /* not yet implemented in mingw-64 */
#endif

/* ---- Generic type definitions ----------------------------------------- */

#ifndef LIBFFI_ASM
#ifdef X86_WIN64
#ifdef _MSC_VER
typedef unsigned __int64       ffi_arg;
typedef __int64                ffi_sarg;
#else
typedef unsigned long long     ffi_arg;
typedef long long              ffi_sarg;
#endif
#else
#if defined __x86_64__ && defined __ILP32__
#define FFI_SIZEOF_ARG 8
#define FFI_SIZEOF_JAVA_RAW  4
typedef unsigned long long     ffi_arg;
typedef long long              ffi_sarg;
#else
typedef unsigned long          ffi_arg;
typedef signed long            ffi_sarg;
#endif
#endif

typedef enum ffi_abi {
  FFI_FIRST_ABI = 0,

  /* ---- Intel x86 Win32 ---------- */
#ifdef X86_WIN32
  FFI_SYSV,
  FFI_STDCALL,
  FFI_THISCALL,
  FFI_FASTCALL,
  FFI_MS_CDECL,
  FFI_LAST_ABI,
#ifdef _MSC_VER
  FFI_DEFAULT_ABI = FFI_MS_CDECL
#else
  FFI_DEFAULT_ABI = FFI_SYSV
#endif

#elif defined(X86_WIN64)
  FFI_WIN64,
  FFI_LAST_ABI,
  FFI_DEFAULT_ABI = FFI_WIN64

#else
  /* ---- Intel x86 and AMD x86-64 - */
  FFI_SYSV,
  FFI_UNIX64,   /* Unix variants all use the same ABI for x86-64  */
  FFI_LAST_ABI,
#if defined(__i386__) || defined(__i386)
  FFI_DEFAULT_ABI = FFI_SYSV
#else
  FFI_DEFAULT_ABI = FFI_UNIX64
#endif
#endif
} ffi_abi;
#endif

/* ---- Definitions for closures ----------------------------------------- */

#define FFI_CLOSURES 1
#define FFI_TYPE_SMALL_STRUCT_1B (FFI_TYPE_LAST + 1)
#define FFI_TYPE_SMALL_STRUCT_2B (FFI_TYPE_LAST + 2)
#define FFI_TYPE_SMALL_STRUCT_4B (FFI_TYPE_LAST + 3)
#define FFI_TYPE_MS_STRUCT       (FFI_TYPE_LAST + 4)

#if defined (X86_64) || (defined (__x86_64__) && defined (X86_DARWIN))
#define FFI_TRAMPOLINE_SIZE 24
#define FFI_NATIVE_RAW_API 0
#else
#ifdef X86_WIN32
#define FFI_TRAMPOLINE_SIZE 52
#else
#ifdef X86_WIN64
#define FFI_TRAMPOLINE_SIZE 29
#define FFI_NATIVE_RAW_API 0
#define FFI_NO_RAW_API 1
#else
#define FFI_TRAMPOLINE_SIZE 10
#endif
#endif
#ifndef X86_WIN64
#define FFI_NATIVE_RAW_API 1	/* x86 has native raw api support */
#endif
#endif

#endif
/a> 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
#
#
#           The Nim Compiler
#        (c) Copyright 2015 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## This module implements the 'implies' relation for guards.

import ast, astalgo, msgs, magicsys, nimsets, trees, types, renderer, idents,
  saturate, modulegraphs, options, lineinfos, int128

const
  someEq = {mEqI, mEqF64, mEqEnum, mEqCh, mEqB, mEqRef, mEqProc,
    mEqUntracedRef, mEqStr, mEqSet, mEqCString}

  # set excluded here as the semantics are vastly different:
  someLe = {mLeI, mLeF64, mLeU, mLeU64, mLeEnum,
            mLeCh, mLeB, mLePtr, mLeStr}
  someLt = {mLtI, mLtF64, mLtU, mLtU64, mLtEnum,
            mLtCh, mLtB, mLtPtr, mLtStr}

  someLen = {mLengthOpenArray, mLengthStr, mLengthArray, mLengthSeq,
             mXLenStr, mXLenSeq}

  someIn = {mInRange, mInSet}

  someHigh = {mHigh}
  # we don't list unsigned here because wrap around semantics suck for
  # proving anything:
  someAdd = {mAddI, mAddF64, mSucc}
  someSub = {mSubI, mSubF64, mPred}
  someMul = {mMulI, mMulF64}
  someDiv = {mDivI, mDivF64}
  someMod = {mModI}
  someMax = {mMaxI}
  someMin = {mMinI}
  someBinaryOp = someAdd+someSub+someMul+someMax+someMin

proc isValue(n: PNode): bool = n.kind in {nkCharLit..nkNilLit}
proc isLocation(n: PNode): bool = not n.isValue

proc isLet(n: PNode): bool =
  if n.kind == nkSym:
    if n.sym.kind in {skLet, skTemp, skForVar}:
      result = true
    elif n.sym.kind == skParam and skipTypes(n.sym.typ,
                                             abstractInst).kind != tyVar:
      result = true

proc isVar(n: PNode): bool =
  n.kind == nkSym and n.sym.kind in {skResult, skVar} and
      {sfAddrTaken} * n.sym.flags == {}

proc isLetLocation(m: PNode, isApprox: bool): bool =
  # consider: 'n[].kind' --> we really need to support 1 deref op even if this
  # is technically wrong due to aliasing :-( We could introduce "soft" facts
  # for this; this would still be very useful for warnings and also nicely
  # solves the 'var' problems. For now we fix this by requiring much more
  # restrictive expressions for the 'not nil' checking.
  var n = m
  var derefs = 0
  while true:
    case n.kind
    of nkDotExpr, nkCheckedFieldExpr, nkObjUpConv, nkObjDownConv:
      n = n[0]
    of nkDerefExpr, nkHiddenDeref:
      n = n[0]
      inc derefs
    of nkBracketExpr:
      if isConstExpr(n[1]) or isLet(n[1]) or isConstExpr(n[1].skipConv):
        n = n[0]
      else: return
    of nkHiddenStdConv, nkHiddenSubConv, nkConv:
      n = n[1]
    else:
      break
  result = n.isLet and derefs <= ord(isApprox)
  if not result and isApprox:
    result = isVar(n)

proc interestingCaseExpr*(m: PNode): bool = isLetLocation(m, true)

type
  Operators* = object
    opNot, opContains, opLe, opLt, opAnd, opOr, opIsNil, opEq: PSym
    opAdd, opSub, opMul, opDiv, opLen: PSym

proc initOperators*(g: ModuleGraph): Operators =
  result.opLe = createMagic(g, "<=", mLeI)
  result.opLt = createMagic(g, "<", mLtI)
  result.opAnd = createMagic(g, "and", mAnd)
  result.opOr = createMagic(g, "or", mOr)
  result.opIsNil = createMagic(g, "isnil", mIsNil)
  result.opEq = createMagic(g, "==", mEqI)
  result.opAdd = createMagic(g, "+", mAddI)
  result.opSub = createMagic(g, "-", mSubI)
  result.opMul = createMagic(g, "*", mMulI)
  result.opDiv = createMagic(g, "div", mDivI)
  result.opLen = createMagic(g, "len", mLengthSeq)
  result.opNot = createMagic(g, "not", mNot)
  result.opContains = createMagic(g, "contains", mInSet)

proc swapArgs(fact: PNode, newOp: PSym): PNode =
  result = newNodeI(nkCall, fact.info, 3)
  result[0] = newSymNode(newOp)
  result[1] = fact[2]
  result[2] = fact[1]

proc neg(n: PNode; o: Operators): PNode =
  if n == nil: return nil
  case n.getMagic
  of mNot:
    result = n[1]
  of someLt:
    # not (a < b)  ==  a >= b  ==  b <= a
    result = swapArgs(n, o.opLe)
  of someLe:
    result = swapArgs(n, o.opLt)
  of mInSet:
    if n[1].kind != nkCurly: return nil
    let t = n[2].typ.skipTypes(abstractInst)
    result = newNodeI(nkCall, n.info, 3)
    result[0] = n[0]
    result[2] = n[2]
    if t.kind == tyEnum:
      var s = newNodeIT(nkCurly, n.info, n[1].typ)
      for e in t.n:
        let eAsNode = newIntNode(nkIntLit, e.sym.position)
        if not inSet(n[1], eAsNode): s.add eAsNode
      result[1] = s
    #elif t.kind notin {tyString, tySequence} and lengthOrd(t) < 1000:
    #  result[1] = complement(n[1])
    else:
      # not ({2, 3, 4}.contains(x))   x != 2 and x != 3 and x != 4
      # XXX todo
      result = nil
  of mOr:
    # not (a or b) --> not a and not b
    let
      a = n[1].neg(o)
      b = n[2].neg(o)
    if a != nil and b != nil:
      result = newNodeI(nkCall, n.info, 3)
      result[0] = newSymNode(o.opAnd)
      result[1] = a
      result[2] = b
    elif a != nil:
      result = a
    elif b != nil:
      result = b
  else:
    # leave  not (a == 4)  as it is
    result = newNodeI(nkCall, n.info, 2)
    result[0] = newSymNode(o.opNot)
    result[1] = n

proc buildCall(op: PSym; a: PNode): PNode =
  result = newNodeI(nkCall, a.info, 2)
  result[0] = newSymNode(op)
  result[1] = a

proc buildCall(op: PSym; a, b: PNode): PNode =
  result = newNodeI(nkInfix, a.info, 3)
  result[0] = newSymNode(op)
  result[1] = a
  result[2] = b

proc `|+|`(a, b: PNode): PNode =
  result = copyNode(a)
  if a.kind in {nkCharLit..nkUInt64Lit}: result.intVal = a.intVal |+| b.intVal
  else: result.floatVal = a.floatVal + b.floatVal

proc `|-|`(a, b: PNode): PNode =
  result = copyNode(a)
  if a.kind in {nkCharLit..nkUInt64Lit}: result.intVal = a.intVal |-| b.intVal
  else: result.floatVal = a.floatVal - b.floatVal

proc `|*|`(a, b: PNode): PNode =
  result = copyNode(a)
  if a.kind in {nkCharLit..nkUInt64Lit}: result.intVal = a.intVal |*| b.intVal
  else: result.floatVal = a.floatVal * b.floatVal

proc `|div|`(a, b: PNode): PNode =
  result = copyNode(a)
  if a.kind in {nkCharLit..nkUInt64Lit}: result.intVal = a.intVal div b.intVal
  else: result.floatVal = a.floatVal / b.floatVal

proc negate(a, b, res: PNode; o: Operators): PNode =
  if b.kind in {nkCharLit..nkUInt64Lit} and b.intVal != low(BiggestInt):
    var b = copyNode(b)
    b.intVal = -b.intVal
    if a.kind in {nkCharLit..nkUInt64Lit}:
      b.intVal = b.intVal |+| a.intVal
      result = b
    else:
      result = buildCall(o.opAdd, a, b)
  elif b.kind in {nkFloatLit..nkFloat64Lit}:
    var b = copyNode(b)
    b.floatVal = -b.floatVal
    result = buildCall(o.opAdd, a, b)
  else:
    result = res

proc zero(): PNode = nkIntLit.newIntNode(0)
proc one(): PNode = nkIntLit.newIntNode(1)
proc minusOne(): PNode = nkIntLit.newIntNode(-1)

proc lowBound*(conf: ConfigRef; x: PNode): PNode =
  result = nkIntLit.newIntNode(firstOrd(conf, x.typ))
  result.info = x.info

proc highBound*(conf: ConfigRef; x: PNode; o: Operators): PNode =
  let typ = x.typ.skipTypes(abstractInst)
  result = if typ.kind == tyArray:
             nkIntLit.newIntNode(lastOrd(conf, typ))
           elif typ.kind == tySequence and x.kind == nkSym and
               x.sym.kind == skConst:
             nkIntLit.newIntNode(x.sym.ast.len-1)
           else:
             o.opAdd.buildCall(o.opLen.buildCall(x), minusOne())
  result.info = x.info

proc reassociation(n: PNode; o: Operators): PNode =
  result = n
  # (foo+5)+5 --> foo+10;  same for '*'
  case result.getMagic
  of someAdd:
    if result[2].isValue and
        result[1].getMagic in someAdd and result[1][2].isValue:
      result = o.opAdd.buildCall(result[1][1], result[1][2] |+| result[2])
      if result[2].intVal == 0:
        result = result[1]
  of someMul:
    if result[2].isValue and
        result[1].getMagic in someMul and result[1][2].isValue:
      result = o.opMul.buildCall(result[1][1], result[1][2] |*| result[2])
      if result[2].intVal == 1:
        result = result[1]
      elif result[2].intVal == 0:
        result = zero()
  else: discard

proc pred(n: PNode): PNode =
  if n.kind in {nkCharLit..nkUInt64Lit} and n.intVal != low(BiggestInt):
    result = copyNode(n)
    dec result.intVal
  else:
    result = n

proc canon*(n: PNode; o: Operators): PNode =
  # XXX for now only the new code in 'semparallel' uses this
  if n.safeLen >= 1:
    result = shallowCopy(n)
    for i in 0..<n.len:
      result[i] = canon(n[i], o)
  elif n.kind == nkSym and n.sym.kind == skLet and
      n.sym.astdef.getMagic in (someEq + someAdd + someMul + someMin +
      someMax + someHigh + {mUnaryLt} + someSub + someLen + someDiv):
    result = n.sym.astdef.copyTree
  else:
    result = n
  case result.getMagic
  of someEq, someAdd, someMul, someMin, someMax:
    # these are symmetric; put value as last:
    if result[1].isValue and not result[2].isValue:
      result = swapArgs(result, result[0].sym)
      # (4 + foo) + 2 --> (foo + 4) + 2
  of someHigh:
    # high == len+(-1)
    result = o.opAdd.buildCall(o.opLen.buildCall(result[1]), minusOne())
  of mUnaryLt:
    result = buildCall(o.opAdd, result[1], minusOne())
  of someSub:
    # x - 4  -->  x + (-4)
    result = negate(result[1], result[2], result, o)
  of someLen:
    result[0] = o.opLen.newSymNode
  of someLt:
    # x < y  same as x <= y-1:
    let y = n[2].canon(o)
    let p = pred(y)
    let minus = if p != y: p else: o.opAdd.buildCall(y, minusOne()).canon(o)
    result = o.opLe.buildCall(n[1].canon(o), minus)
  else: discard

  result = skipConv(result)
  result = reassociation(result, o)
  # most important rule: (x-4) <= a.len -->  x <= a.len+4
  case result.getMagic
  of someLe:
    let x = result[1]
    let y = result[2]
    if x.kind in nkCallKinds and x.len == 3 and x[2].isValue and
        isLetLocation(x[1], true):
      case x.getMagic
      of someSub:
        result = buildCall(result[0].sym, x[1],
                           reassociation(o.opAdd.buildCall(y, x[2]), o))
      of someAdd:
        # Rule A:
        let plus = negate(y, x[2], nil, o).reassociation(o)
        if plus != nil: result = buildCall(result[0].sym, x[1], plus)
      else: discard
    elif y.kind in nkCallKinds and y.len == 3 and y[2].isValue and
        isLetLocation(y[1], true):
      # a.len < x-3
      case y.getMagic
      of someSub:
        result = buildCall(result[0].sym, y[1],
                           reassociation(o.opAdd.buildCall(x, y[2]), o))
      of someAdd:
        let plus = negate(x, y[2], nil, o).reassociation(o)
        # ensure that Rule A will not trigger afterwards with the
        # additional 'not isLetLocation' constraint:
        if plus != nil and not isLetLocation(x, true):
          result = buildCall(result[0].sym, plus, y[1])
      else: discard
    elif x.isValue and y.getMagic in someAdd and y[2].isValue:
      # 0 <= a.len + 3
      # -3 <= a.len
      result[1] = x |-| y[2]
      result[2] = y[1]
    elif x.isValue and y.getMagic in someSub and y[2].isValue:
      # 0 <= a.len - 3
      # 3 <= a.len
      result[1] = x |+| y[2]
      result[2] = y[1]
  else: discard

proc buildAdd*(a: PNode; b: BiggestInt; o: Operators): PNode =
  canon(if b != 0: o.opAdd.buildCall(a, nkIntLit.newIntNode(b)) else: a, o)

proc usefulFact(n: PNode; o: Operators): PNode =
  case n.getMagic
  of someEq:
    if skipConv(n[2]).kind == nkNilLit and (
        isLetLocation(n[1], false) or isVar(n[1])):
      result = o.opIsNil.buildCall(n[1])
    else:
      if isLetLocation(n[1], true) or isLetLocation(n[2], true):
        # XXX algebraic simplifications!  'i-1 < a.len' --> 'i < a.len+1'
        result = n
  of someLe+someLt:
    if isLetLocation(n[1], true) or isLetLocation(n[2], true):
      # XXX algebraic simplifications!  'i-1 < a.len' --> 'i < a.len+1'
      result = n
    elif n[1].getMagic in someLen or n[2].getMagic in someLen:
      # XXX Rethink this whole idea of 'usefulFact' for semparallel
      result = n
  of mIsNil:
    if isLetLocation(n[1], false) or isVar(n[1]):
      result = n
  of someIn:
    if isLetLocation(n[1], true):
      result = n
  of mAnd:
    let
      a = usefulFact(n[1], o)
      b = usefulFact(n[2], o)
    if a != nil and b != nil:
      result = newNodeI(nkCall, n.info, 3)
      result[0] = newSymNode(o.opAnd)
      result[1] = a
      result[2] = b
    elif a != nil:
      result = a
    elif b != nil:
      result = b
  of mNot:
    let a = usefulFact(n[1], o)
    if a != nil:
      result = a.neg(o)
  of mOr:
    # 'or' sucks! (p.isNil or q.isNil) --> hard to do anything
    # with that knowledge...
    # DeMorgan helps a little though:
    #   not a or not b --> not (a and b)
    #  (x == 3) or (y == 2)  ---> not ( not (x==3) and not (y == 2))
    #  not (x != 3 and y != 2)
    let
      a = usefulFact(n[1], o).neg(o)
      b = usefulFact(n[2], o).neg(o)
    if a != nil and b != nil:
      result = newNodeI(nkCall, n.info, 3)
      result[0] = newSymNode(o.opAnd)
      result[1] = a
      result[2] = b
      result = result.neg(o)
  elif n.kind == nkSym and n.sym.kind == skLet:
    # consider:
    #   let a = 2 < x
    #   if a:
    #     ...
    # We make can easily replace 'a' by '2 < x' here:
    if n.sym.astdef != nil:
      result = usefulFact(n.sym.astdef, o)
  elif n.kind == nkStmtListExpr:
    result = usefulFact(n.lastSon, o)

type
  TModel* = object
    s*: seq[PNode] # the "knowledge base"
    o*: Operators

proc addFact*(m: var TModel, nn: PNode) =
  let n = usefulFact(nn, m.o)
  if n != nil: m.s.add n

proc addFactNeg*(m: var TModel, n: PNode) =
  let n = n.neg(m.o)
  if n != nil: addFact(m, n)

proc sameOpr(a, b: PSym): bool =
  case a.magic
  of someEq: result = b.magic in someEq
  of someLe: result = b.magic in someLe
  of someLt: result = b.magic in someLt
  of someLen: result = b.magic in someLen
  of someAdd: result = b.magic in someAdd
  of someSub: result = b.magic in someSub
  of someMul: result = b.magic in someMul
  of someDiv: result = b.magic in someDiv
  else: result = a == b

proc sameTree*(a, b: PNode): bool =
  result = false
  if a == b:
    result = true
  elif a != nil and b != nil and a.kind == b.kind:
    case a.kind
    of nkSym:
      result = a.sym == b.sym
      if not result and a.sym.magic != mNone:
        result = a.sym.magic == b.sym.magic or sameOpr(a.sym, b.sym)
    of nkIdent: result = a.ident.id == b.ident.id
    of nkCharLit..nkUInt64Lit: result = a.intVal == b.intVal
    of nkFloatLit..nkFloat64Lit: result = a.floatVal == b.floatVal
    of nkStrLit..nkTripleStrLit: result = a.strVal == b.strVal
    of nkType: result = a.typ == b.typ
    of nkEmpty, nkNilLit: result = true
    else:
      if a.len == b.len:
        for i in 0..<a.len:
          if not sameTree(a[i], b[i]): return
        result = true

proc hasSubTree(n, x: PNode): bool =
  if n.sameTree(x): result = true
  else:
    for i in 0..n.safeLen-1:
      if hasSubTree(n[i], x): return true

proc invalidateFacts*(m: var TModel, n: PNode) =
  # We are able to guard local vars (as opposed to 'let' variables)!
  # 'while p != nil: f(p); p = p.next'
  # This is actually quite easy to do:
  # Re-assignments (incl. pass to a 'var' param) trigger an invalidation
  # of every fact that contains 'v'.
  #
  #   if x < 4:
  #     if y < 5
  #       x = unknown()
  #       # we invalidate 'x' here but it's known that x >= 4
  #       # for the else anyway
  #   else:
  #     echo x
  #
  # The same mechanism could be used for more complex data stored on the heap;
  # procs that 'write: []' cannot invalidate 'n.kind' for instance. In fact, we
  # could CSE these expressions then and help C's optimizer.
  for i in 0..high(m.s):
    if m.s[i] != nil and m.s[i].hasSubTree(n): m.s[i] = nil

proc valuesUnequal(a, b: PNode): bool =
  if a.isValue and b.isValue:
    result = not sameValue(a, b)

proc impliesEq(fact, eq: PNode): TImplication =
  let (loc, val) = if isLocation(eq[1]): (1, 2) else: (2, 1)

  case fact[0].sym.magic
  of someEq:
    if sameTree(fact[1], eq[loc]):
      # this is not correct; consider:  a == b;  a == 1 --> unknown!
      if sameTree(fact[2], eq[val]): result = impYes
      elif valuesUnequal(fact[2], eq[val]): result = impNo
    elif sameTree(fact[2], eq[loc]):
      if sameTree(fact[1], eq[val]): result = impYes
      elif valuesUnequal(fact[1], eq[val]): result = impNo
  of mInSet:
    # remember: mInSet is 'contains' so the set comes first!
    if sameTree(fact[2], eq[loc]) and isValue(eq[val]):
      if inSet(fact[1], eq[val]): result = impYes
      else: result = impNo
  of mNot, mOr, mAnd: assert(false, "impliesEq")
  else: discard

proc leImpliesIn(x, c, aSet: PNode): TImplication =
  if c.kind in {nkCharLit..nkUInt64Lit}:
    # fact:  x <= 4;  question x in {56}?
    # --> true if every value <= 4 is in the set {56}
    #
    var value = newIntNode(c.kind, firstOrd(nil, x.typ))
    # don't iterate too often:
    if c.intVal - value.intVal < 1000:
      var i, pos, neg: int
      while value.intVal <= c.intVal:
        if inSet(aSet, value): inc pos
        else: inc neg
        inc i; inc value.intVal
      if pos == i: result = impYes
      elif neg == i: result = impNo

proc geImpliesIn(x, c, aSet: PNode): TImplication =
  if c.kind in {nkCharLit..nkUInt64Lit}:
    # fact:  x >= 4;  question x in {56}?
    # --> true iff every value >= 4 is in the set {56}
    #
    var value = newIntNode(c.kind, c.intVal)
    let max = lastOrd(nil, x.typ)
    # don't iterate too often:
    if max - getInt(value) < toInt128(1000):
      var i, pos, neg: int
      while value.intVal <= max:
        if inSet(aSet, value): inc pos
        else: inc neg
        inc i; inc value.intVal
      if pos == i: result = impYes
      elif neg == i: result = impNo

proc compareSets(a, b: PNode): TImplication =
  if equalSets(nil, a, b): result = impYes
  elif intersectSets(nil, a, b).len == 0: result = impNo

proc impliesIn(fact, loc, aSet: PNode): TImplication =
  case fact[0].sym.magic
  of someEq:
    if sameTree(fact[1], loc):
      if inSet(aSet, fact[2]): result = impYes
      else: result = impNo
    elif sameTree(fact[2], loc):
      if inSet(aSet, fact[1]): result = impYes
      else: result = impNo
  of mInSet:
    if sameTree(fact[2], loc):
      result = compareSets(fact[1], aSet)
  of someLe:
    if sameTree(fact[1], loc):
      result = leImpliesIn(fact[1], fact[2], aSet)
    elif sameTree(fact[2], loc):
      result = geImpliesIn(fact[2], fact[1], aSet)
  of someLt:
    if sameTree(fact[1], loc):
      result = leImpliesIn(fact[1], fact[2].pred, aSet)
    elif sameTree(fact[2], loc):
      # 4 < x  -->  3 <= x
      result = geImpliesIn(fact[2], fact[1].pred, aSet)
  of mNot, mOr, mAnd: assert(false, "impliesIn")
  else: discard

proc valueIsNil(n: PNode): TImplication =
  if n.kind == nkNilLit: impYes
  elif n.kind in {nkStrLit..nkTripleStrLit, nkBracket, nkObjConstr}: impNo
  else: impUnknown

proc impliesIsNil(fact, eq: PNode): TImplication =
  case fact[0].sym.magic
  of mIsNil:
    if sameTree(fact[1], eq[1]):
      result = impYes
  of someEq:
    if sameTree(fact[1], eq[1]):
      result = valueIsNil(fact[2].skipConv)
    elif sameTree(fact[2], eq[1]):
      result = valueIsNil(fact[1].skipConv)
  of mNot, mOr, mAnd: assert(false, "impliesIsNil")
  else: discard

proc impliesGe(fact, x, c: PNode): TImplication =
  assert isLocation(x)
  case fact[0].sym.magic
  of someEq:
    if sameTree(fact[1], x):
      if isValue(fact[2]) and isValue(c):
        # fact:  x = 4;  question x >= 56? --> true iff 4 >= 56
        if leValue(c, fact[2]): result = impYes
        else: result = impNo
    elif sameTree(fact[2], x):
      if isValue(fact[1]) and isValue(c):
        if leValue(c, fact[1]): result = impYes
        else: result = impNo
  of someLt:
    if sameTree(fact[1], x):
      if isValue(fact[2]) and isValue(c):
        # fact:  x < 4;  question N <= x? --> false iff N <= 4
        if leValue(fact[2], c): result = impNo
        # fact:  x < 4;  question 2 <= x? --> we don't know
    elif sameTree(fact[2], x):
      # fact: 3 < x; question: N-1 < x ?  --> true iff N-1 <= 3
      if isValue(fact[1]) and isValue(c):
        if leValue(c.pred, fact[1]): result = impYes
  of someLe:
    if sameTree(fact[1], x):
      if isValue(fact[2]) and isValue(c):
        # fact:  x <= 4;  question x >= 56? --> false iff 4 <= 56
        if leValue(fact[2], c): result = impNo
        # fact:  x <= 4;  question x >= 2? --> we don't know
    elif sameTree(fact[2], x):
      # fact: 3 <= x; question: x >= 2 ?  --> true iff 2 <= 3
      if isValue(fact[1]) and isValue(c):
        if leValue(c, fact[1]): result = impYes
  of mNot, mOr, mAnd: assert(false, "impliesGe")
  else: discard

proc impliesLe(fact, x, c: PNode): TImplication =
  if not isLocation(x):
    return impliesGe(fact, c, x)
  case fact[0].sym.magic
  of someEq:
    if sameTree(fact[1], x):
      if isValue(fact[2]) and isValue(c):
        # fact:  x = 4;  question x <= 56? --> true iff 4 <= 56
        if leValue(fact[2], c): result = impYes
        else: result = impNo
    elif sameTree(fact[2], x):
      if isValue(fact[1]) and isValue(c):
        if leValue(fact[1], c): result = impYes
        else: result = impNo
  of someLt:
    if sameTree(fact[1], x):
      if isValue(fact[2]) and isValue(c):
        # fact:  x < 4;  question x <= N? --> true iff N-1 <= 4
        if leValue(fact[2], c.pred): result = impYes
        # fact:  x < 4;  question x <= 2? --> we don't know
    elif sameTree(fact[2], x):
      # fact: 3 < x; question: x <= 1 ?  --> false iff 1 <= 3
      if isValue(fact[1]) and isValue(c):
        if leValue(c, fact[1]): result = impNo

  of someLe:
    if sameTree(fact[1], x):
      if isValue(fact[2]) and isValue(c):
        # fact:  x <= 4;  question x <= 56? --> true iff 4 <= 56
        if leValue(fact[2], c): result = impYes
        # fact:  x <= 4;  question x <= 2? --> we don't know

    elif sameTree(fact[2], x):
      # fact: 3 <= x; question: x <= 2 ?  --> false iff 2 < 3
      if isValue(fact[1]) and isValue(c):
        if leValue(c, fact[1].pred): result = impNo

  of mNot, mOr, mAnd: assert(false, "impliesLe")
  else: discard

proc impliesLt(fact, x, c: PNode): TImplication =
  # x < 3  same as x <= 2:
  let p = c.pred
  if p != c:
    result = impliesLe(fact, x, p)
  else:
    # 4 < x  same as 3 <= x
    let q = x.pred
    if q != x:
      result = impliesLe(fact, q, c)

proc `~`(x: TImplication): TImplication =
  case x
  of impUnknown: impUnknown
  of impNo: impYes
  of impYes: impNo

proc factImplies(fact, prop: PNode): TImplication =
  case fact.getMagic
  of mNot:
    # Consider:
    # enum nkBinary, nkTernary, nkStr
    # fact:      not (k <= nkBinary)
    # question:  k in {nkStr}
    # --> 'not' for facts is entirely different than 'not' for questions!
    # it's provably wrong if every value > 4 is in the set {56}
    # That's because we compute the implication and  'a -> not b' cannot
    # be treated the same as 'not a -> b'

    #  (not a) -> b  compute as  not (a -> b) ???
    #  == not a or not b == not (a and b)
    let arg = fact[1]
    case arg.getMagic
    of mIsNil, mEqRef:
      return ~factImplies(arg, prop)
    of mAnd:
      # not (a and b)  means  not a or not b:
      # a or b --> both need to imply 'prop'
      let a = factImplies(arg[1], prop)
      let b = factImplies(arg[2], prop)
      if a == b: return ~a
      return impUnknown
    else:
      return impUnknown
  of mAnd:
    result = factImplies(fact[1], prop)
    if result != impUnknown: return result
    return factImplies(fact[2], prop)
  else: discard

  case prop[0].sym.magic
  of mNot: result = ~fact.factImplies(prop[1])
  of mIsNil: result = impliesIsNil(fact, prop)
  of someEq: result = impliesEq(fact, prop)
  of someLe: result = impliesLe(fact, prop[1], prop[2])
  of someLt: result = impliesLt(fact, prop[1], prop[2])
  of mInSet: result = impliesIn(fact, prop[2], prop[1])
  else: result = impUnknown

proc doesImply*(facts: TModel, prop: PNode): TImplication =
  assert prop.kind in nkCallKinds
  for f in facts.s:
    # facts can be invalidated, in which case they are 'nil':
    if not f.isNil:
      result = f.factImplies(prop)
      if result != impUnknown: return

proc impliesNotNil*(m: TModel, arg: PNode): TImplication =
  result = doesImply(m, m.o.opIsNil.buildCall(arg).neg(m.o))

proc simpleSlice*(a, b: PNode): BiggestInt =
  # returns 'c' if a..b matches (i+c)..(i+c), -1 otherwise. (i)..(i) is matched
  # as if it is (i+0)..(i+0).
  if guards.sameTree(a, b):
    if a.getMagic in someAdd and a[2].kind in {nkCharLit..nkUInt64Lit}:
      result = a[2].intVal
    else:
      result = 0
  else:
    result = -1


template isMul(x): untyped = x.getMagic in someMul
template isDiv(x): untyped = x.getMagic in someDiv
template isAdd(x): untyped = x.getMagic in someAdd
template isSub(x): untyped = x.getMagic in someSub
template isVal(x): untyped = x.kind in {nkCharLit..nkUInt64Lit}
template isIntVal(x, y): untyped = x.intVal == y

import macros

macro `=~`(x: PNode, pat: untyped): bool =
  proc m(x, pat, conds: NimNode) =
    case pat.kind
    of nnkInfix:
      case $pat[0]
      of "*": conds.add getAst(isMul(x))
      of "/": conds.add getAst(isDiv(x))
      of "+": conds.add getAst(isAdd(x))
      of "-": conds.add getAst(isSub(x))
      else:
        error("invalid pattern")
      m(newTree(nnkBracketExpr, x, newLit(1)), pat[1], conds)
      m(newTree(nnkBracketExpr, x, newLit(2)), pat[2], conds)
    of nnkPar:
      if pat.len == 1:
        m(x, pat[0], conds)
      else:
        error("invalid pattern")
    of nnkIdent:
      let c = newTree(nnkStmtListExpr, newLetStmt(pat, x))
      conds.add c
      # XXX why is this 'isVal(pat)' and not 'isVal(x)'?
      if ($pat)[^1] == 'c': c.add(getAst(isVal(x)))
      else: c.add bindSym"true"
    of nnkIntLit:
      conds.add(getAst(isIntVal(x, pat.intVal)))
    else:
      error("invalid pattern")

  var conds = newTree(nnkBracket)
  m(x, pat, conds)
  when compiles(nestList(ident"and", conds)):
    result = nestList(ident"and", conds)
  #elif declared(macros.toNimIdent):
  #  result = nestList(toNimIdent"and", conds)
  else:
    result = nestList(!"and", conds)

proc isMinusOne(n: PNode): bool =
  n.kind in {nkCharLit..nkUInt64Lit} and n.intVal == -1

proc pleViaModel(model: TModel; aa, bb: PNode): TImplication

proc ple(m: TModel; a, b: PNode): TImplication =
  template `<=?`(a,b): untyped = ple(m,a,b) == impYes
  template `>=?`(a,b): untyped = ple(m, nkIntLit.newIntNode(b), a) == impYes

  #   0 <= 3
  if a.isValue and b.isValue:
    return if leValue(a, b): impYes else: impNo

  # use type information too:  x <= 4  iff  high(x) <= 4
  if b.isValue and a.typ != nil and a.typ.isOrdinalType:
    if lastOrd(nil, a.typ) <= b.intVal: return impYes
  # 3 <= x   iff  low(x) <= 3
  if a.isValue and b.typ != nil and b.typ.isOrdinalType:
    if firstOrd(nil, b.typ) <= a.intVal: return impYes

  # x <= x
  if sameTree(a, b): return impYes

  # 0 <= x.len
  if b.getMagic in someLen and a.isValue:
    if a.intVal <= 0: return impYes

  #   x <= y+c  if 0 <= c and x <= y
  #   x <= y+(-c)  if c <= 0  and y >= x
  if b.getMagic in someAdd and zero() <=? b[2] and a <=? b[1]: return impYes

  #   x+c <= y  if c <= 0 and x <= y
  if a.getMagic in someAdd and a[2] <=? zero() and a[1] <=? b: return impYes

  #   x <= y*c  if  1 <= c and x <= y  and 0 <= y
  if b.getMagic in someMul:
    if a <=? b[1] and one() <=? b[2] and zero() <=? b[1]: return impYes


  if a.getMagic in someMul and a[2].isValue and a[1].getMagic in someDiv and
      a[1][2].isValue:
    # simplify   (x div 4) * 2 <= y   to  x div (c div d)  <= y
    if ple(m, buildCall(m.o.opDiv, a[1][1], `|div|`(a[1][2], a[2])), b) == impYes:
      return impYes

  # x*3 + x == x*4. It follows that:
  # x*3 + y <= x*4  if  y <= x  and 3 <= 4
  if a =~ x*dc + y and b =~ x2*ec:
    if sameTree(x, x2):
      let ec1 = m.o.opAdd.buildCall(ec, minusOne())
      if x >=? 1 and ec >=? 1 and dc >=? 1 and dc <=? ec1 and y <=? x:
        return impYes
  elif a =~ x*dc and b =~ x2*ec + y:
    #echo "BUG cam ehrer e ", a, " <=? ", b
    if sameTree(x, x2):
      let ec1 = m.o.opAdd.buildCall(ec, minusOne())
      if x >=? 1 and ec >=? 1 and dc >=? 1 and dc <=? ec1 and y <=? zero():
        return impYes

  #  x+c <= x+d  if c <= d. Same for *, - etc.
  if a.getMagic in someBinaryOp and a.getMagic == b.getMagic:
    if sameTree(a[1], b[1]) and a[2] <=? b[2]: return impYes
    elif sameTree(a[2], b[2]) and a[1] <=? b[1]: return impYes

  #   x div c <= y   if   1 <= c  and  0 <= y  and x <= y:
  if a.getMagic in someDiv:
    if one() <=? a[2] and zero() <=? b and a[1] <=? b: return impYes

    #  x div c <= x div d  if d <= c
    if b.getMagic in someDiv:
      if sameTree(a[1], b[1]) and b[2] <=? a[2]: return impYes

    # x div z <= x - 1   if  z <= x
    if a[2].isValue and b.getMagic in someAdd and b[2].isMinusOne:
      if a[2] <=? a[1] and sameTree(a[1], b[1]): return impYes

  # slightly subtle:
  # x <= max(y, z)  iff x <= y or x <= z
  # note that 'x <= max(x, z)' is a special case of the above rule
  if b.getMagic in someMax:
    if a <=? b[1] or a <=? b[2]: return impYes

  # min(x, y) <= z  iff x <= z or y <= z
  if a.getMagic in someMin:
    if a[1] <=? b or a[2] <=? b: return impYes

  # use the knowledge base:
  return pleViaModel(m, a, b)
  #return doesImply(m, o.opLe.buildCall(a, b))

type TReplacements = seq[tuple[a, b: PNode]]

proc replaceSubTree(n, x, by: PNode): PNode =
  if sameTree(n, x):
    result = by
  elif hasSubTree(n, x):
    result = shallowCopy(n)
    for i in 0..n.safeLen-1:
      result[i] = replaceSubTree(n[i], x, by)
  else:
    result = n

proc applyReplacements(n: PNode; rep: TReplacements): PNode =
  result = n
  for x in rep: result = result.replaceSubTree(x.a, x.b)

proc pleViaModelRec(m: var TModel; a, b: PNode): TImplication =
  # now check for inferrable facts: a <= b and b <= c  implies a <= c
  for i in 0..m.s.high:
    let fact = m.s[i]
    if fact != nil and fact.getMagic in someLe:
      # mark as used:
      m.s[i] = nil
      # i <= len-100
      # i <=? len-1
      # --> true  if  (len-100) <= (len-1)
      let x = fact[1]
      let y = fact[2]
      if sameTree(x, a) and y.getMagic in someAdd and b.getMagic in someAdd and
         sameTree(y[1], b[1]):
        if ple(m, b[2], y[2]) == impYes:
          return impYes

      # x <= y implies a <= b  if  a <= x and y <= b
      if ple(m, a, x) == impYes:
        if ple(m, y, b) == impYes:
          return impYes
        #if pleViaModelRec(m, y, b): return impYes
      # fact:  16 <= i
      #         x    y
      # question: i <= 15? no!
      result = impliesLe(fact, a, b)
      if result != impUnknown:
        return result
      when false:
        # given: x <= y;  y==a;  x <= a this means: a <= b  if  x <= b
        if sameTree(y, a):
          result = ple(m, b, x)
          if result != impUnknown:
            return result

proc pleViaModel(model: TModel; aa, bb: PNode): TImplication =
  # compute replacements:
  var replacements: TReplacements = @[]
  for fact in model.s:
    if fact != nil and fact.getMagic in someEq:
      let a = fact[1]
      let b = fact[2]
      if a.kind == nkSym: replacements.add((a,b))
      else: replacements.add((b,a))
  var m: TModel
  var a = aa
  var b = bb
  if replacements.len > 0:
    m.s = @[]
    m.o = model.o
    # make the other facts consistent:
    for fact in model.s:
      if fact != nil and fact.getMagic notin someEq:
        # XXX 'canon' should not be necessary here, but it is
        m.s.add applyReplacements(fact, replacements).canon(m.o)
    a = applyReplacements(aa, replacements)
    b = applyReplacements(bb, replacements)
  else:
    # we have to make a copy here, because the model will be modified:
    m = model
  result = pleViaModelRec(m, a, b)

proc proveLe*(m: TModel; a, b: PNode): TImplication =
  let x = canon(m.o.opLe.buildCall(a, b), m.o)
  #echo "ROOT ", renderTree(x[1]), " <=? ", renderTree(x[2])
  result = ple(m, x[1], x[2])
  if result == impUnknown:
    # try an alternative:  a <= b  iff  not (b < a)  iff  not (b+1 <= a):
    let y = canon(m.o.opLe.buildCall(m.o.opAdd.buildCall(b, one()), a), m.o)
    result = ~ple(m, y[1], y[2])

proc addFactLe*(m: var TModel; a, b: PNode) =
  m.s.add canon(m.o.opLe.buildCall(a, b), m.o)

proc settype(n: PNode): PType =
  result = newType(tySet, n.typ.owner)
  addSonSkipIntLit(result, n.typ)

proc buildOf(it, loc: PNode; o: Operators): PNode =
  var s = newNodeI(nkCurly, it.info, it.len-1)
  s.typ = settype(loc)
  for i in 0..<it.len-1: s[i] = it[i]
  result = newNodeI(nkCall, it.info, 3)
  result[0] = newSymNode(o.opContains)
  result[1] = s
  result[2] = loc

proc buildElse(n: PNode; o: Operators): PNode =
  var s = newNodeIT(nkCurly, n.info, settype(n[0]))
  for i in 1..<n.len-1:
    let branch = n[i]
    assert branch.kind != nkElse
    if branch.kind == nkOfBranch:
      for j in 0..<branch.len-1:
        s.add(branch[j])
  result = newNodeI(nkCall, n.info, 3)
  result[0] = newSymNode(o.opContains)
  result[1] = s
  result[2] = n[0]

proc addDiscriminantFact*(m: var TModel, n: PNode) =
  var fact = newNodeI(nkCall, n.info, 3)
  fact[0] = newSymNode(m.o.opEq)
  fact[1] = n[0]
  fact[2] = n[1]
  m.s.add fact

proc addAsgnFact*(m: var TModel, key, value: PNode) =
  var fact = newNodeI(nkCall, key.info, 3)
  fact[0] = newSymNode(m.o.opEq)
  fact[1] = key
  fact[2] = value
  m.s.add fact

proc sameSubexprs*(m: TModel; a, b: PNode): bool =
  # This should be used to check whether two *path expressions* refer to the
  # same memory location according to 'm'. This is tricky:
  # lock a[i].guard:
  #   ...
  #   access a[i].guarded
  #
  # Here a[i] is the same as a[i] iff 'i' and 'a' are not changed via '...'.
  # However, nil checking requires exactly the same mechanism! But for now
  # we simply use sameTree and live with the unsoundness of the analysis.
  var check = newNodeI(nkCall, a.info, 3)
  check[0] = newSymNode(m.o.opEq)
  check[1] = a
  check[2] = b
  result = m.doesImply(check) == impYes

proc addCaseBranchFacts*(m: var TModel, n: PNode, i: int) =
  let branch = n[i]
  if branch.kind == nkOfBranch:
    m.s.add buildOf(branch, n[0], m.o)
  else:
    m.s.add n.buildElse(m.o).neg(m.o)

proc buildProperFieldCheck(access, check: PNode; o: Operators): PNode =
  if check[1].kind == nkCurly:
    result = copyTree(check)
    if access.kind == nkDotExpr:
      var a = copyTree(access)
      a[1] = check[2]
      result[2] = a
      # 'access.kind != nkDotExpr' can happen for object constructors
      # which we don't check yet
  else:
    # it is some 'not'
    assert check.getMagic == mNot
    result = buildProperFieldCheck(access, check[1], o).neg(o)

proc checkFieldAccess*(m: TModel, n: PNode; conf: ConfigRef) =
  for i in 1..<n.len:
    let check = buildProperFieldCheck(n[0], n[i], m.o)
    if check != nil and m.doesImply(check) != impYes:
      message(conf, n.info, warnProveField, renderTree(n[0])); break