1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
|
#
#
# The Nim Compiler
# (c) Copyright 2017 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## Injects destructor calls into Nim code as well as
## an optimizer that optimizes copies to moves. This is implemented as an
## AST to AST transformation so that every backend benefits from it.
## See doc/destructors.rst for a spec of the implemented rewrite rules
## XXX Optimization to implement: if a local variable is only assigned
## string literals as in ``let x = conf: "foo" else: "bar"`` do not
## produce a destructor call for ``x``. The address of ``x`` must also
## not have been taken. ``x = "abc"; x.add(...)``
# Todo:
# - eliminate 'wasMoved(x); destroy(x)' pairs as a post processing step.
import
intsets, ast, astalgo, msgs, renderer, magicsys, types, idents,
strutils, options, dfa, lowerings, tables, modulegraphs, msgs,
lineinfos, parampatterns, sighashes, liftdestructors
from trees import exprStructuralEquivalent, getRoot
type
Scope = object # well we do scope-based memory management. \
# a scope is comparable to an nkStmtListExpr like
# (try: statements; dest = y(); finally: destructors(); dest)
vars: seq[PSym]
wasMoved: seq[PNode]
final: seq[PNode] # finally section
needsTry: bool
parent: ptr Scope
proc nestedScope(parent: var Scope): Scope =
Scope(vars: @[], wasMoved: @[], final: @[], needsTry: false, parent: addr(parent))
proc rememberParent(parent: var Scope; inner: Scope) {.inline.} =
parent.needsTry = parent.needsTry or inner.needsTry
proc optimize(s: var Scope) =
# optimize away simple 'wasMoved(x); destroy(x)' pairs.
#[ Unfortunately this optimization is only really safe when no exceptions
are possible, see for example:
proc main(inp: string; cond: bool) =
if cond:
try:
var s = ["hi", inp & "more"]
for i in 0..4:
echo s
consume(s)
wasMoved(s)
finally:
destroy(x)
Now assume 'echo' raises, then we shouldn't do the 'wasMoved(s)'
]#
# XXX: Investigate how to really insert 'wasMoved()' calls!
proc findCorrespondingDestroy(final: seq[PNode]; moved: PNode): int =
# remember that it's destroy(addr(x))
for i in 0 ..< final.len:
if final[i] != nil and exprStructuralEquivalent(final[i][1].skipAddr, moved, strictSymEquality = true):
return i
return -1
var removed = 0
for i in 0 ..< s.wasMoved.len:
let j = findCorrespondingDestroy(s.final, s.wasMoved[i][1])
if j >= 0:
s.wasMoved[i] = nil
s.final[j] = nil
inc removed
if removed > 0:
template filterNil(field) =
var m = newSeq[PNode](s.field.len - removed)
var mi = 0
for i in 0 ..< s.field.len:
if s.field[i] != nil:
m[mi] = s.field[i]
inc mi
assert mi == m.len
s.field = m
filterNil(wasMoved)
filterNil(final)
proc toTree(s: var Scope; ret: PNode; onlyCareAboutVars = false): PNode =
if not s.needsTry: optimize(s)
assert ret != nil
if s.vars.len == 0 and s.final.len == 0 and s.wasMoved.len == 0:
# trivial, nothing was done:
result = ret
else:
if isEmptyType(ret.typ):
result = newNodeI(nkStmtList, ret.info)
else:
result = newNodeIT(nkStmtListExpr, ret.info, ret.typ)
if s.vars.len > 0:
let varSection = newNodeI(nkVarSection, ret.info)
for tmp in s.vars:
varSection.add newTree(nkIdentDefs, newSymNode(tmp), newNodeI(nkEmpty, ret.info),
newNodeI(nkEmpty, ret.info))
result.add varSection
if onlyCareAboutVars:
result.add ret
s.vars.setLen 0
elif s.needsTry:
var finSection = newNodeI(nkStmtList, ret.info)
for m in s.wasMoved: finSection.add m
for i in countdown(s.final.high, 0): finSection.add s.final[i]
result.add newTryFinally(ret, finSection)
else:
#assert isEmptyType(ret.typ)
result.add ret
for m in s.wasMoved: result.add m
for i in countdown(s.final.high, 0): result.add s.final[i]
type
Con = object
owner: PSym
g: ControlFlowGraph
jumpTargets: IntSet
destroys, topLevelVars: PNode
graph: ModuleGraph
emptyNode: PNode
otherRead: PNode
inLoop, inSpawn: int
uninit: IntSet # set of uninit'ed vars
uninitComputed: bool
ProcessMode = enum
normal
consumed
sinkArg
const toDebug {.strdefine.} = ""
template dbg(body) =
when toDebug.len > 0:
if c.owner.name.s == toDebug or toDebug == "always":
body
proc p(n: PNode; c: var Con; s: var Scope; mode: ProcessMode): PNode
proc moveOrCopy(dest, ri: PNode; c: var Con; s: var Scope; isDecl = false): PNode
proc isLastRead(location: PNode; cfg: ControlFlowGraph; otherRead: var PNode; pc, until: int): int =
var pc = pc
while pc < cfg.len and pc < until:
case cfg[pc].kind
of def:
if instrTargets(cfg[pc].n, location) == Full:
# the path leads to a redefinition of 's' --> abandon it.
return high(int)
elif instrTargets(cfg[pc].n, location) == Partial:
# only partially writes to 's' --> can't sink 's', so this def reads 's'
otherRead = cfg[pc].n
return -1
inc pc
of use:
if instrTargets(cfg[pc].n, location) != None:
otherRead = cfg[pc].n
return -1
inc pc
of goto:
pc = pc + cfg[pc].dest
of fork:
# every branch must lead to the last read of the location:
var variantA = pc + 1
var variantB = pc + cfg[pc].dest
while variantA != variantB:
if min(variantA, variantB) < 0: return -1
if max(variantA, variantB) >= cfg.len or min(variantA, variantB) >= until:
break
if variantA < variantB:
variantA = isLastRead(location, cfg, otherRead, variantA, min(variantB, until))
else:
variantB = isLastRead(location, cfg, otherRead, variantB, min(variantA, until))
pc = min(variantA, variantB)
return pc
proc isLastRead(n: PNode; c: var Con): bool =
# first we need to search for the instruction that belongs to 'n':
var instr = -1
let m = dfa.skipConvDfa(n)
for i in 0..<c.g.len:
# This comparison is correct and MUST not be ``instrTargets``:
if c.g[i].kind == use and c.g[i].n == m:
if instr < 0:
instr = i
break
dbg: echo "starting point for ", n, " is ", instr, " ", n.kind
if instr < 0: return false
# we go through all paths beginning from 'instr+1' and need to
# ensure that we don't find another 'use X' instruction.
if instr+1 >= c.g.len: return true
c.otherRead = nil
result = isLastRead(n, c.g, c.otherRead, instr+1, int.high) >= 0
dbg: echo "ugh ", c.otherRead.isNil, " ", result
proc isFirstWrite(location: PNode; cfg: ControlFlowGraph; pc, until: int): int =
var pc = pc
while pc < until:
case cfg[pc].kind
of def:
if instrTargets(cfg[pc].n, location) != None:
# a definition of 's' before ours makes ours not the first write
return -1
inc pc
of use:
if instrTargets(cfg[pc].n, location) != None:
return -1
inc pc
of goto:
pc = pc + cfg[pc].dest
of fork:
# every branch must not contain a def/use of our location:
var variantA = pc + 1
var variantB = pc + cfg[pc].dest
while variantA != variantB:
if min(variantA, variantB) < 0: return -1
if max(variantA, variantB) > until:
break
if variantA < variantB:
variantA = isFirstWrite(location, cfg, variantA, min(variantB, until))
else:
variantB = isFirstWrite(location, cfg, variantB, min(variantA, until))
pc = min(variantA, variantB)
return pc
proc isFirstWrite(n: PNode; c: var Con): bool =
# first we need to search for the instruction that belongs to 'n':
var instr = -1
let m = dfa.skipConvDfa(n)
for i in countdown(c.g.len-1, 0): # We search backwards here to treat loops correctly
if c.g[i].kind == def and c.g[i].n == m:
if instr < 0:
instr = i
break
if instr < 0: return false
# we go through all paths going to 'instr' and need to
# ensure that we don't find another 'def/use X' instruction.
if instr == 0: return true
result = isFirstWrite(n, c.g, 0, instr) >= 0
proc initialized(code: ControlFlowGraph; pc: int,
init, uninit: var IntSet; until: int): int =
## Computes the set of definitely initialized variables across all code paths
## as an IntSet of IDs.
var pc = pc
while pc < code.len:
case code[pc].kind
of goto:
pc = pc + code[pc].dest
of fork:
var initA = initIntSet()
var initB = initIntSet()
var variantA = pc + 1
var variantB = pc + code[pc].dest
while variantA != variantB:
if max(variantA, variantB) > until:
break
if variantA < variantB:
variantA = initialized(code, variantA, initA, uninit, min(variantB, until))
else:
variantB = initialized(code, variantB, initB, uninit, min(variantA, until))
pc = min(variantA, variantB)
# we add vars if they are in both branches:
for v in initA:
if v in initB:
init.incl v
of use:
let v = code[pc].n.sym
if v.kind != skParam and v.id notin init:
# attempt to read an uninit'ed variable
uninit.incl v.id
inc pc
of def:
let v = code[pc].n.sym
init.incl v.id
inc pc
return pc
template isUnpackedTuple(n: PNode): bool =
## we move out all elements of unpacked tuples,
## hence unpacked tuples themselves don't need to be destroyed
(n.kind == nkSym and n.sym.kind == skTemp and n.sym.typ.kind == tyTuple)
proc checkForErrorPragma(c: Con; t: PType; ri: PNode; opname: string) =
var m = "'" & opname & "' is not available for type <" & typeToString(t) & ">"
if opname == "=" and ri != nil:
m.add "; requires a copy because it's not the last read of '"
m.add renderTree(ri)
m.add '\''
if c.otherRead != nil:
m.add "; another read is done here: "
m.add c.graph.config $ c.otherRead.info
elif ri.kind == nkSym and ri.sym.kind == skParam and not isSinkType(ri.sym.typ):
m.add "; try to make "
m.add renderTree(ri)
m.add " a 'sink' parameter"
m.add "; routine: "
m.add c.owner.name.s
localError(c.graph.config, ri.info, errGenerated, m)
proc makePtrType(c: Con, baseType: PType): PType =
result = newType(tyPtr, c.owner)
addSonSkipIntLit(result, baseType)
proc genOp(c: Con; op: PSym; dest: PNode): PNode =
let addrExp = newNodeIT(nkHiddenAddr, dest.info, makePtrType(c, dest.typ))
addrExp.add(dest)
result = newTree(nkCall, newSymNode(op), addrExp)
proc genOp(c: Con; t: PType; kind: TTypeAttachedOp; dest, ri: PNode): PNode =
var op = t.attachedOps[kind]
if op == nil or op.ast[genericParamsPos].kind != nkEmpty:
# give up and find the canonical type instead:
let h = sighashes.hashType(t, {CoType, CoConsiderOwned, CoDistinct})
let canon = c.graph.canonTypes.getOrDefault(h)
if canon != nil:
op = canon.attachedOps[kind]
if op == nil:
#echo dest.typ.id
globalError(c.graph.config, dest.info, "internal error: '" & AttachedOpToStr[kind] &
"' operator not found for type " & typeToString(t))
elif op.ast[genericParamsPos].kind != nkEmpty:
globalError(c.graph.config, dest.info, "internal error: '" & AttachedOpToStr[kind] &
"' operator is generic")
dbg:
if kind == attachedDestructor:
echo "destructor is ", op.id, " ", op.ast
if sfError in op.flags: checkForErrorPragma(c, t, ri, AttachedOpToStr[kind])
genOp(c, op, dest)
proc genDestroy(c: Con; dest: PNode): PNode =
let t = dest.typ.skipTypes({tyGenericInst, tyAlias, tySink})
result = genOp(c, t, attachedDestructor, dest, nil)
proc canBeMoved(c: Con; t: PType): bool {.inline.} =
let t = t.skipTypes({tyGenericInst, tyAlias, tySink})
if optOwnedRefs in c.graph.config.globalOptions:
result = t.kind != tyRef and t.attachedOps[attachedSink] != nil
else:
result = t.attachedOps[attachedSink] != nil
proc isNoInit(dest: PNode): bool {.inline.} =
result = dest.kind == nkSym and sfNoInit in dest.sym.flags
proc genSink(c: var Con; s: var Scope; dest, ri: PNode, isDecl = false): PNode =
if isUnpackedTuple(dest) or (isDecl and c.inLoop <= 0) or
(isAnalysableFieldAccess(dest, c.owner) and isFirstWrite(dest, c)) or
isNoInit(dest):
# optimize sink call into a bitwise memcopy
result = newTree(nkFastAsgn, dest, ri)
else:
let t = dest.typ.skipTypes({tyGenericInst, tyAlias, tySink})
if t.attachedOps[attachedSink] != nil:
result = genOp(c, t, attachedSink, dest, ri)
result.add ri
else:
# the default is to use combination of `=destroy(dest)` and
# and copyMem(dest, source). This is efficient.
let snk = newTree(nkFastAsgn, dest, ri)
result = newTree(nkStmtList, genDestroy(c, dest), snk)
proc genCopyNoCheck(c: Con; dest, ri: PNode): PNode =
let t = dest.typ.skipTypes({tyGenericInst, tyAlias, tySink})
result = genOp(c, t, attachedAsgn, dest, ri)
proc genCopy(c: var Con; dest, ri: PNode): PNode =
let t = dest.typ
if tfHasOwned in t.flags and ri.kind != nkNilLit:
# try to improve the error message here:
if c.otherRead == nil: discard isLastRead(ri, c)
checkForErrorPragma(c, t, ri, "=")
result = genCopyNoCheck(c, dest, ri)
proc addTopVar(c: var Con; s: var Scope; v: PNode) =
s.vars.add v.sym
proc getTemp(c: var Con; s: var Scope; typ: PType; info: TLineInfo): PNode =
let sym = newSym(skTemp, getIdent(c.graph.cache, ":tmpD"), c.owner, info)
sym.typ = typ
s.vars.add(sym)
result = newSymNode(sym)
proc genDiscriminantAsgn(c: var Con; s: var Scope; n: PNode): PNode =
# discriminator is ordinal value that doesn't need sink destroy
# but fields within active case branch might need destruction
# tmp to support self assignments
let tmp = getTemp(c, s, n[1].typ, n.info)
result = newTree(nkStmtList)
result.add newTree(nkFastAsgn, tmp, p(n[1], c, s, consumed))
result.add p(n[0], c, s, normal)
let le = p(n[0], c, s, normal)
let leDotExpr = if le.kind == nkCheckedFieldExpr: le[0] else: le
let objType = leDotExpr[0].typ
if hasDestructor(objType):
if objType.attachedOps[attachedDestructor] != nil and
sfOverriden in objType.attachedOps[attachedDestructor].flags:
localError(c.graph.config, n.info, errGenerated, """Assignment to discriminant for objects with user defined destructor is not supported, object must have default destructor.
It is best to factor out piece of object that needs custom destructor into separate object or not use discriminator assignment""")
result.add newTree(nkFastAsgn, le, tmp)
return
# generate: if le != tmp: `=destroy`(le)
let branchDestructor = produceDestructorForDiscriminator(c.graph, objType, leDotExpr[1].sym, n.info)
let cond = newNodeIT(nkInfix, n.info, getSysType(c.graph, unknownLineInfo, tyBool))
cond.add newSymNode(getMagicEqSymForType(c.graph, le.typ, n.info))
cond.add le
cond.add tmp
let notExpr = newNodeIT(nkPrefix, n.info, getSysType(c.graph, unknownLineInfo, tyBool))
notExpr.add newSymNode(createMagic(c.graph, "not", mNot))
notExpr.add cond
result.add newTree(nkIfStmt, newTree(nkElifBranch, notExpr, genOp(c, branchDestructor, le)))
result.add newTree(nkFastAsgn, le, tmp)
proc genWasMoved(n: PNode; c: var Con): PNode =
result = newNodeI(nkCall, n.info)
result.add(newSymNode(createMagic(c.graph, "wasMoved", mWasMoved)))
result.add copyTree(n) #mWasMoved does not take the address
#if n.kind != nkSym:
# message(c.graph.config, n.info, warnUser, "wasMoved(" & $n & ")")
proc genDefaultCall(t: PType; c: Con; info: TLineInfo): PNode =
result = newNodeI(nkCall, info)
result.add(newSymNode(createMagic(c.graph, "default", mDefault)))
result.typ = t
proc destructiveMoveVar(n: PNode; c: var Con; s: var Scope): PNode =
# generate: (let tmp = v; reset(v); tmp)
if not hasDestructor(n.typ):
result = copyTree(n)
else:
result = newNodeIT(nkStmtListExpr, n.info, n.typ)
var temp = newSym(skLet, getIdent(c.graph.cache, "blitTmp"), c.owner, n.info)
temp.typ = n.typ
var v = newNodeI(nkLetSection, n.info)
let tempAsNode = newSymNode(temp)
var vpart = newNodeI(nkIdentDefs, tempAsNode.info, 3)
vpart[0] = tempAsNode
vpart[1] = c.emptyNode
vpart[2] = n
v.add(vpart)
result.add v
let wasMovedCall = genWasMoved(skipConv(n), c)
result.add wasMovedCall
result.add tempAsNode
proc isCapturedVar(n: PNode): bool =
let root = getRoot(n)
if root != nil: result = root.name.s[0] == ':'
proc passCopyToSink(n: PNode; c: var Con; s: var Scope): PNode =
result = newNodeIT(nkStmtListExpr, n.info, n.typ)
let tmp = getTemp(c, s, n.typ, n.info)
if hasDestructor(n.typ):
result.add genWasMoved(tmp, c)
var m = genCopy(c, tmp, n)
m.add p(n, c, s, normal)
result.add m
if isLValue(n) and not isCapturedVar(n) and n.typ.skipTypes(abstractInst).kind != tyRef and c.inSpawn == 0:
message(c.graph.config, n.info, hintPerformance,
("passing '$1' to a sink parameter introduces an implicit copy; " &
"if possible, rearrange your program's control flow to prevent it") % $n)
else:
if c.graph.config.selectedGC in {gcArc, gcOrc}:
assert(not containsGarbageCollectedRef(n.typ))
result.add newTree(nkAsgn, tmp, p(n, c, s, normal))
# Since we know somebody will take over the produced copy, there is
# no need to destroy it.
result.add tmp
proc isDangerousSeq(t: PType): bool {.inline.} =
let t = t.skipTypes(abstractInst)
result = t.kind == tySequence and tfHasOwned notin t[0].flags
proc containsConstSeq(n: PNode): bool =
if n.kind == nkBracket and n.len > 0 and n.typ != nil and isDangerousSeq(n.typ):
return true
result = false
case n.kind
of nkExprEqExpr, nkExprColonExpr, nkHiddenStdConv, nkHiddenSubConv:
result = containsConstSeq(n[1])
of nkObjConstr, nkClosure:
for i in 1..<n.len:
if containsConstSeq(n[i]): return true
of nkCurly, nkBracket, nkPar, nkTupleConstr:
for son in n:
if containsConstSeq(son): return true
else: discard
proc ensureDestruction(arg: PNode; c: var Con; s: var Scope): PNode =
# it can happen that we need to destroy expression contructors
# like [], (), closures explicitly in order to not leak them.
if arg.typ != nil and hasDestructor(arg.typ):
# produce temp creation for (fn, env). But we need to move 'env'?
# This was already done in the sink parameter handling logic.
result = newNodeIT(nkStmtListExpr, arg.info, arg.typ)
if s.parent != nil:
let tmp = getTemp(c, s.parent[], arg.typ, arg.info)
result.add genSink(c, s, tmp, arg, isDecl = true)
result.add tmp
s.parent[].final.add genDestroy(c, tmp)
else:
let tmp = getTemp(c, s, arg.typ, arg.info)
result.add genSink(c, s, tmp, arg, isDecl = true)
result.add tmp
s.final.add genDestroy(c, tmp)
else:
result = arg
proc isCursor(n: PNode): bool =
case n.kind
of nkSym:
result = sfCursor in n.sym.flags
of nkDotExpr:
result = sfCursor in n[1].sym.flags
of nkCheckedFieldExpr:
result = isCursor(n[0])
else:
result = false
proc cycleCheck(n: PNode; c: var Con) =
if c.graph.config.selectedGC != gcArc: return
var value = n[1]
if value.kind == nkClosure:
value = value[1]
if value.kind == nkNilLit: return
let destTyp = n[0].typ.skipTypes(abstractInst)
if destTyp.kind != tyRef and not (destTyp.kind == tyProc and destTyp.callConv == ccClosure):
return
var x = n[0]
var field: PNode = nil
while true:
if x.kind == nkDotExpr:
field = x[1]
if field.kind == nkSym and sfCursor in field.sym.flags: return
x = x[0]
elif x.kind in {nkBracketExpr, nkCheckedFieldExpr, nkDerefExpr, nkHiddenDeref}:
x = x[0]
else:
break
if exprStructuralEquivalent(x, value, strictSymEquality = true):
let msg =
if field != nil:
"'$#' creates an uncollectable ref cycle; annotate '$#' with .cursor" % [$n, $field]
else:
"'$#' creates an uncollectable ref cycle" % [$n]
message(c.graph.config, n.info, warnCycleCreated, msg)
break
proc pVarTopLevel(v: PNode; c: var Con; s: var Scope; ri, res: PNode) =
# move the variable declaration to the top of the frame:
c.addTopVar s, v
if isUnpackedTuple(v):
if c.inLoop > 0:
# unpacked tuple needs reset at every loop iteration
res.add newTree(nkFastAsgn, v, genDefaultCall(v.typ, c, v.info))
elif sfThread notin v.sym.flags:
# do not destroy thread vars for now at all for consistency.
if sfGlobal in v.sym.flags and s.parent == nil:
c.graph.globalDestructors.add genDestroy(c, v)
else:
s.final.add genDestroy(c, v)
if ri.kind == nkEmpty and c.inLoop > 0:
res.add moveOrCopy(v, genDefaultCall(v.typ, c, v.info), c, s, isDecl = true)
elif ri.kind != nkEmpty:
res.add moveOrCopy(v, ri, c, s, isDecl = true)
template handleNestedTempl(n: untyped, processCall: untyped) =
template maybeVoid(child, s): untyped =
if isEmptyType(child.typ): p(child, c, s, normal)
else: processCall(child, s)
case n.kind
of nkStmtList, nkStmtListExpr:
# a statement list does not open a new scope
if n.len == 0: return n
result = copyNode(n)
for i in 0..<n.len-1:
result.add p(n[i], c, s, normal)
result.add maybeVoid(n[^1], s)
of nkCaseStmt:
result = copyNode(n)
result.add p(n[0], c, s, normal)
for i in 1..<n.len:
let it = n[i]
assert it.kind in {nkOfBranch, nkElse}
var branch = shallowCopy(it)
for j in 0 ..< it.len-1:
branch[j] = copyTree(it[j])
var ofScope = nestedScope(s)
let ofResult = maybeVoid(it[^1], ofScope)
branch[^1] = toTree(ofScope, ofResult)
result.add branch
rememberParent(s, ofScope)
of nkWhileStmt:
inc c.inLoop
result = copyNode(n)
result.add p(n[0], c, s, normal)
var bodyScope = nestedScope(s)
let bodyResult = p(n[1], c, bodyScope, normal)
result.add toTree(bodyScope, bodyResult)
rememberParent(s, bodyScope)
dec c.inLoop
of nkBlockStmt, nkBlockExpr:
result = copyNode(n)
result.add n[0]
var bodyScope = nestedScope(s)
let bodyResult = processCall(n[1], bodyScope)
result.add toTree(bodyScope, bodyResult)
rememberParent(s, bodyScope)
of nkIfStmt, nkIfExpr:
result = copyNode(n)
for i in 0..<n.len:
let it = n[i]
var branch = shallowCopy(it)
var branchScope = nestedScope(s)
branchScope.parent = nil
if it.kind in {nkElifBranch, nkElifExpr}:
let cond = p(it[0], c, branchScope, normal)
branch[0] = toTree(branchScope, cond, onlyCareAboutVars = true)
branchScope.parent = addr(s)
var branchResult = processCall(it[^1], branchScope)
branch[^1] = toTree(branchScope, branchResult)
result.add branch
rememberParent(s, branchScope)
of nkTryStmt:
result = copyNode(n)
var tryScope = nestedScope(s)
var tryResult = maybeVoid(n[0], tryScope)
result.add toTree(tryScope, tryResult)
rememberParent(s, tryScope)
for i in 1..<n.len:
let it = n[i]
var branch = copyTree(it)
var branchScope = nestedScope(s)
var branchResult = if it.kind == nkFinally: p(it[^1], c, branchScope, normal)
else: processCall(it[^1], branchScope)
branch[^1] = toTree(branchScope, branchResult)
result.add branch
rememberParent(s, branchScope)
of nkWhen: # This should be a "when nimvm" node.
result = copyTree(n)
result[1][0] = processCall(n[1][0], s)
else: assert(false)
proc pRaiseStmt(n: PNode, c: var Con; s: var Scope): PNode =
if optOwnedRefs in c.graph.config.globalOptions and n[0].kind != nkEmpty:
if n[0].kind in nkCallKinds:
let call = p(n[0], c, s, normal)
result = copyNode(n)
result.add call
else:
let tmp = getTemp(c, s, n[0].typ, n.info)
var m = genCopyNoCheck(c, tmp, n[0])
m.add p(n[0], c, s, normal)
result = newTree(nkStmtList, genWasMoved(tmp, c), m)
var toDisarm = n[0]
if toDisarm.kind == nkStmtListExpr: toDisarm = toDisarm.lastSon
if toDisarm.kind == nkSym and toDisarm.sym.owner == c.owner:
result.add genWasMoved(toDisarm, c)
result.add newTree(nkRaiseStmt, tmp)
else:
result = copyNode(n)
if n[0].kind != nkEmpty:
result.add p(n[0], c, s, sinkArg)
else:
result.add copyNode(n[0])
s.needsTry = true
proc p(n: PNode; c: var Con; s: var Scope; mode: ProcessMode): PNode =
if n.kind in {nkStmtList, nkStmtListExpr, nkBlockStmt, nkBlockExpr, nkIfStmt,
nkIfExpr, nkCaseStmt, nkWhen, nkWhileStmt}:
template process(child, s): untyped = p(child, c, s, mode)
handleNestedTempl(n, process)
elif mode == sinkArg:
if n.containsConstSeq:
# const sequences are not mutable and so we need to pass a copy to the
# sink parameter (bug #11524). Note that the string implementation is
# different and can deal with 'const string sunk into var'.
result = passCopyToSink(n, c, s)
elif n.kind in {nkBracket, nkObjConstr, nkTupleConstr, nkClosure, nkNilLit} +
nkCallKinds + nkLiterals:
result = p(n, c, s, consumed)
elif n.kind == nkSym and isSinkParam(n.sym) and isLastRead(n, c):
# Sinked params can be consumed only once. We need to reset the memory
# to disable the destructor which we have not elided
result = destructiveMoveVar(n, c, s)
elif isAnalysableFieldAccess(n, c.owner) and isLastRead(n, c):
# it is the last read, can be sinkArg. We need to reset the memory
# to disable the destructor which we have not elided
result = destructiveMoveVar(n, c, s)
elif n.kind in {nkHiddenSubConv, nkHiddenStdConv, nkConv}:
result = copyTree(n)
if n.typ.skipTypes(abstractInst-{tyOwned}).kind != tyOwned and
n[1].typ.skipTypes(abstractInst-{tyOwned}).kind == tyOwned:
# allow conversions from owned to unowned via this little hack:
let nTyp = n[1].typ
n[1].typ = n.typ
result[1] = p(n[1], c, s, sinkArg)
result[1].typ = nTyp
else:
result[1] = p(n[1], c, s, sinkArg)
elif n.kind in {nkObjDownConv, nkObjUpConv}:
result = copyTree(n)
result[0] = p(n[0], c, s, sinkArg)
elif n.typ == nil:
# 'raise X' can be part of a 'case' expression. Deal with it here:
result = p(n, c, s, normal)
else:
# copy objects that are not temporary but passed to a 'sink' parameter
result = passCopyToSink(n, c, s)
else:
case n.kind
of nkBracket, nkObjConstr, nkTupleConstr, nkClosure:
# Let C(x) be the construction, 'x' the vector of arguments.
# C(x) either owns 'x' or it doesn't.
# If C(x) owns its data, we must consume C(x).
# If it doesn't own the data, it's harmful to destroy it (double frees etc).
# We have the freedom to choose whether it owns it or not so we are smart about it
# and we say, "if passed to a sink we demand C(x) to own its data"
# otherwise we say "C(x) is just some temporary storage, it doesn't own anything,
# don't destroy it"
# but if C(x) is a ref it MUST own its data since we must destroy it
# so then we have no choice but to use 'sinkArg'.
let isRefConstr = n.kind == nkObjConstr and n.typ.skipTypes(abstractInst).kind == tyRef
let m = if isRefConstr: sinkArg
elif mode == normal: normal
else: sinkArg
result = copyTree(n)
for i in ord(n.kind in {nkObjConstr, nkClosure})..<n.len:
if n[i].kind == nkExprColonExpr:
result[i][1] = p(n[i][1], c, s, m)
else:
result[i] = p(n[i], c, s, m)
if mode == normal and isRefConstr:
result = ensureDestruction(result, c, s)
of nkCallKinds:
let inSpawn = c.inSpawn
if n[0].kind == nkSym and n[0].sym.magic == mSpawn:
c.inSpawn.inc
elif c.inSpawn > 0:
c.inSpawn.dec
let parameters = n[0].typ
let L = if parameters != nil: parameters.len else: 0
when false:
var isDangerous = false
if n[0].kind == nkSym and n[0].sym.magic in {mOr, mAnd}:
inc c.inDangerousBranch
isDangerous = true
result = shallowCopy(n)
for i in 1..<n.len:
if i < L and (isSinkTypeForParam(parameters[i]) or inSpawn > 0):
result[i] = p(n[i], c, s, sinkArg)
else:
result[i] = p(n[i], c, s, normal)
when false:
if isDangerous:
dec c.inDangerousBranch
if n[0].kind == nkSym and n[0].sym.magic in {mNew, mNewFinalize}:
result[0] = copyTree(n[0])
if c.graph.config.selectedGC in {gcHooks, gcArc, gcOrc}:
let destroyOld = genDestroy(c, result[1])
result = newTree(nkStmtList, destroyOld, result)
else:
result[0] = p(n[0], c, s, normal)
if canRaise(n[0]): s.needsTry = true
if mode == normal:
result = ensureDestruction(result, c, s)
of nkDiscardStmt: # Small optimization
result = shallowCopy(n)
if n[0].kind != nkEmpty:
result[0] = p(n[0], c, s, normal)
else:
result[0] = copyNode(n[0])
of nkVarSection, nkLetSection:
# transform; var x = y to var x; x op y where op is a move or copy
result = newNodeI(nkStmtList, n.info)
for it in n:
var ri = it[^1]
if it.kind == nkVarTuple and hasDestructor(ri.typ):
let x = lowerTupleUnpacking(c.graph, it, c.owner)
result.add p(x, c, s, consumed)
elif it.kind == nkIdentDefs and hasDestructor(it[0].typ) and not isCursor(it[0]):
for j in 0..<it.len-2:
let v = it[j]
if v.kind == nkSym:
if sfCompileTime in v.sym.flags: continue
pVarTopLevel(v, c, s, ri, result)
else:
if ri.kind == nkEmpty and c.inLoop > 0:
ri = genDefaultCall(v.typ, c, v.info)
if ri.kind != nkEmpty:
result.add moveOrCopy(v, ri, c, s, isDecl = true)
else: # keep the var but transform 'ri':
var v = copyNode(n)
var itCopy = copyNode(it)
for j in 0..<it.len-1:
itCopy.add it[j]
itCopy.add p(it[^1], c, s, normal)
v.add itCopy
result.add v
of nkAsgn, nkFastAsgn:
if hasDestructor(n[0].typ) and n[1].kind notin {nkProcDef, nkDo, nkLambda} and
not isCursor(n[0]):
# rule (self-assignment-removal):
if n[1].kind == nkSym and n[0].kind == nkSym and n[0].sym == n[1].sym:
result = newNodeI(nkEmpty, n.info)
else:
if n[0].kind in {nkDotExpr, nkCheckedFieldExpr}:
cycleCheck(n, c)
assert n[1].kind notin {nkAsgn, nkFastAsgn}
result = moveOrCopy(p(n[0], c, s, mode), n[1], c, s)
elif isDiscriminantField(n[0]):
result = genDiscriminantAsgn(c, s, n)
else:
result = copyNode(n)
result.add p(n[0], c, s, mode)
result.add p(n[1], c, s, consumed)
of nkRaiseStmt:
result = pRaiseStmt(n, c, s)
of nkWhileStmt:
internalError(c.graph.config, n.info, "nkWhileStmt should have been handled earlier")
result = n
of nkNone..nkNilLit, nkTypeSection, nkProcDef, nkConverterDef,
nkMethodDef, nkIteratorDef, nkMacroDef, nkTemplateDef, nkLambda, nkDo,
nkFuncDef, nkConstSection, nkConstDef, nkIncludeStmt, nkImportStmt,
nkExportStmt, nkPragma, nkCommentStmt, nkBreakState:
result = n
of nkBreakStmt:
s.needsTry = true
result = n
of nkReturnStmt:
result = shallowCopy(n)
for i in 0..<n.len:
result[i] = p(n[i], c, s, mode)
s.needsTry = true
of nkCast:
result = shallowCopy(n)
result[0] = n[0]
result[1] = p(n[1], c, s, mode)
of nkCheckedFieldExpr:
result = shallowCopy(n)
result[0] = p(n[0], c, s, mode)
for i in 1..<n.len:
result[i] = n[i]
else:
result = shallowCopy(n)
for i in 0..<n.len:
result[i] = p(n[i], c, s, mode)
proc moveOrCopy(dest, ri: PNode; c: var Con; s: var Scope, isDecl = false): PNode =
case ri.kind
of nkCallKinds:
result = genSink(c, s, dest, p(ri, c, s, consumed), isDecl)
of nkBracketExpr:
if isUnpackedTuple(ri[0]):
# unpacking of tuple: take over the elements
result = genSink(c, s, dest, p(ri, c, s, consumed), isDecl)
elif isAnalysableFieldAccess(ri, c.owner) and isLastRead(ri, c) and
not aliases(dest, ri):
# Rule 3: `=sink`(x, z); wasMoved(z)
var snk = genSink(c, s, dest, ri, isDecl)
result = newTree(nkStmtList, snk, genWasMoved(ri, c))
else:
result = genCopy(c, dest, ri)
result.add p(ri, c, s, consumed)
of nkBracket:
# array constructor
if ri.len > 0 and isDangerousSeq(ri.typ):
result = genCopy(c, dest, ri)
result.add p(ri, c, s, consumed)
else:
result = genSink(c, s, dest, p(ri, c, s, consumed), isDecl)
of nkObjConstr, nkTupleConstr, nkClosure, nkCharLit..nkNilLit:
result = genSink(c, s, dest, p(ri, c, s, consumed), isDecl)
of nkSym:
if isSinkParam(ri.sym) and isLastRead(ri, c):
# Rule 3: `=sink`(x, z); wasMoved(z)
let snk = genSink(c, s, dest, ri, isDecl)
result = newTree(nkStmtList, snk, genWasMoved(ri, c))
elif ri.sym.kind != skParam and ri.sym.owner == c.owner and
isLastRead(ri, c) and canBeMoved(c, dest.typ):
# Rule 3: `=sink`(x, z); wasMoved(z)
let snk = genSink(c, s, dest, ri, isDecl)
result = newTree(nkStmtList, snk, genWasMoved(ri, c))
else:
result = genCopy(c, dest, ri)
result.add p(ri, c, s, consumed)
of nkHiddenSubConv, nkHiddenStdConv, nkConv, nkObjDownConv, nkObjUpConv:
result = genSink(c, s, dest, p(ri, c, s, sinkArg), isDecl)
of nkStmtListExpr, nkBlockExpr, nkIfExpr, nkCaseStmt:
template process(child, s): untyped = moveOrCopy(dest, child, c, s, isDecl)
handleNestedTempl(ri, process)
of nkRaiseStmt:
result = pRaiseStmt(ri, c, s)
else:
if isAnalysableFieldAccess(ri, c.owner) and isLastRead(ri, c) and
canBeMoved(c, dest.typ):
# Rule 3: `=sink`(x, z); wasMoved(z)
let snk = genSink(c, s, dest, ri, isDecl)
result = newTree(nkStmtList, snk, genWasMoved(ri, c))
else:
result = genCopy(c, dest, ri)
result.add p(ri, c, s, consumed)
proc computeUninit(c: var Con) =
if not c.uninitComputed:
c.uninitComputed = true
c.uninit = initIntSet()
var init = initIntSet()
discard initialized(c.g, pc = 0, init, c.uninit, int.high)
proc injectDefaultCalls(n: PNode, c: var Con) =
case n.kind
of nkVarSection, nkLetSection:
for it in n:
if it.kind == nkIdentDefs and it[^1].kind == nkEmpty:
computeUninit(c)
for j in 0..<it.len-2:
let v = it[j]
doAssert v.kind == nkSym
if c.uninit.contains(v.sym.id):
it[^1] = genDefaultCall(v.sym.typ, c, v.info)
break
of nkNone..nkNilLit, nkTypeSection, nkProcDef, nkConverterDef, nkMethodDef,
nkIteratorDef, nkMacroDef, nkTemplateDef, nkLambda, nkDo, nkFuncDef:
discard
else:
for i in 0..<n.safeLen:
injectDefaultCalls(n[i], c)
proc extractDestroysForTemporaries(c: Con, destroys: PNode): PNode =
result = newNodeI(nkStmtList, destroys.info)
for i in 0..<destroys.len:
if destroys[i][1][0].sym.kind in {skTemp, skForVar}:
result.add destroys[i]
destroys[i] = c.emptyNode
proc injectDestructorCalls*(g: ModuleGraph; owner: PSym; n: PNode): PNode =
if sfGeneratedOp in owner.flags or (owner.kind == skIterator and isInlineIterator(owner.typ)):
return n
var c: Con
c.owner = owner
c.destroys = newNodeI(nkStmtList, n.info)
c.topLevelVars = newNodeI(nkVarSection, n.info)
c.graph = g
c.emptyNode = newNodeI(nkEmpty, n.info)
let cfg = constructCfg(owner, n)
shallowCopy(c.g, cfg)
c.jumpTargets = initIntSet()
for i in 0..<c.g.len:
if c.g[i].kind in {goto, fork}:
c.jumpTargets.incl(i+c.g[i].dest)
dbg:
echo "\n### ", owner.name.s, ":\nCFG:"
echoCfg(c.g)
echo n
var scope: Scope
let body = p(n, c, scope, normal)
if owner.kind in {skProc, skFunc, skMethod, skIterator, skConverter}:
let params = owner.typ.n
for i in 1..<params.len:
let t = params[i].sym.typ
if isSinkTypeForParam(t) and hasDestructor(t.skipTypes({tySink})):
scope.final.add genDestroy(c, params[i])
#if optNimV2 in c.graph.config.globalOptions:
# injectDefaultCalls(n, c)
result = toTree(scope, body)
dbg:
echo ">---------transformed-to--------->"
echo renderTree(result, {renderIds})
|