summary refs log tree commit diff stats
path: root/compiler/guards.nim
blob: f475f506803e1f1d6696c399d8d0574f0651ac27 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
#
#
#           The Nimrod Compiler
#        (c) Copyright 2013 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## This module implements the 'implies' relation for guards.

import ast, astalgo, msgs, magicsys, nimsets, trees, types, renderer, idents

const
  someEq = {mEqI, mEqI64, mEqF64, mEqEnum, mEqCh, mEqB, mEqRef, mEqProc,
    mEqUntracedRef, mEqStr, mEqSet, mEqCString}
  
  # set excluded here as the semantics are vastly different:
  someLe = {mLeI, mLeI64, mLeF64, mLeU, mLeU64, mLeEnum,
            mLeCh, mLeB, mLePtr, mLeStr}
  someLt = {mLtI, mLtI64, mLtF64, mLtU, mLtU64, mLtEnum, 
            mLtCh, mLtB, mLtPtr, mLtStr}

  someLen = {mLengthOpenArray, mLengthStr, mLengthArray, mLengthSeq}

  someIn = {mInRange, mInSet}

proc isValue(n: PNode): bool = n.kind in {nkCharLit..nkNilLit}
proc isLocation(n: PNode): bool = not n.isValue

proc isLet(n: PNode): bool =
  if n.kind == nkSym:
    if n.sym.kind in {skLet, skTemp, skForVar}:
      result = true
    elif n.sym.kind == skParam and skipTypes(n.sym.typ, 
                                             abstractInst).kind != tyVar:
      result = true

proc isVar(n: PNode): bool =
  n.kind == nkSym and n.sym.kind in {skResult, skVar} and
      {sfGlobal, sfAddrTaken} * n.sym.flags == {}

proc isLetLocation(m: PNode, isApprox: bool): bool =
  # consider: 'n[].kind' --> we really need to support 1 deref op even if this
  # is technically wrong due to aliasing :-( We could introduce "soft" facts
  # for this; this would still be very useful for warnings and also nicely
  # solves the 'var' problems. For now we fix this by requiring much more
  # restrictive expressions for the 'not nil' checking.
  var n = m
  var derefs = 0
  while true:
    case n.kind
    of nkDotExpr, nkCheckedFieldExpr, nkObjUpConv, nkObjDownConv:
      n = n.sons[0]
    of nkDerefExpr, nkHiddenDeref:
      n = n.sons[0]
      inc derefs
    of nkBracketExpr:
      if isConstExpr(n.sons[1]) or isLet(n.sons[1]):
        n = n.sons[0]
      else: return
    of nkHiddenStdConv, nkHiddenSubConv, nkConv:
      n = n.sons[1]
    else:
      break
  result = n.isLet and derefs <= ord(isApprox)
  if not result and isApprox:
    result = isVar(n)

proc interestingCaseExpr*(m: PNode): bool = isLetLocation(m, true)

proc getMagicOp(name: string, m: TMagic): PSym =
  result = newSym(skProc, getIdent(name), nil, unknownLineInfo())
  result.magic = m

let
  opLe = getMagicOp("<=", mLeI)
  opLt = getMagicOp("<", mLtI)
  opAnd = getMagicOp("and", mAnd)
  opOr = getMagicOp("or", mOr)
  opNot = getMagicOp("not", mNot)
  opIsNil = getMagicOp("isnil", mIsNil)
  opContains = getMagicOp("contains", mInSet)
  opEq = getMagicOp("==", mEqI)

proc swapArgs(fact: PNode, newOp: PSym): PNode =
  result = newNodeI(nkCall, fact.info, 3)
  result.sons[0] = newSymNode(newOp)
  result.sons[1] = fact.sons[2]
  result.sons[2] = fact.sons[1]

proc neg(n: PNode): PNode =
  if n == nil: return nil
  case n.getMagic
  of mNot:
    result = n.sons[1]
  of someLt:
    # not (a < b)  ==  a >= b  ==  b <= a
    result = swapArgs(n, opLe)
  of someLe:
    result = swapArgs(n, opLt)
  of mInSet:
    if n.sons[1].kind != nkCurly: return nil
    let t = n.sons[2].typ.skipTypes(abstractInst)
    result = newNodeI(nkCall, n.info, 3)
    result.sons[0] = n.sons[0]
    result.sons[2] = n.sons[2]
    if t.kind == tyEnum:
      var s = newNodeIT(nkCurly, n.info, n.sons[1].typ)    
      for e in t.n:
        let eAsNode = newIntNode(nkIntLit, e.sym.position)
        if not inSet(n.sons[1], eAsNode): s.add eAsNode
      result.sons[1] = s
    elif lengthOrd(t) < 1000:
      result.sons[1] = complement(n.sons[1])
    else:
      # not ({2, 3, 4}.contains(x))   x != 2 and x != 3 and x != 4
      # XXX todo
      result = nil
  of mOr:
    # not (a or b) --> not a and not b
    let
      a = n.sons[1].neg
      b = n.sons[2].neg
    if a != nil and b != nil:
      result = newNodeI(nkCall, n.info, 3)
      result.sons[0] = newSymNode(opAnd)
      result.sons[1] = a
      result.sons[2] = b
    elif a != nil:
      result = a
    elif b != nil:
      result = b
  else:
    # leave  not (a == 4)  as it is
    result = newNodeI(nkCall, n.info, 2)
    result.sons[0] = newSymNode(opNot)
    result.sons[1] = n

proc buildIsNil(arg: PNode): PNode =
  result = newNodeI(nkCall, arg.info, 2)
  result.sons[0] = newSymNode(opIsNil)
  result.sons[1] = arg

proc usefulFact(n: PNode): PNode =
  case n.getMagic
  of someEq:
    if skipConv(n.sons[2]).kind == nkNilLit and (
        isLetLocation(n.sons[1], false) or isVar(n.sons[1])):
      result = buildIsNil(n.sons[1])
    else:
      if isLetLocation(n.sons[1], true) or isLetLocation(n.sons[2], true):
        # XXX algebraic simplifications!  'i-1 < a.len' --> 'i < a.len+1'
        result = n
  of someLe+someLt:
    if isLetLocation(n.sons[1], true) or isLetLocation(n.sons[2], true):
      # XXX algebraic simplifications!  'i-1 < a.len' --> 'i < a.len+1'
      result = n
  of mIsNil:
    if isLetLocation(n.sons[1], false) or isVar(n.sons[1]):
      result = n
  of someIn:
    if isLetLocation(n.sons[1], true):
      result = n
  of mAnd:
    let
      a = usefulFact(n.sons[1])
      b = usefulFact(n.sons[2])
    if a != nil and b != nil:
      result = newNodeI(nkCall, n.info, 3)
      result.sons[0] = newSymNode(opAnd)
      result.sons[1] = a
      result.sons[2] = b
    elif a != nil:
      result = a
    elif b != nil:
      result = b
  of mNot:
    let a = usefulFact(n.sons[1])
    if a != nil:
      result = a.neg
  of mOr:
    # 'or' sucks! (p.isNil or q.isNil) --> hard to do anything
    # with that knowledge...
    # DeMorgan helps a little though: 
    #   not a or not b --> not (a and b)
    #  (x == 3) or (y == 2)  ---> not ( not (x==3) and not (y == 2))
    #  not (x != 3 and y != 2)
    let
      a = usefulFact(n.sons[1]).neg
      b = usefulFact(n.sons[2]).neg
    if a != nil and b != nil:
      result = newNodeI(nkCall, n.info, 3)
      result.sons[0] = newSymNode(opAnd)
      result.sons[1] = a
      result.sons[2] = b
      result = result.neg
  elif n.kind == nkSym and n.sym.kind == skLet:
    # consider:
    #   let a = 2 < x
    #   if a:
    #     ...
    # We make can easily replace 'a' by '2 < x' here:
    if n.sym.ast != nil:
      result = usefulFact(n.sym.ast)
  elif n.kind == nkStmtListExpr:
    result = usefulFact(n.lastSon)

type
  TModel* = seq[PNode] # the "knowledge base"

proc addFact*(m: var TModel, n: PNode) =
  let n = usefulFact(n)
  if n != nil: m.add n

proc addFactNeg*(m: var TModel, n: PNode) = 
  let n = n.neg
  if n != nil: addFact(m, n)

proc sameTree(a, b: PNode): bool = 
  result = false
  if a == b:
    result = true
  elif (a != nil) and (b != nil) and (a.kind == b.kind):
    case a.kind
    of nkSym: result = a.sym == b.sym
    of nkIdent: result = a.ident.id == b.ident.id
    of nkCharLit..nkInt64Lit: result = a.intVal == b.intVal
    of nkFloatLit..nkFloat64Lit: result = a.floatVal == b.floatVal
    of nkStrLit..nkTripleStrLit: result = a.strVal == b.strVal
    of nkType: result = a.typ == b.typ
    of nkEmpty, nkNilLit: result = true
    else:
      if sonsLen(a) == sonsLen(b):
        for i in countup(0, sonsLen(a) - 1):
          if not sameTree(a.sons[i], b.sons[i]): return
        result = true

proc hasSubTree(n, x: PNode): bool =
  if n.sameTree(x): result = true
  else:
    for i in 0..safeLen(n)-1:
      if hasSubTree(n.sons[i], x): return true

proc invalidateFacts*(m: var TModel, n: PNode) =
  # We are able to guard local vars (as opposed to 'let' variables)!
  # 'while p != nil: f(p); p = p.next'
  # This is actually quite easy to do:
  # Re-assignments (incl. pass to a 'var' param) trigger an invalidation
  # of every fact that contains 'v'. 
  # 
  #   if x < 4:
  #     if y < 5
  #       x = unknown()
  #       # we invalidate 'x' here but it's known that x >= 4
  #       # for the else anyway
  #   else:
  #     echo x
  #
  # The same mechanism could be used for more complex data stored on the heap;
  # procs that 'write: []' cannot invalidate 'n.kind' for instance. In fact, we
  # could CSE these expressions then and help C's optimizer.
  for i in 0..high(m):
    if m[i] != nil and m[i].hasSubTree(n): m[i] = nil

proc valuesUnequal(a, b: PNode): bool =
  if a.isValue and b.isValue:
    result = not sameValue(a, b)

proc pred(n: PNode): PNode =
  if n.kind in {nkCharLit..nkUInt64Lit} and n.intVal != low(BiggestInt):
    result = copyNode(n)
    dec result.intVal
  else:
    result = n

proc impliesEq(fact, eq: PNode): TImplication =
  let (loc, val) = if isLocation(eq.sons[1]): (1, 2) else: (2, 1)
  
  case fact.sons[0].sym.magic
  of someEq:
    if sameTree(fact.sons[1], eq.sons[loc]):
      # this is not correct; consider:  a == b;  a == 1 --> unknown!
      if sameTree(fact.sons[2], eq.sons[val]): result = impYes
      elif valuesUnequal(fact.sons[2], eq.sons[val]): result = impNo
    elif sameTree(fact.sons[2], eq.sons[loc]):
      if sameTree(fact.sons[1], eq.sons[val]): result = impYes
      elif valuesUnequal(fact.sons[1], eq.sons[val]): result = impNo
  of mInSet:
    # remember: mInSet is 'contains' so the set comes first!
    if sameTree(fact.sons[2], eq.sons[loc]) and isValue(eq.sons[val]):
      if inSet(fact.sons[1], eq.sons[val]): result = impYes
      else: result = impNo
  of mNot, mOr, mAnd: internalError(eq.info, "impliesEq")
  else: discard
  
proc leImpliesIn(x, c, aSet: PNode): TImplication =
  if c.kind in {nkCharLit..nkUInt64Lit}:
    # fact:  x <= 4;  question x in {56}?
    # --> true if every value <= 4 is in the set {56}
    #   
    var value = newIntNode(c.kind, firstOrd(x.typ))
    # don't iterate too often:
    if c.intVal - value.intVal < 1000:
      var i, pos, neg: int
      while value.intVal <= c.intVal:
        if inSet(aSet, value): inc pos
        else: inc neg
        inc i; inc value.intVal
      if pos == i: result = impYes
      elif neg == i: result = impNo

proc geImpliesIn(x, c, aSet: PNode): TImplication =
  if c.kind in {nkCharLit..nkUInt64Lit}:
    # fact:  x >= 4;  question x in {56}?
    # --> true iff every value >= 4 is in the set {56}
    #   
    var value = newIntNode(c.kind, c.intVal)
    let max = lastOrd(x.typ)
    # don't iterate too often:
    if max - value.intVal < 1000:
      var i, pos, neg: int
      while value.intVal <= max:
        if inSet(aSet, value): inc pos
        else: inc neg
        inc i; inc value.intVal
      if pos == i: result = impYes
      elif neg == i: result = impNo

proc compareSets(a, b: PNode): TImplication =
  if equalSets(a, b): result = impYes
  elif intersectSets(a, b).len == 0: result = impNo

proc impliesIn(fact, loc, aSet: PNode): TImplication =
  case fact.sons[0].sym.magic
  of someEq:
    if sameTree(fact.sons[1], loc):
      if inSet(aSet, fact.sons[2]): result = impYes
      else: result = impNo
    elif sameTree(fact.sons[2], loc):
      if inSet(aSet, fact.sons[1]): result = impYes
      else: result = impNo
  of mInSet:
    if sameTree(fact.sons[2], loc):
      result = compareSets(fact.sons[1], aSet)
  of someLe:
    if sameTree(fact.sons[1], loc):
      result = leImpliesIn(fact.sons[1], fact.sons[2], aSet)
    elif sameTree(fact.sons[2], loc):
      result = geImpliesIn(fact.sons[2], fact.sons[1], aSet)
  of someLt:
    if sameTree(fact.sons[1], loc):
      result = leImpliesIn(fact.sons[1], fact.sons[2].pred, aSet)
    elif sameTree(fact.sons[2], loc):
      # 4 < x  -->  3 <= x
      result = geImpliesIn(fact.sons[2], fact.sons[1].pred, aSet)
  of mNot, mOr, mAnd: internalError(loc.info, "impliesIn")
  else: discard

proc valueIsNil(n: PNode): TImplication =
  if n.kind == nkNilLit: impYes
  elif n.kind in {nkStrLit..nkTripleStrLit, nkBracket, nkObjConstr}: impNo
  else: impUnknown

proc impliesIsNil(fact, eq: PNode): TImplication =
  case fact.sons[0].sym.magic
  of mIsNil:
    if sameTree(fact.sons[1], eq.sons[1]):
      result = impYes
  of someEq:
    if sameTree(fact.sons[1], eq.sons[1]):
      result = valueIsNil(fact.sons[2].skipConv)
    elif sameTree(fact.sons[2], eq.sons[1]):
      result = valueIsNil(fact.sons[1].skipConv)
  of mNot, mOr, mAnd: internalError(eq.info, "impliesIsNil")
  else: discard

proc impliesGe(fact, x, c: PNode): TImplication =
  internalAssert isLocation(x)
  case fact.sons[0].sym.magic
  of someEq:
    if sameTree(fact.sons[1], x):
      if isValue(fact.sons[2]) and isValue(c):
        # fact:  x = 4;  question x >= 56? --> true iff 4 >= 56
        if leValue(c, fact.sons[2]): result = impYes
        else: result = impNo
    elif sameTree(fact.sons[2], x):
      if isValue(fact.sons[1]) and isValue(c):
        if leValue(c, fact.sons[1]): result = impYes
        else: result = impNo
  of someLt:
    if sameTree(fact.sons[1], x):
      if isValue(fact.sons[2]) and isValue(c):
        # fact:  x < 4;  question N <= x? --> false iff N <= 4
        if leValue(fact.sons[2], c): result = impNo
        # fact:  x < 4;  question 2 <= x? --> we don't know
    elif sameTree(fact.sons[2], x):
      # fact: 3 < x; question: N-1 < x ?  --> true iff N-1 <= 3
      if isValue(fact.sons[1]) and isValue(c):
        if leValue(c.pred, fact.sons[1]): result = impYes
  of someLe:
    if sameTree(fact.sons[1], x):
      if isValue(fact.sons[2]) and isValue(c):
        # fact:  x <= 4;  question x >= 56? --> false iff 4 <= 56
        if leValue(fact.sons[2], c): result = impNo
        # fact:  x <= 4;  question x >= 2? --> we don't know
    elif sameTree(fact.sons[2], x):
      # fact: 3 <= x; question: x >= 2 ?  --> true iff 2 <= 3
      if isValue(fact.sons[1]) and isValue(c):
        if leValue(c, fact.sons[1]): result = impYes
  of mNot, mOr, mAnd: internalError(x.info, "impliesGe")
  else: discard

proc impliesLe(fact, x, c: PNode): TImplication =
  if not isLocation(x):
    return impliesGe(fact, c, x)
  case fact.sons[0].sym.magic
  of someEq:
    if sameTree(fact.sons[1], x):
      if isValue(fact.sons[2]) and isValue(c):
        # fact:  x = 4;  question x <= 56? --> true iff 4 <= 56
        if leValue(fact.sons[2], c): result = impYes
        else: result = impNo
    elif sameTree(fact.sons[2], x):
      if isValue(fact.sons[1]) and isValue(c):
        if leValue(fact.sons[1], c): result = impYes
        else: result = impNo
  of someLt:
    if sameTree(fact.sons[1], x):
      if isValue(fact.sons[2]) and isValue(c):
        # fact:  x < 4;  question x <= N? --> true iff N-1 <= 4
        if leValue(fact.sons[2], c.pred): result = impYes
        # fact:  x < 4;  question x <= 2? --> we don't know
    elif sameTree(fact.sons[2], x):
      # fact: 3 < x; question: x <= 1 ?  --> false iff 1 <= 3
      if isValue(fact.sons[1]) and isValue(c): 
        if leValue(c, fact.sons[1]): result = impNo
    
  of someLe:
    if sameTree(fact.sons[1], x):
      if isValue(fact.sons[2]) and isValue(c):
        # fact:  x <= 4;  question x <= 56? --> true iff 4 <= 56
        if leValue(fact.sons[2], c): result = impYes
        # fact:  x <= 4;  question x <= 2? --> we don't know
    
    elif sameTree(fact.sons[2], x):
      # fact: 3 <= x; question: x <= 2 ?  --> false iff 2 < 3
      if isValue(fact.sons[1]) and isValue(c): 
        if leValue(c, fact.sons[1].pred): result = impNo

  of mNot, mOr, mAnd: internalError(x.info, "impliesLe")
  else: discard

proc impliesLt(fact, x, c: PNode): TImplication =
  # x < 3  same as x <= 2:
  let p = c.pred
  if p != c:
    result = impliesLe(fact, x, p)
  else:
    # 4 < x  same as 3 <= x
    let q = x.pred
    if q != x:
      result = impliesLe(fact, q, c)

proc `~`(x: TImplication): TImplication =
  case x
  of impUnknown: impUnknown
  of impNo: impYes
  of impYes: impNo

proc factImplies(fact, prop: PNode): TImplication =
  case fact.getMagic
  of mNot:
    # Consider:
    # enum nkBinary, nkTernary, nkStr
    # fact:      not (k <= nkBinary)
    # question:  k in {nkStr}
    # --> 'not' for facts is entirely different than 'not' for questions!
    # it's provably wrong if every value > 4 is in the set {56}
    # That's because we compute the implication and  'a -> not b' cannot
    # be treated the same as 'not a -> b'
    
    #  (not a) -> b  compute as  not (a -> b) ???
    #  == not a or not b == not (a and b)
    let arg = fact.sons[1]
    case arg.getMagic
    of mIsNil:
      return ~factImplies(arg, prop)
    of mAnd:
      # not (a and b)  means  not a or not b:
      # a or b --> both need to imply 'prop'
      let a = factImplies(arg.sons[1], prop)
      let b = factImplies(arg.sons[2], prop)
      if a == b: return ~a
      return impUnknown
    else:
      internalError(fact.info, "invalid fact")
  of mAnd:
    result = factImplies(fact.sons[1], prop)
    if result != impUnknown: return result
    return factImplies(fact.sons[2], prop)
  else: discard
  
  case prop.sons[0].sym.magic
  of mNot: result = ~fact.factImplies(prop.sons[1])
  of mIsNil: result = impliesIsNil(fact, prop)
  of someEq: result = impliesEq(fact, prop)
  of someLe: result = impliesLe(fact, prop.sons[1], prop.sons[2])
  of someLt: result = impliesLt(fact, prop.sons[1], prop.sons[2])
  of mInSet: result = impliesIn(fact, prop.sons[2], prop.sons[1])
  else: internalError(prop.info, "invalid proposition")

proc doesImply*(facts: TModel, prop: PNode): TImplication =
  assert prop.kind in nkCallKinds
  for f in facts:
    # facts can be invalidated, in which case they are 'nil':
    if not f.isNil:
      result = f.factImplies(prop)
      if result != impUnknown: return

proc impliesNotNil*(facts: TModel, arg: PNode): TImplication =
  result = doesImply(facts, buildIsNil(arg).neg)

proc settype(n: PNode): PType =
  result = newType(tySet, n.typ.owner)
  addSonSkipIntLit(result, n.typ)

proc buildOf(it, loc: PNode): PNode =
  var s = newNodeI(nkCurly, it.info, it.len-1)
  s.typ = settype(loc)
  for i in 0..it.len-2: s.sons[i] = it.sons[i]
  result = newNodeI(nkCall, it.info, 3)
  result.sons[0] = newSymNode(opContains)
  result.sons[1] = s
  result.sons[2] = loc

proc buildElse(n: PNode): PNode =
  var s = newNodeIT(nkCurly, n.info, settype(n.sons[0]))
  for i in 1..n.len-2:
    let branch = n.sons[i]
    assert branch.kind == nkOfBranch
    for j in 0..branch.len-2:
      s.add(branch.sons[j])
  result = newNodeI(nkCall, n.info, 3)
  result.sons[0] = newSymNode(opContains)
  result.sons[1] = s
  result.sons[2] = n.sons[0]

proc addDiscriminantFact*(m: var TModel, n: PNode) =
  var fact = newNodeI(nkCall, n.info, 3)
  fact.sons[0] = newSymNode(opEq)
  fact.sons[1] = n.sons[0]
  fact.sons[2] = n.sons[1]
  m.add fact

proc addAsgnFact*(m: var TModel, key, value: PNode) =
  var fact = newNodeI(nkCall, key.info, 3)
  fact.sons[0] = newSymNode(opEq)
  fact.sons[1] = key
  fact.sons[2] = value
  m.add fact

proc addCaseBranchFacts*(m: var TModel, n: PNode, i: int) =
  let branch = n.sons[i]
  if branch.kind == nkOfBranch:
    m.add buildOf(branch, n.sons[0])
  else:
    m.add n.buildElse.neg

proc buildProperFieldCheck(access, check: PNode): PNode =
  if check.sons[1].kind == nkCurly:
    result = copyTree(check)
    if access.kind == nkDotExpr:
      var a = copyTree(access)
      a.sons[1] = check.sons[2]
      result.sons[2] = a
      # 'access.kind != nkDotExpr' can happen for object constructors
      # which we don't check yet
  else:
    # it is some 'not'
    assert check.getMagic == mNot
    result = buildProperFieldCheck(access, check.sons[1]).neg

proc checkFieldAccess*(m: TModel, n: PNode) =
  for i in 1..n.len-1:
    let check = buildProperFieldCheck(n.sons[0], n.sons[i])
    if m.doesImply(check) != impYes:
      message(n.info, warnProveField, renderTree(n.sons[0])); break