summary refs log tree commit diff stats
path: root/compiler/injectdestructors.nim
blob: dc431ef38dadb8d1120522bcdf02ca0105a5bbe2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
#
#
#           The Nim Compiler
#        (c) Copyright 2017 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## Injects destructor calls into Nim code as well as
## an optimizer that optimizes copies to moves. This is implemented as an
## AST to AST transformation so that every backend benefits from it.

## See doc/destructors.rst for a spec of the implemented rewrite rules


import
  intsets, ast, msgs, renderer, magicsys, types, idents,
  strutils, options, dfa, lowerings, tables, modulegraphs, msgs,
  lineinfos, parampatterns, sighashes

from trees import exprStructuralEquivalent

type
  Con = object
    owner: PSym
    g: ControlFlowGraph
    jumpTargets: IntSet
    destroys, topLevelVars: PNode
    graph: ModuleGraph
    emptyNode: PNode
    otherRead: PNode
    inLoop: int
    uninit: IntSet # set of uninit'ed vars
    uninitComputed: bool

const toDebug {.strdefine.} = ""

template dbg(body) =
  when toDebug.len > 0:
    if c.owner.name.s == toDebug or toDebug == "always":
      body

proc isLastRead(location: PNode; c: var Con; pc, comesFrom: int): int =
  var pc = pc
  while pc < c.g.len:
    case c.g[pc].kind
    of def:
      if defInstrTargets(c.g[pc], location):
        # the path leads to a redefinition of 's' --> abandon it.
        return high(int)
      inc pc
    of use:
      if useInstrTargets(c.g[pc], location):
        c.otherRead = c.g[pc].n
        return -1
      inc pc
    of goto:
      pc = pc + c.g[pc].dest
    of fork:
      # every branch must lead to the last read of the location:
      let variantA = isLastRead(location, c, pc+1, pc)
      if variantA < 0: return -1
      var variantB = isLastRead(location, c, pc + c.g[pc].dest, pc)
      if variantB < 0: return -1
      elif variantB == high(int):
        variantB = variantA
      pc = variantB
    of InstrKind.join:
      let dest = pc + c.g[pc].dest
      if dest == comesFrom: return pc + 1
      inc pc
  return pc

proc isLastRead(n: PNode; c: var Con): bool =
  # first we need to search for the instruction that belongs to 'n':
  c.otherRead = nil
  var instr = -1
  let m = dfa.skipConvDfa(n)

  for i in 0..<c.g.len:
    # This comparison is correct and MUST not be ``instrTargets``:
    if c.g[i].kind == use and c.g[i].n == m:
      if instr < 0:
        instr = i
        break

  dbg: echo "starting point for ", n, " is ", instr, " ", n.kind

  if instr < 0: return false
  # we go through all paths beginning from 'instr+1' and need to
  # ensure that we don't find another 'use X' instruction.
  if instr+1 >= c.g.len: return true

  result = isLastRead(n, c, instr+1, -1) >= 0
  dbg: echo "ugh ", c.otherRead.isNil, " ", result

proc isFirstWrite(location: PNode; c: var Con; pc, comesFrom: int; instr: int): int =
  var pc = pc
  while pc < instr:
    case c.g[pc].kind
    of def:
      if defInstrTargets(c.g[pc], location):
        # a definition of 's' before ours makes ours not the first write
        return -1
      inc pc
    of use:
      if useInstrTargets(c.g[pc], location):
        return -1
      inc pc
    of goto:
      pc = pc + c.g[pc].dest
    of fork:
      # every branch must not contain a def/use of our location:
      let variantA = isFirstWrite(location, c, pc+1, pc, instr)
      if variantA < 0: return -1
      var variantB = isFirstWrite(location, c, pc + c.g[pc].dest, pc, instr + c.g[pc].dest)
      if variantB < 0: return -1
      elif variantB == high(int):
        variantB = variantA
      pc = variantB
    of InstrKind.join:
      let dest = pc + c.g[pc].dest
      if dest == comesFrom: return pc + 1
      inc pc
  return pc

proc isFirstWrite(n: PNode; c: var Con): bool =
  # first we need to search for the instruction that belongs to 'n':
  var instr = -1
  let m = dfa.skipConvDfa(n)

  for i in countdown(c.g.len-1, 0): # We search backwards here to treat loops correctly
    if c.g[i].kind == def and c.g[i].n == m:
      if instr < 0:
        instr = i
        break

  if instr < 0: return false
  # we go through all paths going to 'instr' and need to
  # ensure that we don't find another 'def/use X' instruction.
  if instr == 0: return true

  result = isFirstWrite(n, c, 0, -1, instr) >= 0

proc initialized(code: ControlFlowGraph; pc: int,
                 init, uninit: var IntSet; comesFrom: int): int =
  ## Computes the set of definitely initialized variables across all code paths
  ## as an IntSet of IDs.
  var pc = pc
  while pc < code.len:
    case code[pc].kind
    of goto:
      pc = pc + code[pc].dest
    of fork:
      let target = pc + code[pc].dest
      var initA = initIntSet()
      var initB = initIntSet()
      let pcA = initialized(code, pc+1, initA, uninit, pc)
      discard initialized(code, target, initB, uninit, pc)
      # we add vars if they are in both branches:
      for v in initA:
        if v in initB:
          init.incl v
      pc = pcA+1
    of InstrKind.join:
      let target = pc + code[pc].dest
      if comesFrom == target: return pc
      inc pc
    of use:
      let v = code[pc].n.sym
      if v.kind != skParam and v.id notin init:
        # attempt to read an uninit'ed variable
        uninit.incl v.id
      inc pc
    of def:
      let v = code[pc].n.sym
      init.incl v.id
      inc pc
  return pc

template isUnpackedTuple(n: PNode): bool =
  ## we move out all elements of unpacked tuples,
  ## hence unpacked tuples themselves don't need to be destroyed
  (n.kind == nkSym and n.sym.kind == skTemp and n.sym.typ.kind == tyTuple)

proc checkForErrorPragma(c: Con; t: PType; ri: PNode; opname: string) =
  var m = "'" & opname & "' is not available for type <" & typeToString(t) & ">"
  if opname == "=" and ri != nil:
    m.add "; requires a copy because it's not the last read of '"
    m.add renderTree(ri)
    m.add '\''
    if c.otherRead != nil:
      m.add "; another read is done here: "
      m.add c.graph.config $ c.otherRead.info
    elif ri.kind == nkSym and ri.sym.kind == skParam and not isSinkType(ri.sym.typ):
      m.add "; try to make "
      m.add renderTree(ri)
      m.add " a 'sink' parameter"
  m.add "; routine: "
  m.add c.owner.name.s
  localError(c.graph.config, ri.info, errGenerated, m)

proc makePtrType(c: Con, baseType: PType): PType =
  result = newType(tyPtr, c.owner)
  addSonSkipIntLit(result, baseType)

proc genOp(c: Con; t: PType; kind: TTypeAttachedOp; dest, ri: PNode): PNode =
  var op = t.attachedOps[kind]

  if op == nil or op.ast[genericParamsPos].kind != nkEmpty:
    # give up and find the canonical type instead:
    let h = sighashes.hashType(t, {CoType, CoConsiderOwned, CoDistinct})
    let canon = c.graph.canonTypes.getOrDefault(h)
    if canon != nil:
      op = canon.attachedOps[kind]

  if op == nil:
    #echo dest.typ.id
    globalError(c.graph.config, dest.info, "internal error: '" & AttachedOpToStr[kind] &
      "' operator not found for type " & typeToString(t))
  elif op.ast[genericParamsPos].kind != nkEmpty:
    globalError(c.graph.config, dest.info, "internal error: '" & AttachedOpToStr[kind] &
      "' operator is generic")
  dbg:
    if kind == attachedDestructor:
      echo "destructor is ", op.id, " ", op.ast
  if sfError in op.flags: checkForErrorPragma(c, t, ri, AttachedOpToStr[kind])
  let addrExp = newNodeIT(nkHiddenAddr, dest.info, makePtrType(c, dest.typ))
  addrExp.add(dest)
  result = newTree(nkCall, newSymNode(op), addrExp)

proc genDestroy(c: Con; dest: PNode): PNode =
  let t = dest.typ.skipTypes({tyGenericInst, tyAlias, tySink})
  result = genOp(c, t, attachedDestructor, dest, nil)

when false:
  proc preventMoveRef(dest, ri: PNode): bool =
    let lhs = dest.typ.skipTypes({tyGenericInst, tyAlias, tySink})
    var ri = ri
    if ri.kind in nkCallKinds and ri[0].kind == nkSym and ri[0].sym.magic == mUnown:
      ri = ri[1]
    let rhs = ri.typ.skipTypes({tyGenericInst, tyAlias, tySink})
    result = lhs.kind == tyRef and rhs.kind == tyOwned

proc canBeMoved(c: Con; t: PType): bool {.inline.} =
  let t = t.skipTypes({tyGenericInst, tyAlias, tySink})
  if optOwnedRefs in c.graph.config.globalOptions:
    result = t.kind != tyRef and t.attachedOps[attachedSink] != nil
  else:
    result = t.attachedOps[attachedSink] != nil

proc genSink(c: var Con; dest, ri: PNode): PNode =
  if isFirstWrite(dest, c): # optimize sink call into a bitwise memcopy
    result = newTree(nkFastAsgn, dest, ri)
  else:
    let t = dest.typ.skipTypes({tyGenericInst, tyAlias, tySink})
    if t.attachedOps[attachedSink] != nil:
      result = genOp(c, t, attachedSink, dest, ri)
      result.add ri
    else:
      # the default is to use combination of `=destroy(dest)` and
      # and copyMem(dest, source). This is efficient.
      let snk = newTree(nkFastAsgn, dest, ri)
      result = newTree(nkStmtList, genDestroy(c, dest), snk)

proc genCopyNoCheck(c: Con; dest, ri: PNode): PNode =
  let t = dest.typ.skipTypes({tyGenericInst, tyAlias, tySink})
  result = genOp(c, t, attachedAsgn, dest, ri)

proc genCopy(c: var Con; dest, ri: PNode): PNode =
  let t = dest.typ
  if tfHasOwned in t.flags and ri.kind != nkNilLit:
    # try to improve the error message here:
    if c.otherRead == nil: discard isLastRead(ri, c)
    checkForErrorPragma(c, t, ri, "=")
  result = genCopyNoCheck(c, dest, ri)

proc addTopVar(c: var Con; v: PNode) =
  c.topLevelVars.add newTree(nkIdentDefs, v, c.emptyNode, c.emptyNode)

proc getTemp(c: var Con; typ: PType; info: TLineInfo): PNode =
  let sym = newSym(skTemp, getIdent(c.graph.cache, ":tmpD"), c.owner, info)
  sym.typ = typ
  result = newSymNode(sym)
  c.addTopVar(result)

proc genWasMoved(n: PNode; c: var Con): PNode =
  result = newNodeI(nkCall, n.info)
  result.add(newSymNode(createMagic(c.graph, "wasMoved", mWasMoved)))
  result.add copyTree(n) #mWasMoved does not take the address

proc genDefaultCall(t: PType; c: Con; info: TLineInfo): PNode =
  result = newNodeI(nkCall, info)
  result.add(newSymNode(createMagic(c.graph, "default", mDefault)))
  result.typ = t

proc destructiveMoveVar(n: PNode; c: var Con): PNode =
  # generate: (let tmp = v; reset(v); tmp)
  if not hasDestructor(n.typ):
    result = copyTree(n)
  else:
    result = newNodeIT(nkStmtListExpr, n.info, n.typ)

    var temp = newSym(skLet, getIdent(c.graph.cache, "blitTmp"), c.owner, n.info)
    temp.typ = n.typ
    var v = newNodeI(nkLetSection, n.info)
    let tempAsNode = newSymNode(temp)

    var vpart = newNodeI(nkIdentDefs, tempAsNode.info, 3)
    vpart[0] = tempAsNode
    vpart[1] = c.emptyNode
    vpart[2] = n
    v.add(vpart)

    result.add v
    result.add genWasMoved(skipConv(n), c)
    result.add tempAsNode

proc sinkParamIsLastReadCheck(c: var Con, s: PNode) =
  assert s.kind == nkSym and s.sym.kind == skParam
  if not isLastRead(s, c):
     localError(c.graph.config, c.otherRead.info, "sink parameter `" & $s.sym.name.s &
         "` is already consumed at " & toFileLineCol(c. graph.config, s.info))

type
  ProcessMode = enum
    normal
    consumed
    sinkArg

proc p(n: PNode; c: var Con; mode: ProcessMode): PNode
proc moveOrCopy(dest, ri: PNode; c: var Con): PNode

proc isClosureEnv(n: PNode): bool = n.kind == nkSym and n.sym.name.s[0] == ':'

proc passCopyToSink(n: PNode; c: var Con): PNode =
  result = newNodeIT(nkStmtListExpr, n.info, n.typ)
  let tmp = getTemp(c, n.typ, n.info)
  # XXX This is only required if we are in a loop. Since we move temporaries
  # out of loops we need to mark it as 'wasMoved'.
  result.add genWasMoved(tmp, c)
  if hasDestructor(n.typ):
    var m = genCopy(c, tmp, n)
    m.add p(n, c, normal)
    result.add m
    if isLValue(n) and not isClosureEnv(n):
      message(c.graph.config, n.info, hintPerformance,
        ("passing '$1' to a sink parameter introduces an implicit copy; " &
        "use 'move($1)' to prevent it") % $n)
  else:
    if c.graph.config.selectedGC in {gcArc, gcOrc}:
      assert(not containsGarbageCollectedRef(n.typ))
    result.add newTree(nkAsgn, tmp, p(n, c, normal))
  result.add tmp

proc isDangerousSeq(t: PType): bool {.inline.} =
  let t = t.skipTypes(abstractInst)
  result = t.kind == tySequence and tfHasOwned notin t[0].flags

proc containsConstSeq(n: PNode): bool =
  if n.kind == nkBracket and n.len > 0 and n.typ != nil and isDangerousSeq(n.typ):
    return true
  result = false
  case n.kind
  of nkExprEqExpr, nkExprColonExpr, nkHiddenStdConv, nkHiddenSubConv:
    result = containsConstSeq(n[1])
  of nkObjConstr, nkClosure:
    for i in 1..<n.len:
      if containsConstSeq(n[i]): return true
  of nkCurly, nkBracket, nkPar, nkTupleConstr:
    for son in n:
      if containsConstSeq(son): return true
  else: discard

template handleNested(n: untyped, processCall: untyped) =
  case n.kind
  of nkStmtList, nkStmtListExpr:
    if n.len == 0: return n
    result = copyNode(n)
    for i in 0..<n.len-1:
      result.add p(n[i], c, normal)
    template node: untyped = n[^1]
    result.add processCall
  of nkBlockStmt, nkBlockExpr:
    result = copyNode(n)
    result.add n[0]
    template node: untyped = n[1]
    result.add processCall
  of nkIfStmt, nkIfExpr:
    result = copyNode(n)
    for son in n:
      var branch = copyNode(son)
      if son.kind in {nkElifBranch, nkElifExpr}:
        template node: untyped = son[1]
        branch.add p(son[0], c, normal) #The condition
        branch.add if node.typ == nil: p(node, c, normal) #noreturn
                   else: processCall
      else:
        template node: untyped = son[0]
        branch.add if node.typ == nil: p(node, c, normal) #noreturn
                   else: processCall
      result.add branch
  of nkCaseStmt:
    result = copyNode(n)
    result.add p(n[0], c, normal)
    for i in 1..<n.len:
      var branch: PNode
      if n[i].kind == nkOfBranch:
        branch = n[i] # of branch conditions are constants
        template node: untyped = n[i][^1]
        branch[^1] = if node.typ == nil: p(node, c, normal) #noreturn
                     else: processCall
      elif n[i].kind in {nkElifBranch, nkElifExpr}:
        branch = copyNode(n[i])
        branch.add p(n[i][0], c, normal) #The condition
        template node: untyped = n[i][1]
        branch.add if node.typ == nil: p(node, c, normal) #noreturn
                   else: processCall
      else:
        branch = copyNode(n[i])
        template node: untyped = n[i][0]
        branch.add if node.typ == nil: p(node, c, normal) #noreturn
                   else: processCall
      result.add branch
  of nkWhen: # This should be a "when nimvm" node.
    result = copyTree(n)
    template node: untyped = n[1][0]
    result[1][0] = processCall
  else: assert(false)

proc ensureDestruction(arg: PNode; c: var Con): PNode =
  # it can happen that we need to destroy expression contructors
  # like [], (), closures explicitly in order to not leak them.
  if arg.typ != nil and hasDestructor(arg.typ):
    # produce temp creation for (fn, env). But we need to move 'env'?
    # This was already done in the sink parameter handling logic.
    result = newNodeIT(nkStmtListExpr, arg.info, arg.typ)
    let tmp = getTemp(c, arg.typ, arg.info)
    result.add genSink(c, tmp, arg)
    result.add tmp
    c.destroys.add genDestroy(c, tmp)
  else:
    result = arg

proc isCursor(n: PNode): bool =
  case n.kind
  of nkSym:
    result = sfCursor in n.sym.flags
  of nkDotExpr:
    result = sfCursor in n[1].sym.flags
  of nkCheckedFieldExpr:
    result = isCursor(n[0])
  else:
    result = false

proc cycleCheck(n: PNode; c: var Con) =
  if c.graph.config.selectedGC != gcArc: return
  var value = n[1]
  if value.kind == nkClosure:
    value = value[1]
  if value.kind == nkNilLit: return
  let destTyp = n[0].typ.skipTypes(abstractInst)
  if destTyp.kind != tyRef and not (destTyp.kind == tyProc and destTyp.callConv == ccClosure):
    return

  var x = n[0]
  var field: PNode = nil
  while true:
    if x.kind == nkDotExpr:
      field = x[1]
      if field.kind == nkSym and sfCursor in field.sym.flags: return
      x = x[0]
    elif x.kind in {nkBracketExpr, nkCheckedFieldExpr, nkDerefExpr, nkHiddenDeref}:
      x = x[0]
    else:
      break
    if exprStructuralEquivalent(x, value, strictSymEquality = true):
      let msg =
        if field != nil:
          "'$#' creates an uncollectable ref cycle; annotate '$#' with .cursor" % [$n, $field]
        else:
          "'$#' creates an uncollectable ref cycle" % [$n]
      message(c.graph.config, n.info, warnCycleCreated, msg)
      break

proc p(n: PNode; c: var Con; mode: ProcessMode): PNode =
  if n.kind in {nkStmtList, nkStmtListExpr, nkBlockStmt, nkBlockExpr, nkIfStmt,
                nkIfExpr, nkCaseStmt, nkWhen}:
    handleNested(n): p(node, c, mode)
  elif mode == sinkArg:
    if n.containsConstSeq:
      # const sequences are not mutable and so we need to pass a copy to the
      # sink parameter (bug #11524). Note that the string implementation is
      # different and can deal with 'const string sunk into var'.
      result = passCopyToSink(n, c)
    elif n.kind in {nkBracket, nkObjConstr, nkTupleConstr, nkClosure, nkNilLit} +
         nkCallKinds + nkLiterals:
      result = p(n, c, consumed)
    elif n.kind == nkSym and isSinkParam(n.sym):
      # Sinked params can be consumed only once. We need to reset the memory
      # to disable the destructor which we have not elided
      sinkParamIsLastReadCheck(c, n)
      result = destructiveMoveVar(n, c)
    elif isAnalysableFieldAccess(n, c.owner) and isLastRead(n, c):
      # it is the last read, can be sinkArg. We need to reset the memory
      # to disable the destructor which we have not elided
      result = destructiveMoveVar(n, c)
    elif n.kind in {nkHiddenSubConv, nkHiddenStdConv, nkConv}:
      result = copyTree(n)
      if n.typ.skipTypes(abstractInst-{tyOwned}).kind != tyOwned and
          n[1].typ.skipTypes(abstractInst-{tyOwned}).kind == tyOwned:
        # allow conversions from owned to unowned via this little hack:
        let nTyp = n[1].typ
        n[1].typ = n.typ
        result[1] = p(n[1], c, sinkArg)
        result[1].typ = nTyp
      else:
        result[1] = p(n[1], c, sinkArg)
    elif n.kind in {nkObjDownConv, nkObjUpConv}:
      result = copyTree(n)
      result[0] = p(n[0], c, sinkArg)
    else:
      # copy objects that are not temporary but passed to a 'sink' parameter
      result = passCopyToSink(n, c)
  else:
    case n.kind
    of nkBracket, nkObjConstr, nkTupleConstr, nkClosure:
      # Let C(x) be the construction, 'x' the vector of arguments.
      # C(x) either owns 'x' or it doesn't.
      # If C(x) owns its data, we must consume C(x).
      # If it doesn't own the data, it's harmful to destroy it (double frees etc).
      # We have the freedom to choose whether it owns it or not so we are smart about it
      # and we say, "if passed to a sink we demand C(x) to own its data"
      # otherwise we say "C(x) is just some temporary storage, it doesn't own anything,
      # don't destroy it"
      # but if C(x) is a ref it MUST own its data since we must destroy it
      # so then we have no choice but to use 'sinkArg'.
      let isRefConstr = n.kind == nkObjConstr and n.typ.skipTypes(abstractInst).kind == tyRef
      let m = if isRefConstr: sinkArg
              elif mode == normal: normal
              else: sinkArg

      result = copyTree(n)
      for i in ord(n.kind in {nkObjConstr, nkClosure})..<n.len:
        if n[i].kind == nkExprColonExpr:
          result[i][1] = p(n[i][1], c, m)
        else:
          result[i] = p(n[i], c, m)
      if mode == normal and isRefConstr:
        result = ensureDestruction(result, c)
    of nkCallKinds:
      let parameters = n[0].typ
      let L = if parameters != nil: parameters.len else: 0
      result = shallowCopy(n)
      for i in 1..<n.len:
        if i < L and isSinkTypeForParam(parameters[i]):
          result[i] = p(n[i], c, sinkArg)
        else:
          result[i] = p(n[i], c, normal)
      if n[0].kind == nkSym and n[0].sym.magic in {mNew, mNewFinalize}:
        result[0] = copyTree(n[0])
        if c.graph.config.selectedGC in {gcHooks, gcArc, gcOrc}:
          let destroyOld = genDestroy(c, result[1])
          result = newTree(nkStmtList, destroyOld, result)
      else:
        result[0] = p(n[0], c, normal)

      if mode == normal:
        result = ensureDestruction(result, c)
    of nkDiscardStmt: # Small optimization
      result = shallowCopy(n)
      if n[0].kind != nkEmpty:
        result[0] = p(n[0], c, normal)
      else:
        result[0] = copyNode(n[0])
    of nkVarSection, nkLetSection:
      # transform; var x = y to  var x; x op y  where op is a move or copy
      result = newNodeI(nkStmtList, n.info)
      for it in n:
        var ri = it[^1]
        if it.kind == nkVarTuple and hasDestructor(ri.typ):
          let x = lowerTupleUnpacking(c.graph, it, c.owner)
          result.add p(x, c, consumed)
        elif it.kind == nkIdentDefs and hasDestructor(it[0].typ) and not isCursor(it[0]):
          for j in 0..<it.len-2:
            let v = it[j]
            if v.kind == nkSym:
              if sfCompileTime in v.sym.flags: continue
              # move the variable declaration to the top of the frame:
              c.addTopVar v
              # make sure it's destroyed at the end of the proc:
              if not isUnpackedTuple(v):
                c.destroys.add genDestroy(c, v)
            if ri.kind == nkEmpty and c.inLoop > 0:
              ri = genDefaultCall(v.typ, c, v.info)
            if ri.kind != nkEmpty:
              result.add moveOrCopy(v, ri, c)
        else: # keep the var but transform 'ri':
          var v = copyNode(n)
          var itCopy = copyNode(it)
          for j in 0..<it.len-1:
            itCopy.add it[j]
          itCopy.add p(it[^1], c, normal)
          v.add itCopy
          result.add v
    of nkAsgn, nkFastAsgn:
      if hasDestructor(n[0].typ) and n[1].kind notin {nkProcDef, nkDo, nkLambda} and
          not isCursor(n[0]):
        # rule (self-assignment-removal):
        if n[1].kind == nkSym and n[0].kind == nkSym and n[0].sym == n[1].sym:
          result = newNodeI(nkEmpty, n.info)
        else:
          if n[0].kind in {nkDotExpr, nkCheckedFieldExpr}:
            cycleCheck(n, c)
          assert n[1].kind notin {nkAsgn, nkFastAsgn}
          result = moveOrCopy(n[0], n[1], c)
      else:
        result = copyNode(n)
        result.add copyTree(n[0])
        result.add p(n[1], c, consumed)
    of nkRaiseStmt:
      if optOwnedRefs in c.graph.config.globalOptions and n[0].kind != nkEmpty:
        if n[0].kind in nkCallKinds:
          let call = p(n[0], c, normal)
          result = copyNode(n)
          result.add call
        else:
          let tmp = getTemp(c, n[0].typ, n.info)
          var m = genCopyNoCheck(c, tmp, n[0])
          m.add p(n[0], c, normal)
          result = newTree(nkStmtList, genWasMoved(tmp, c), m)
          var toDisarm = n[0]
          if toDisarm.kind == nkStmtListExpr: toDisarm = toDisarm.lastSon
          if toDisarm.kind == nkSym and toDisarm.sym.owner == c.owner:
            result.add genWasMoved(toDisarm, c)
          result.add newTree(nkRaiseStmt, tmp)
      else:
        result = copyNode(n)
        if n[0].kind != nkEmpty:
          result.add p(n[0], c, sinkArg)
        else:
          result.add copyNode(n[0])
    of nkWhileStmt:
      result = copyNode(n)
      inc c.inLoop
      result.add p(n[0], c, normal)
      result.add p(n[1], c, normal)
      dec c.inLoop
    of nkNone..nkNilLit, nkTypeSection, nkProcDef, nkConverterDef,
       nkMethodDef, nkIteratorDef, nkMacroDef, nkTemplateDef, nkLambda, nkDo,
       nkFuncDef, nkConstSection, nkConstDef, nkIncludeStmt, nkImportStmt,
       nkExportStmt, nkPragma, nkCommentStmt, nkBreakStmt, nkBreakState:
      result = n
    else:
      result = shallowCopy(n)
      for i in 0..<n.len:
        result[i] = p(n[i], c, mode)

proc moveOrCopy(dest, ri: PNode; c: var Con): PNode =
  case ri.kind
  of nkCallKinds:
    if isUnpackedTuple(dest):
      result = newTree(nkFastAsgn, dest, p(ri, c, consumed))
    else:
      result = genSink(c, dest, p(ri, c, consumed))
  of nkBracketExpr:
    if isUnpackedTuple(ri[0]):
      # unpacking of tuple: take over elements
      result = newTree(nkFastAsgn, dest, p(ri, c, consumed))
    elif isAnalysableFieldAccess(ri, c.owner) and isLastRead(ri, c) and
        not aliases(dest, ri):
      # Rule 3: `=sink`(x, z); wasMoved(z)
      var snk = genSink(c, dest, ri)
      result = newTree(nkStmtList, snk, genWasMoved(ri, c))
    else:
      result = genCopy(c, dest, ri)
      result.add p(ri, c, consumed)
  of nkBracket:
    # array constructor
    if ri.len > 0 and isDangerousSeq(ri.typ):
      result = genCopy(c, dest, ri)
      result.add p(ri, c, consumed)
    else:
      result = genSink(c, dest, p(ri, c, consumed))
  of nkObjConstr, nkTupleConstr, nkClosure, nkCharLit..nkNilLit:
    result = genSink(c, dest, p(ri, c, consumed))
  of nkSym:
    if isSinkParam(ri.sym):
      # Rule 3: `=sink`(x, z); wasMoved(z)
      sinkParamIsLastReadCheck(c, ri)
      let snk = genSink(c, dest, ri)
      result = newTree(nkStmtList, snk, genWasMoved(ri, c))
    elif ri.sym.kind != skParam and ri.sym.owner == c.owner and
        isLastRead(ri, c) and canBeMoved(c, dest.typ):
      # Rule 3: `=sink`(x, z); wasMoved(z)
      let snk = genSink(c, dest, ri)
      result = newTree(nkStmtList, snk, genWasMoved(ri, c))
    else:
      result = genCopy(c, dest, ri)
      result.add p(ri, c, consumed)
  of nkHiddenSubConv, nkHiddenStdConv, nkConv:
    when false:
      result = moveOrCopy(dest, ri[1], c)
      if not sameType(ri.typ, ri[1].typ):
        let copyRi = copyTree(ri)
        copyRi[1] = result[^1]
        result[^1] = copyRi
    else:
      result = genSink(c, dest, p(ri, c, sinkArg))
  of nkObjDownConv, nkObjUpConv:
    when false:
      result = moveOrCopy(dest, ri[0], c)
      let copyRi = copyTree(ri)
      copyRi[0] = result[^1]
      result[^1] = copyRi
    else:
      result = genSink(c, dest, p(ri, c, sinkArg))
  of nkStmtListExpr, nkBlockExpr, nkIfExpr, nkCaseStmt:
    handleNested(ri): moveOrCopy(dest, node, c)
  else:
    if isAnalysableFieldAccess(ri, c.owner) and isLastRead(ri, c) and
        canBeMoved(c, dest.typ):
      # Rule 3: `=sink`(x, z); wasMoved(z)
      let snk = genSink(c, dest, ri)
      result = newTree(nkStmtList, snk, genWasMoved(ri, c))
    else:
      result = genCopy(c, dest, ri)
      result.add p(ri, c, consumed)

proc computeUninit(c: var Con) =
  if not c.uninitComputed:
    c.uninitComputed = true
    c.uninit = initIntSet()
    var init = initIntSet()
    discard initialized(c.g, pc = 0, init, c.uninit, comesFrom = -1)

proc injectDefaultCalls(n: PNode, c: var Con) =
  case n.kind
  of nkVarSection, nkLetSection:
    for it in n:
      if it.kind == nkIdentDefs and it[^1].kind == nkEmpty:
        computeUninit(c)
        for j in 0..<it.len-2:
          let v = it[j]
          doAssert v.kind == nkSym
          if c.uninit.contains(v.sym.id):
            it[^1] = genDefaultCall(v.sym.typ, c, v.info)
            break
  of nkNone..nkNilLit, nkTypeSection, nkProcDef, nkConverterDef, nkMethodDef,
      nkIteratorDef, nkMacroDef, nkTemplateDef, nkLambda, nkDo, nkFuncDef:
    discard
  else:
    for i in 0..<n.safeLen:
      injectDefaultCalls(n[i], c)

proc extractDestroysForTemporaries(c: Con, destroys: PNode): PNode =
  result = newNodeI(nkStmtList, destroys.info)
  for i in 0..<destroys.len:
    if destroys[i][1][0].sym.kind == skTemp:
      result.add destroys[i]
      destroys[i] = c.emptyNode

proc reverseDestroys(destroys: seq[PNode]): seq[PNode] =
  for i in countdown(destroys.len - 1, 0):
    result.add destroys[i]

proc injectDestructorCalls*(g: ModuleGraph; owner: PSym; n: PNode): PNode =
  if sfGeneratedOp in owner.flags or (owner.kind == skIterator and isInlineIterator(owner.typ)):
    return n
  var c: Con
  c.owner = owner
  c.destroys = newNodeI(nkStmtList, n.info)
  c.topLevelVars = newNodeI(nkVarSection, n.info)
  c.graph = g
  c.emptyNode = newNodeI(nkEmpty, n.info)
  let cfg = constructCfg(owner, n)
  shallowCopy(c.g, cfg)
  c.jumpTargets = initIntSet()
  for i in 0..<c.g.len:
    if c.g[i].kind in {goto, fork}:
      c.jumpTargets.incl(i+c.g[i].dest)
  dbg:
    echo "\n### ", owner.name.s, ":\nCFG:"
    echoCfg(c.g)
    echo n
  if owner.kind in {skProc, skFunc, skMethod, skIterator, skConverter}:
    let params = owner.typ.n
    for i in 1..<params.len:
      let t = params[i].sym.typ
      if isSinkTypeForParam(t) and hasDestructor(t.skipTypes({tySink})):
        c.destroys.add genDestroy(c, params[i])

  #if optNimV2 in c.graph.config.globalOptions:
  #  injectDefaultCalls(n, c)
  let body = p(n, c, normal)
  result = newNodeI(nkStmtList, n.info)
  if c.topLevelVars.len > 0:
    result.add c.topLevelVars
  if c.destroys.len > 0:
    c.destroys.sons = reverseDestroys(c.destroys.sons)
    if owner.kind == skModule:
      result.add newTryFinally(body, extractDestroysForTemporaries(c, c.destroys))
      g.globalDestructors.add c.destroys
    else:
      result.add newTryFinally(body, c.destroys)
  else:
    result.add body
  dbg:
    echo ">---------transformed-to--------->"
    echo renderTree(result, {renderIds})