summary refs log tree commit diff stats
path: root/compiler/injectdestructors.nim
blob: 6f1da37fbd8a397b1b1ca7e758970ac9d49751cc (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
#
#
#           The Nim Compiler
#        (c) Copyright 2017 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## Injects destructor calls into Nim code as well as
## an optimizer that optimizes copies to moves. This is implemented as an
## AST to AST transformation so that every backend benefits from it.

## Rules for destructor injections:
##
## foo(bar(X(), Y()))
## X and Y get destroyed after bar completes:
##
## foo( (tmpX = X(); tmpY = Y(); tmpBar = bar(tmpX, tmpY);
##       destroy(tmpX); destroy(tmpY);
##       tmpBar))
## destroy(tmpBar)
##
## var x = f()
## body
##
## is the same as:
##
##  var x;
##  try:
##    move(x, f())
##  finally:
##    destroy(x)
##
## But this really just an optimization that tries to avoid to
## introduce too many temporaries, the 'destroy' is caused by
## the 'f()' call. No! That is not true for 'result = f()'!
##
## x = y where y is read only once
## is the same as:  move(x, y)
##
## Actually the more general rule is: The *last* read of ``y``
## can become a move if ``y`` is the result of a construction.
##
## We also need to keep in mind here that the number of reads is
## control flow dependent:
## let x = foo()
## while true:
##   y = x  # only one read, but the 2nd iteration will fail!
## This also affects recursions! Only usages that do not cross
## a loop boundary (scope) and are not used in function calls
## are safe.
##
##
## x = f() is the same as:  move(x, f())
##
## x = y
## is the same as:  copy(x, y)
##
## Reassignment works under this scheme:
## var x = f()
## x = y
##
## is the same as:
##
##  var x;
##  try:
##    move(x, f())
##    copy(x, y)
##  finally:
##    destroy(x)
##
##  result = f()  must not destroy 'result'!
##
## The produced temporaries clutter up the code and might lead to
## inefficiencies. A better strategy is to collect all the temporaries
## in a single object that we put into a single try-finally that
## surrounds the proc body. This means the code stays quite efficient
## when compiled to C. In fact, we do the same for variables, so
## destructors are called when the proc returns, not at scope exit!
## This makes certains idioms easier to support. (Taking the slice
## of a temporary object.)
##
## foo(bar(X(), Y()))
## X and Y get destroyed after bar completes:
##
## var tmp: object
## foo( (move tmp.x, X(); move tmp.y, Y(); tmp.bar = bar(tmpX, tmpY);
##       tmp.bar))
## destroy(tmp.bar)
## destroy(tmp.x); destroy(tmp.y)
##

#[
From https://github.com/nim-lang/Nim/wiki/Destructors

Rule      Pattern                 Transformed into
----      -------                 ----------------
1.1	      var x: T; stmts	        var x: T; try stmts
                                  finally: `=destroy`(x)
2         x = f()                 `=sink`(x, f())
3         x = lastReadOf z        `=sink`(x, z); wasMoved(z)
3.2       x = path z; body        ``x = bitwiseCopy(path z);``
                                  do not emit `=destroy(x)`. Note: body
                                  must not mutate ``z`` nor ``x``. All
                                  assignments to ``x`` must be of the form
                                  ``path z`` but the ``z`` can differ.
                                  Neither ``z`` nor ``x`` can have the
                                  flag ``sfAddrTaken`` to ensure no other
                                  aliasing is going on.
4.1       y = sinkParam           `=sink`(y, sinkParam)
4.2       x = y                   `=`(x, y) # a copy
5.1       f_sink(g())             f_sink(g())
5.2       f_sink(y)               f_sink(copy y); # copy unless we can see it's the last read
5.3       f_sink(move y)          f_sink(y); wasMoved(y) # explicit moves empties 'y'
5.4       f_noSink(g())           var tmp = bitwiseCopy(g()); f(tmp); `=destroy`(tmp)

Rule 3.2 describes a "cursor" variable, a variable that is only used as a
view into some data structure. See ``compiler/cursors.nim`` for details.

Note: In order to avoid the very common combination ``reset(x); =sink(x, y)`` for
variable definitions we must turn "the first sink/assignment" operation into a
copyMem. This is harder than it looks:

  while true:
    try:
      if cond: break # problem if we run destroy(x) here :-/
      var x = f()
    finally:
      destroy(x)

And the C++ optimizers don't sweat to optimize it for us, so we don't have
to do it.
]#

import
  intsets, ast, msgs, renderer, magicsys, types, idents,
  strutils, options, dfa, lowerings, tables, modulegraphs, msgs,
  lineinfos, parampatterns, sighashes

const
  InterestingSyms = {skVar, skResult, skLet, skForVar, skTemp}

type
  Con = object
    owner: PSym
    g: ControlFlowGraph
    jumpTargets: IntSet
    destroys, topLevelVars: PNode
    graph: ModuleGraph
    emptyNode: PNode
    otherRead: PNode
    inLoop: int
    uninit: IntSet # set of uninit'ed vars
    uninitComputed: bool

const toDebug = "" # "server" # "serverNimAsyncContinue"

template dbg(body) =
  when toDebug.len > 0:
    if c.owner.name.s == toDebug or toDebug == "always":
      body

proc isLastRead(location: PNode; c: var Con; pc, comesFrom: int): int =
  var pc = pc
  while pc < c.g.len:
    case c.g[pc].kind
    of def:
      if defInstrTargets(c.g[pc], location):
        # the path lead to a redefinition of 's' --> abandon it.
        return high(int)
      inc pc
    of use:
      if useInstrTargets(c.g[pc], location):
        c.otherRead = c.g[pc].n
        return -1
      inc pc
    of goto:
      pc = pc + c.g[pc].dest
    of fork:
      # every branch must lead to the last read of the location:
      let variantA = isLastRead(location, c, pc+1, pc)
      if variantA < 0: return -1
      var variantB = isLastRead(location, c, pc + c.g[pc].dest, pc)
      if variantB < 0: return -1
      elif variantB == high(int):
        variantB = variantA
      pc = variantB
    of InstrKind.join:
      let dest = pc + c.g[pc].dest
      if dest == comesFrom: return pc + 1
      inc pc
  return pc

proc isLastRead(n: PNode; c: var Con): bool =
  # first we need to search for the instruction that belongs to 'n':
  c.otherRead = nil
  var instr = -1
  let m = dfa.skipConvDfa(n)

  for i in 0..<c.g.len:
    # This comparison is correct and MUST not be ``instrTargets``:
    if c.g[i].kind == use and c.g[i].n == m:
      if instr < 0:
        instr = i
        break

  dbg:
    echo "starting point for ", n, " is ", instr, " ", n.kind

  if instr < 0: return false
  # we go through all paths beginning from 'instr+1' and need to
  # ensure that we don't find another 'use X' instruction.
  if instr+1 >= c.g.len: return true

  result = isLastRead(n, c, instr+1, -1) >= 0
  dbg:
    echo "ugh ", c.otherRead.isNil, " ", result

  when false:
    let s = n.sym
    var pcs: seq[int] = @[instr+1]
    var takenGotos: IntSet
    var takenForks = initIntSet()
    while pcs.len > 0:
      var pc = pcs.pop

      takenGotos = initIntSet()
      while pc < c.g.len:
        case c.g[pc].kind
        of def:
          if c.g[pc].sym == s:
            # the path lead to a redefinition of 's' --> abandon it.
            break
          inc pc
        of use:
          if c.g[pc].sym == s:
            c.otherRead = c.g[pc].n
            return false
          inc pc
        of goto:
          # we must leave endless loops eventually:
          if not takenGotos.containsOrIncl(pc):
            pc = pc + c.g[pc].dest
          else:
            inc pc
        of fork:
          # we follow the next instruction but push the dest onto our "work" stack:
          if not takenForks.containsOrIncl(pc):
            pcs.add pc + c.g[pc].dest
          inc pc
        of InstrKind.join:
          inc pc
    #echo c.graph.config $ n.info, " last read here!"
    return true

proc initialized(code: ControlFlowGraph; pc: int,
                 init, uninit: var IntSet; comesFrom: int): int =
  ## Computes the set of definitely initialized variables accross all code paths
  ## as an IntSet of IDs.
  var pc = pc
  while pc < code.len:
    case code[pc].kind
    of goto:
      pc = pc + code[pc].dest
    of fork:
      let target = pc + code[pc].dest
      var initA = initIntSet()
      var initB = initIntSet()
      let pcA = initialized(code, pc+1, initA, uninit, pc)
      discard initialized(code, target, initB, uninit, pc)
      # we add vars if they are in both branches:
      for v in initA:
        if v in initB:
          init.incl v
      pc = pcA+1
    of InstrKind.join:
      let target = pc + code[pc].dest
      if comesFrom == target: return pc
      inc pc
    of use:
      let v = code[pc].sym
      if v.kind != skParam and v.id notin init:
        # attempt to read an uninit'ed variable
        uninit.incl v.id
      inc pc
    of def:
      let v = code[pc].sym
      init.incl v.id
      inc pc
  return pc

template interestingSym(s: PSym): bool =
  s.owner == c.owner and s.kind in InterestingSyms and hasDestructor(s.typ)

template isUnpackedTuple(s: PSym): bool =
  ## we move out all elements of unpacked tuples,
  ## hence unpacked tuples themselves don't need to be destroyed
  s.kind == skTemp and s.typ.kind == tyTuple

proc checkForErrorPragma(c: Con; t: PType; ri: PNode; opname: string) =
  var m = "'" & opname & "' is not available for type <" & typeToString(t) & ">"
  if opname == "=" and ri != nil:
    m.add "; requires a copy because it's not the last read of '"
    m.add renderTree(ri)
    m.add '\''
    if c.otherRead != nil:
      m.add "; another read is done here: "
      m.add c.graph.config $ c.otherRead.info
    elif ri.kind == nkSym and ri.sym.kind == skParam and not isSinkType(ri.sym.typ):
      m.add "; try to make "
      m.add renderTree(ri)
      m.add " a 'sink' parameter"
  m.add "; routine: "
  m.add c.owner.name.s
  localError(c.graph.config, ri.info, errGenerated, m)

proc makePtrType(c: Con, baseType: PType): PType =
  result = newType(tyPtr, c.owner)
  addSonSkipIntLit(result, baseType)

proc genOp(c: Con; t: PType; kind: TTypeAttachedOp; dest, ri: PNode): PNode =
  var op = t.attachedOps[kind]

  if op == nil:
    # give up and find the canonical type instead:
    let h = sighashes.hashType(t, {CoType, CoConsiderOwned, CoDistinct})
    let canon = c.graph.canonTypes.getOrDefault(h)
    if canon != nil:
      op = canon.attachedOps[kind]

  if op == nil:
    globalError(c.graph.config, dest.info, "internal error: '" & AttachedOpToStr[kind] &
      "' operator not found for type " & typeToString(t))
  elif op.ast[genericParamsPos].kind != nkEmpty:
    globalError(c.graph.config, dest.info, "internal error: '" & AttachedOpToStr[kind] &
      "' operator is generic")
  if sfError in op.flags: checkForErrorPragma(c, t, ri, AttachedOpToStr[kind])
  let addrExp = newNodeIT(nkHiddenAddr, dest.info, makePtrType(c, dest.typ))
  addrExp.add(dest)
  result = newTree(nkCall, newSymNode(op), addrExp)

when false:
  proc preventMoveRef(dest, ri: PNode): bool =
    let lhs = dest.typ.skipTypes({tyGenericInst, tyAlias, tySink})
    var ri = ri
    if ri.kind in nkCallKinds and ri[0].kind == nkSym and ri[0].sym.magic == mUnown:
      ri = ri[1]
    let rhs = ri.typ.skipTypes({tyGenericInst, tyAlias, tySink})
    result = lhs.kind == tyRef and rhs.kind == tyOwned

proc canBeMoved(t: PType): bool {.inline.} =
  let t = t.skipTypes({tyGenericInst, tyAlias, tySink})
  result = t.kind != tyRef and t.attachedOps[attachedSink] != nil

proc genSink(c: Con; t: PType; dest, ri: PNode): PNode =
  let t = t.skipTypes({tyGenericInst, tyAlias, tySink})
  let k = if t.attachedOps[attachedSink] != nil: attachedSink
          else: attachedAsgn
  if t.attachedOps[k] != nil:
    result = genOp(c, t, k, dest, ri)
  else:
    # in rare cases only =destroy exists but no sink or assignment
    # (see Pony object in tmove_objconstr.nim)
    # we generate a fast assignment in this case:
    result = newTree(nkFastAsgn, dest)

proc genCopy(c: var Con; t: PType; dest, ri: PNode): PNode =
  if tfHasOwned in t.flags:
    # try to improve the error message here:
    if c.otherRead == nil: discard isLastRead(ri, c)
    checkForErrorPragma(c, t, ri, "=")
  let t = t.skipTypes({tyGenericInst, tyAlias, tySink})
  result = genOp(c, t, attachedAsgn, dest, ri)

proc genCopyNoCheck(c: Con; t: PType; dest, ri: PNode): PNode =
  let t = t.skipTypes({tyGenericInst, tyAlias, tySink})
  result = genOp(c, t, attachedAsgn, dest, ri)

proc genDestroy(c: Con; t: PType; dest: PNode): PNode =
  let t = t.skipTypes({tyGenericInst, tyAlias, tySink})
  result = genOp(c, t, attachedDestructor, dest, nil)

proc addTopVar(c: var Con; v: PNode) =
  c.topLevelVars.add newTree(nkIdentDefs, v, c.emptyNode, c.emptyNode)

proc getTemp(c: var Con; typ: PType; info: TLineInfo): PNode =
  let sym = newSym(skTemp, getIdent(c.graph.cache, ":tmpD"), c.owner, info)
  sym.typ = typ
  result = newSymNode(sym)
  c.addTopVar(result)

proc p(n: PNode; c: var Con): PNode

template recurse(n, dest) =
  for i in 0..<n.len:
    dest.add p(n[i], c)

proc genMagicCall(n: PNode; c: var Con; magicname: string; m: TMagic): PNode =
  result = newNodeI(nkCall, n.info)
  result.add(newSymNode(createMagic(c.graph, magicname, m)))
  result.add n

proc genWasMoved(n: PNode; c: var Con): PNode =
  # The mWasMoved builtin does not take the address.
  result = genMagicCall(n, c, "wasMoved", mWasMoved)

proc genDefaultCall(t: PType; c: Con; info: TLineInfo): PNode =
  result = newNodeI(nkCall, info)
  result.add(newSymNode(createMagic(c.graph, "default", mDefault)))
  result.typ = t

proc destructiveMoveVar(n: PNode; c: var Con): PNode =
  # generate: (let tmp = v; reset(v); tmp)
  # XXX: Strictly speaking we can only move if there is a ``=sink`` defined
  # or if no ``=sink`` is defined and also no assignment.
  result = newNodeIT(nkStmtListExpr, n.info, n.typ)

  var temp = newSym(skLet, getIdent(c.graph.cache, "blitTmp"), c.owner, n.info)
  temp.typ = n.typ
  var v = newNodeI(nkLetSection, n.info)
  let tempAsNode = newSymNode(temp)

  var vpart = newNodeI(nkIdentDefs, tempAsNode.info, 3)
  vpart.sons[0] = tempAsNode
  vpart.sons[1] = c.emptyNode
  vpart.sons[2] = n
  add(v, vpart)

  result.add v
  result.add genWasMoved(skipConv(n), c)
  result.add tempAsNode

proc sinkParamIsLastReadCheck(c: var Con, s: PNode) =
  assert s.kind == nkSym and s.sym.kind == skParam
  if not isLastRead(s, c):
     localError(c.graph.config, c.otherRead.info, "sink parameter `" & $s.sym.name.s &
         "` is already consumed at " & toFileLineCol(c. graph.config, s.info))

proc isSinkTypeForParam(t: PType): bool =
  # a parameter like 'seq[owned T]' must not be used only once, but its
  # elements must, so we detect this case here:
  result = t.skipTypes({tyGenericInst, tyAlias}).kind in {tySink, tyOwned}
  when false:
    if isSinkType(t):
      if t.skipTypes({tyGenericInst, tyAlias}).kind in {tyArray, tyVarargs, tyOpenArray, tySequence}:
        result = false
      else:
        result = true

proc passCopyToSink(n: PNode; c: var Con): PNode =
  result = newNodeIT(nkStmtListExpr, n.info, n.typ)
  let tmp = getTemp(c, n.typ, n.info)
  # XXX This is only required if we are in a loop. Since we move temporaries
  # out of loops we need to mark it as 'wasMoved'.
  result.add genWasMoved(tmp, c)
  if hasDestructor(n.typ):
    var m = genCopy(c, n.typ, tmp, n)
    m.add p(n, c)
    result.add m
    if isLValue(n):
      message(c.graph.config, n.info, hintPerformance,
        ("passing '$1' to a sink parameter introduces an implicit copy; " &
        "use 'move($1)' to prevent it") % $n)
  else:
    result.add newTree(nkAsgn, tmp, p(n, c))
  result.add tmp

proc isDangerousSeq(t: PType): bool {.inline.} =
  let t = t.skipTypes(abstractInst)
  result = t.kind == tySequence and tfHasOwned notin t.sons[0].flags

proc containsConstSeq(n: PNode): bool =
  if n.kind == nkBracket and n.len > 0 and n.typ != nil and isDangerousSeq(n.typ):
    return true
  result = false
  case n.kind
  of nkExprEqExpr, nkExprColonExpr, nkHiddenStdConv, nkHiddenSubConv:
    result = containsConstSeq(n[1])
  of nkObjConstr, nkClosure:
    for i in 1 ..< n.len:
      if containsConstSeq(n[i]): return true
  of nkCurly, nkBracket, nkPar, nkTupleConstr:
    for i in 0 ..< n.len:
      if containsConstSeq(n[i]): return true
  else: discard

proc pArg(arg: PNode; c: var Con; isSink: bool): PNode =
  template pArgIfTyped(argPart: PNode): PNode =
    # typ is nil if we are in if/case expr branch with noreturn
    if argPart.typ == nil: p(argPart, c)
    else: pArg(argPart, c, isSink)

  if isSink:
    if arg.kind in nkCallKinds:
      # recurse but skip the call expression in order to prevent
      # destructor injections: Rule 5.1 is different from rule 5.4!
      result = copyNode(arg)
      let parameters = arg[0].typ
      let L = if parameters != nil: parameters.len else: 0
      result.add arg[0]
      for i in 1..<arg.len:
        result.add pArg(arg[i], c, i < L and isSinkTypeForParam(parameters[i]))
    elif arg.containsConstSeq:
      # const sequences are not mutable and so we need to pass a copy to the
      # sink parameter (bug #11524). Note that the string implemenation is
      # different and can deal with 'const string sunk into var'.
      result = passCopyToSink(arg, c)
    elif arg.kind in {nkBracket, nkObjConstr, nkTupleConstr, nkCharLit..nkTripleStrLit}:
      discard "object construction to sink parameter: nothing to do"
      result = arg
    elif arg.kind == nkSym and isSinkParam(arg.sym):
      # Sinked params can be consumed only once. We need to reset the memory
      # to disable the destructor which we have not elided
      sinkParamIsLastReadCheck(c, arg)
      result = destructiveMoveVar(arg, c)
    elif isAnalysableFieldAccess(arg, c.owner) and isLastRead(arg, c):
      # it is the last read, can be sinked. We need to reset the memory
      # to disable the destructor which we have not elided
      result = destructiveMoveVar(arg, c)
    elif arg.kind in {nkBlockExpr, nkBlockStmt}:
      result = copyNode(arg)
      result.add arg[0]
      result.add pArg(arg[1], c, isSink)
    elif arg.kind == nkStmtListExpr:
      result = copyNode(arg)
      for i in 0..arg.len-2:
        result.add p(arg[i], c)
      result.add pArg(arg[^1], c, isSink)
    elif arg.kind in {nkIfExpr, nkIfStmt}:
      result = copyNode(arg)
      for i in 0..<arg.len:
        var branch = copyNode(arg[i])
        if arg[i].kind in {nkElifBranch, nkElifExpr}:
          branch.add p(arg[i][0], c)
          branch.add pArgIfTyped(arg[i][1])
        else:
          branch.add pArgIfTyped(arg[i][0])
        result.add branch
    elif arg.kind == nkCaseStmt:
      result = copyNode(arg)
      result.add p(arg[0], c)
      for i in 1..<arg.len:
        var branch: PNode
        if arg[i].kind == nkOfBranch:
          branch = arg[i] # of branch conditions are constants
          branch[^1] = pArgIfTyped(arg[i][^1])
        elif arg[i].kind in {nkElifBranch, nkElifExpr}:
          branch = copyNode(arg[i])
          branch.add p(arg[i][0], c)
          branch.add pArgIfTyped(arg[i][1])
        else:
          branch = copyNode(arg[i])
          branch.add pArgIfTyped(arg[i][0])
        result.add branch
    elif isAnalysableFieldAccess(arg, c.owner) and isLastRead(arg, c):
      result = destructiveMoveVar(arg, c)
    else:
      # an object that is not temporary but passed to a 'sink' parameter
      # results in a copy.
      result = passCopyToSink(arg, c)
  else:
    result = p(arg, c)

proc moveOrCopy(dest, ri: PNode; c: var Con): PNode =
  # unfortunately, this needs to be kept consistent with the cases
  # we handle in the 'case of' statement below:
  const movableNodeKinds = (nkCallKinds + {nkSym, nkTupleConstr, nkObjConstr,
                                           nkBracket, nkBracketExpr, nkNilLit})

  template moveOrCopyIfTyped(riPart: PNode): PNode =
    # typ is nil if we are in if/case expr branch with noreturn
    if riPart.typ == nil: p(riPart, c)
    else: moveOrCopy(dest, riPart, c)

  case ri.kind
  of nkCallKinds:
    result = genSink(c, dest.typ, dest, ri)
    # watch out and no not transform 'ri' twice if it's a call:
    let ri2 = copyNode(ri)
    let parameters = ri[0].typ
    let L = if parameters != nil: parameters.len else: 0
    ri2.add ri[0]
    for i in 1..<ri.len:
      ri2.add pArg(ri[i], c, i < L and isSinkTypeForParam(parameters[i]))
    #recurse(ri, ri2)
    result.add ri2
  of nkBracketExpr:
    if ri[0].kind == nkSym and isUnpackedTuple(ri[0].sym):
      # unpacking of tuple: move out the elements
      result = genSink(c, dest.typ, dest, ri)
      result.add p(ri, c)
    elif isAnalysableFieldAccess(ri, c.owner) and isLastRead(ri, c):
      # Rule 3: `=sink`(x, z); wasMoved(z)
      var snk = genSink(c, dest.typ, dest, ri)
      snk.add ri
      result = newTree(nkStmtList, snk, genWasMoved(ri, c))
    else:
      result = genCopy(c, dest.typ, dest, ri)
      result.add p(ri, c)
  of nkStmtListExpr:
    result = newNodeI(nkStmtList, ri.info)
    for i in 0..ri.len-2:
      result.add p(ri[i], c)
    result.add moveOrCopy(dest, ri[^1], c)
  of nkBlockExpr, nkBlockStmt:
    result = newNodeI(nkBlockStmt, ri.info)
    result.add ri[0] ## add label
    result.add moveOrCopy(dest, ri[1], c)
  of nkIfExpr, nkIfStmt:
    result = newNodeI(nkIfStmt, ri.info)
    for i in 0..<ri.len:
      var branch = copyNode(ri[i])
      if ri[i].kind in {nkElifBranch, nkElifExpr}:
        branch.add p(ri[i][0], c)
        branch.add moveOrCopyIfTyped(ri[i][1])
      else:
        branch.add moveOrCopyIfTyped(ri[i][0])
      result.add branch
  of nkCaseStmt:
    result = newNodeI(nkCaseStmt, ri.info)
    result.add p(ri[0], c)
    for i in 1..<ri.len:
      var branch: PNode
      if ri[i].kind == nkOfBranch:
        branch = ri[i] # of branch conditions are constants
        branch[^1] = moveOrCopyIfTyped(ri[i][^1])
      elif ri[i].kind in {nkElifBranch, nkElifExpr}:
        branch = copyNode(ri[i])
        branch.add p(ri[i][0], c)
        branch.add moveOrCopyIfTyped(ri[i][1])
      else:
        branch = copyNode(ri[i])
        branch.add moveOrCopyIfTyped(ri[i][0])
      result.add branch
  of nkBracket:
    # array constructor
    if ri.len > 0 and isDangerousSeq(ri.typ):
      result = genCopy(c, dest.typ, dest, ri)
    else:
      result = genSink(c, dest.typ, dest, ri)
    let ri2 = copyTree(ri)
    for i in 0..<ri.len:
      # everything that is passed to an array constructor is consumed,
      # so these all act like 'sink' parameters:
      ri2[i] = pArg(ri[i], c, isSink = true)
    result.add ri2
  of nkObjConstr:
    result = genSink(c, dest.typ, dest, ri)
    let ri2 = copyTree(ri)
    for i in 1..<ri.len:
      # everything that is passed to an object constructor is consumed,
      # so these all act like 'sink' parameters:
      ri2[i].sons[1] = pArg(ri[i][1], c, isSink = true)
    result.add ri2
  of nkTupleConstr, nkClosure:
    result = genSink(c, dest.typ, dest, ri)
    let ri2 = copyTree(ri)
    for i in ord(ri.kind == nkClosure)..<ri.len:
      # everything that is passed to an tuple constructor is consumed,
      # so these all act like 'sink' parameters:
      if ri[i].kind == nkExprColonExpr:
        ri2[i].sons[1] = pArg(ri[i][1], c, isSink = true)
      else:
        ri2[i] = pArg(ri[i], c, isSink = true)
    result.add ri2
  of nkNilLit:
    result = genSink(c, dest.typ, dest, ri)
    result.add ri
  of nkSym:
    if isSinkParam(ri.sym):
      # Rule 3: `=sink`(x, z); wasMoved(z)
      sinkParamIsLastReadCheck(c, ri)
      var snk = genSink(c, dest.typ, dest, ri)
      snk.add ri
      result = newTree(nkStmtList, snk, genWasMoved(ri, c))
    elif ri.sym.kind != skParam and ri.sym.owner == c.owner and
        isLastRead(ri, c) and canBeMoved(dest.typ):
      # Rule 3: `=sink`(x, z); wasMoved(z)
      var snk = genSink(c, dest.typ, dest, ri)
      snk.add ri
      result = newTree(nkStmtList, snk, genWasMoved(ri, c))
    else:
      result = genCopy(c, dest.typ, dest, ri)
      result.add p(ri, c)
  of nkHiddenSubConv, nkHiddenStdConv:
    if sameType(ri.typ, ri[1].typ):
      result = moveOrCopy(dest, ri[1], c)
    elif ri[1].kind in movableNodeKinds:
      result = moveOrCopy(dest, ri[1], c)
      var b = newNodeIT(ri.kind, ri.info, ri.typ)
      b.add ri[0] # add empty node
      let L = result.len-1
      b.add result[L]
      result[L] = b
    else:
      result = genCopy(c, dest.typ, dest, ri)
      result.add p(ri, c)
  of nkObjDownConv, nkObjUpConv:
    if ri[0].kind in movableNodeKinds:
      result = moveOrCopy(dest, ri[0], c)
      var b = newNodeIT(ri.kind, ri.info, ri.typ)
      let L = result.len-1
      b.add result[L]
      result[L] = b
    else:
      result = genCopy(c, dest.typ, dest, ri)
      result.add p(ri, c)
  else:
    if isAnalysableFieldAccess(ri, c.owner) and isLastRead(ri, c) and
        canBeMoved(dest.typ):
      # Rule 3: `=sink`(x, z); wasMoved(z)
      var snk = genSink(c, dest.typ, dest, ri)
      snk.add ri
      result = newTree(nkStmtList, snk, genWasMoved(ri, c))
    else:
      # XXX At least string literals can be moved?
      result = genCopy(c, dest.typ, dest, ri)
      result.add p(ri, c)

proc computeUninit(c: var Con) =
  if not c.uninitComputed:
    c.uninitComputed = true
    c.uninit = initIntSet()
    var init = initIntSet()
    discard initialized(c.g, pc = 0, init, c.uninit, comesFrom = -1)

proc injectDefaultCalls(n: PNode, c: var Con) =
  case n.kind
  of nkVarSection, nkLetSection:
    for i in 0..<n.len:
      let it = n[i]
      let L = it.len-1
      let ri = it[L]
      if it.kind == nkIdentDefs and ri.kind == nkEmpty:
        computeUninit(c)
        for j in 0..L-2:
          let v = it[j]
          doAssert v.kind == nkSym
          if c.uninit.contains(v.sym.id):
            it[L] = genDefaultCall(v.sym.typ, c, v.info)
            break
  of nkNone..nkNilLit, nkTypeSection, nkProcDef, nkConverterDef, nkMethodDef,
      nkIteratorDef, nkMacroDef, nkTemplateDef, nkLambda, nkDo, nkFuncDef:
    discard
  else:
    for i in 0..<safeLen(n):
      injectDefaultCalls(n[i], c)

proc isCursor(n: PNode): bool {.inline.} =
  result = n.kind == nkSym and sfCursor in n.sym.flags

proc keepVar(n, it: PNode, c: var Con): PNode =
  # keep the var but transform 'ri':
  result = copyNode(n)
  var itCopy = copyNode(it)
  for j in 0..it.len-2:
    itCopy.add it[j]
  itCopy.add p(it[it.len-1], c)
  result.add itCopy

proc p(n: PNode; c: var Con): PNode =
  case n.kind
  of nkVarSection, nkLetSection:
    discard "transform; var x = y to  var x; x op y  where op is a move or copy"
    result = newNodeI(nkStmtList, n.info)

    for i in 0..<n.len:
      let it = n[i]
      let L = it.len
      var ri = it[L-1]
      if it.kind == nkVarTuple and hasDestructor(ri.typ):
        let x = lowerTupleUnpacking(c.graph, it, c.owner)
        result.add p(x, c)
      elif it.kind == nkIdentDefs and hasDestructor(it[0].typ) and not isCursor(it[0]):
        for j in 0..L-3:
          let v = it[j]
          if v.kind == nkSym:
            if sfCompileTime in v.sym.flags: continue
            # move the variable declaration to the top of the frame:
            c.addTopVar v
            # make sure it's destroyed at the end of the proc:
            if not isUnpackedTuple(it[0].sym):
              c.destroys.add genDestroy(c, v.typ, v)
          if ri.kind == nkEmpty and c.inLoop > 0:
            ri = genDefaultCall(v.typ, c, v.info)
          if ri.kind != nkEmpty:
            let r = moveOrCopy(v, ri, c)
            result.add r
      else:
        result.add keepVar(n, it, c)
  of nkCallKinds:
    let parameters = n[0].typ
    let L = if parameters != nil: parameters.len else: 0
    for i in 1 ..< n.len:
      n.sons[i] = pArg(n[i], c, i < L and isSinkTypeForParam(parameters[i]))
    if n.typ != nil and hasDestructor(n.typ):
      discard "produce temp creation"
      result = newNodeIT(nkStmtListExpr, n.info, n.typ)
      let tmp = getTemp(c, n.typ, n.info)
      var sinkExpr = genSink(c, n.typ, tmp, n)
      sinkExpr.add n
      result.add sinkExpr
      result.add tmp
      c.destroys.add genDestroy(c, n.typ, tmp)
    else:
      result = n
  of nkAsgn, nkFastAsgn:
    if hasDestructor(n[0].typ) and n[1].kind notin {nkProcDef, nkDo, nkLambda}:
      result = moveOrCopy(n[0], n[1], c)
    else:
      result = copyNode(n)
      recurse(n, result)
  of nkNone..nkNilLit, nkTypeSection, nkProcDef, nkConverterDef, nkMethodDef,
      nkIteratorDef, nkMacroDef, nkTemplateDef, nkLambda, nkDo, nkFuncDef:
    result = n
  of nkCast, nkHiddenStdConv, nkHiddenSubConv, nkConv:
    result = copyNode(n)
    # Destination type
    result.add n[0]
    # Analyse the inner expression
    result.add p(n[1], c)
  of nkWhen:
    # This should be a "when nimvm" node.
    result = copyTree(n)
    result[1][0] = p(result[1][0], c)
  of nkRaiseStmt:
    if optNimV2 in c.graph.config.globalOptions and n[0].kind != nkEmpty:
      if n[0].kind in nkCallKinds:
        let call = copyNode(n[0])
        recurse(n[0], call)
        result = copyNode(n)
        result.add call
      else:
        let t = n[0].typ
        let tmp = getTemp(c, t, n.info)
        var m = genCopyNoCheck(c, t, tmp, n[0])

        m.add p(n[0], c)
        result = newTree(nkStmtList, genWasMoved(tmp, c), m)
        var toDisarm = n[0]
        if toDisarm.kind == nkStmtListExpr: toDisarm = toDisarm.lastSon
        if toDisarm.kind == nkSym and toDisarm.sym.owner == c.owner:
          result.add genWasMoved(toDisarm, c)
        result.add newTree(nkRaiseStmt, tmp)
    else:
      result = copyNode(n)
      recurse(n, result)
  of nkForStmt, nkParForStmt, nkWhileStmt:
    inc c.inLoop
    result = copyNode(n)
    recurse(n, result)
    dec c.inLoop
  else:
    result = copyNode(n)
    recurse(n, result)

proc extractDestroysForTemporaries(c: Con, destroys: PNode): PNode =
  result = newNodeI(nkStmtList, destroys.info)
  for i in 0 ..< destroys.len:
    if destroys[i][1][0].sym.kind == skTemp:
      result.add destroys[i]
      destroys[i] = c.emptyNode

proc reverseDestroys(destroys: PNode) =
  var reversed: seq[PNode]
  for i in countdown(destroys.len - 1, 0):
    reversed.add(destroys[i])
  destroys.sons = reversed

proc injectDestructorCalls*(g: ModuleGraph; owner: PSym; n: PNode): PNode =
  if sfGeneratedOp in owner.flags or isInlineIterator(owner): return n
  var c: Con
  c.owner = owner
  c.destroys = newNodeI(nkStmtList, n.info)
  c.topLevelVars = newNodeI(nkVarSection, n.info)
  c.graph = g
  c.emptyNode = newNodeI(nkEmpty, n.info)
  let cfg = constructCfg(owner, n)
  shallowCopy(c.g, cfg)
  c.jumpTargets = initIntSet()
  for i in 0..<c.g.len:
    if c.g[i].kind in {goto, fork}:
      c.jumpTargets.incl(i+c.g[i].dest)
  dbg:
    echo "injecting into ", n
    echoCfg(c.g)
  if owner.kind in {skProc, skFunc, skMethod, skIterator, skConverter}:
    let params = owner.typ.n
    for i in 1 ..< params.len:
      let param = params[i].sym
      if isSinkTypeForParam(param.typ) and hasDestructor(param.typ.skipTypes({tySink})):
        c.destroys.add genDestroy(c, param.typ.skipTypes({tyGenericInst, tyAlias, tySink}), params[i])

  #if optNimV2 in c.graph.config.globalOptions:
  #  injectDefaultCalls(n, c)
  let body = p(n, c)
  result = newNodeI(nkStmtList, n.info)
  if c.topLevelVars.len > 0:
    result.add c.topLevelVars
  if c.destroys.len > 0:
    reverseDestroys(c.destroys)
    if owner.kind == skModule:
      result.add newTryFinally(body, extractDestroysForTemporaries(c, c.destroys))
      g.globalDestructors.add c.destroys
    else:
      result.add newTryFinally(body, c.destroys)
  else:
    result.add body

  dbg:
    echo "------------------------------------"
    echo owner.name.s, " transformed to: "
    echo result