summary refs log tree commit diff stats
path: root/compiler/injectdestructors.nim
blob: e66f4f25b44b4bcc5138307cd70bb45043cb275e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122<
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html><head><title>Python: module ranger.ext.waitpid_no_intr</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
</head><body bgcolor="#f0f0f8">

<table width="100%" cellspacing=0 cellpadding=2 border=0 summary="heading">
<tr bgcolor="#7799ee">
<td valign=bottom>&nbsp;<br>
<font color="#ffffff" face="helvetica, arial">&nbsp;<br><big><big><strong><a href="ranger.html"><font color="#ffffff">ranger</font></a>.<a href="ranger.ext.html"><font color="#ffffff">ext</font></a>.waitpid_no_intr</strong></big></big></font></td
><td align=right valign=bottom
><font color="#ffffff" face="helvetica, arial"><a href=".">index</a><br><a href="file:/home/hut/work/ranger/ranger/ext/waitpid_no_intr.py">/home/hut/work/ranger/ranger/ext/waitpid_no_intr.py</a></font></td></tr></table>
    <p><tt>#&nbsp;Copyright&nbsp;(c)&nbsp;2009,&nbsp;2010&nbsp;hut&nbsp;&lt;hut@lavabit.com&gt;<br>
#<br>
#&nbsp;Permission&nbsp;to&nbsp;use,&nbsp;copy,&nbsp;modify,&nbsp;and/or&nbsp;distribute&nbsp;this&nbsp;software&nbsp;for&nbsp;any<br>
#&nbsp;purpose&nbsp;with&nbsp;or&nbsp;without&nbsp;fee&nbsp;is&nbsp;hereby&nbsp;granted,&nbsp;provided&nbsp;that&nbsp;the&nbsp;above<br>
#&nbsp;copyright&nbsp;notice&nbsp;and&nbsp;this&nbsp;permission&nbsp;notice&nbsp;appear&nbsp;in&nbsp;all&nbsp;copies.<br>
#<br>
#&nbsp;THE&nbsp;SOFTWARE&nbsp;IS&nbsp;PROVIDED&nbsp;"AS&nbsp;IS"&nbsp;AND&nbsp;THE&nbsp;AUTHOR&nbsp;DISCLAIMS&nbsp;ALL&nbsp;WARRANTIES<br>
#&nbsp;WITH&nbsp;REGARD&nbsp;TO&nbsp;THIS&nbsp;SOFTWARE&nbsp;INCLUDING&nbsp;ALL&nbsp;IMPLIED&nbsp;WARRANTIES&nbsp;OF<br>
#&nbsp;MERCHANTABILITY&nbsp;AND&nbsp;FITNESS.&nbsp;IN&nbsp;NO&nbsp;EVENT&nbsp;SHALL&nbsp;THE&nbsp;AUTHOR&nbsp;BE&nbsp;LIABLE&nbsp;FOR<br>
#&nbsp;ANY&nbsp;SPECIAL,&nbsp;DIRECT,&nbsp;INDIRECT,&nbsp;OR&nbsp;CONSEQUENTIAL&nbsp;DAMAGES&nbsp;OR&nbsp;ANY&nbsp;DAMAGES<br>
#&nbsp;WHATSOEVER&nbsp;RESULTING&nbsp;FROM&nbsp;LOSS&nbsp;OF&nbsp;USE,&nbsp;DATA&nbsp;OR&nbsp;PROFITS,&nbsp;WHETHER&nbsp;IN&nbsp;AN<br>
#&nbsp;ACTION&nbsp;OF&nbsp;CONTRACT,&nbsp;NEGLIGENCE&nbsp;OR&nbsp;OTHER&nbsp;TORTIOUS&nbsp;ACTION,&nbsp;ARISING&nbsp;OUT&nbsp;OF<br>
#&nbsp;OR&nbsp;IN&nbsp;CONNECTION&nbsp;WITH&nbsp;THE&nbsp;USE&nbsp;OR&nbsp;PERFORMANCE&nbsp;OF&nbsp;THIS&nbsp;SOFTWARE.</tt></p>
<p>
<table width="100%" cellspacing=0 cellpadding=2 border=0 summary="section">
<tr bgcolor="#eeaa77">
<td colspan=3 valign=bottom>&nbsp;<br>
<font color="#ffffff" face="helvetica, arial"><big><strong>Functions</strong></big></font></td></tr>
    
<tr><td bgcolor="#eeaa77"><tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</tt></td><td>&nbsp;</td>
<td width="100%"><dl><dt><a name="-waitpid_no_intr"><strong>waitpid_no_intr</strong></a>(pid)</dt><dd><tt>catch&nbsp;interrupts&nbsp;which&nbsp;occur&nbsp;while&nbsp;using&nbsp;os.waitpid</tt></dd></dl>
</td></tr></table>
</body></html>
> 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
#
#
#           The Nim Compiler
#        (c) Copyright 2017 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## Injects destructor calls into Nim code as well as
## an optimizer that optimizes copies to moves. This is implemented as an
## AST to AST transformation so that every backend benefits from it.

## Rules for destructor injections:
##
## foo(bar(X(), Y()))
## X and Y get destroyed after bar completes:
##
## foo( (tmpX = X(); tmpY = Y(); tmpBar = bar(tmpX, tmpY);
##       destroy(tmpX); destroy(tmpY);
##       tmpBar))
## destroy(tmpBar)
##
## var x = f()
## body
##
## is the same as:
##
##  var x;
##  try:
##    move(x, f())
##  finally:
##    destroy(x)
##
## But this really just an optimization that tries to avoid to
## introduce too many temporaries, the 'destroy' is caused by
## the 'f()' call. No! That is not true for 'result = f()'!
##
## x = y where y is read only once
## is the same as:  move(x, y)
##
## Actually the more general rule is: The *last* read of ``y``
## can become a move if ``y`` is the result of a construction.
##
## We also need to keep in mind here that the number of reads is
## control flow dependent:
## let x = foo()
## while true:
##   y = x  # only one read, but the 2nd iteration will fail!
## This also affects recursions! Only usages that do not cross
## a loop boundary (scope) and are not used in function calls
## are safe.
##
##
## x = f() is the same as:  move(x, f())
##
## x = y
## is the same as:  copy(x, y)
##
## Reassignment works under this scheme:
## var x = f()
## x = y
##
## is the same as:
##
##  var x;
##  try:
##    move(x, f())
##    copy(x, y)
##  finally:
##    destroy(x)
##
##  result = f()  must not destroy 'result'!
##
## The produced temporaries clutter up the code and might lead to
## inefficiencies. A better strategy is to collect all the temporaries
## in a single object that we put into a single try-finally that
## surrounds the proc body. This means the code stays quite efficient
## when compiled to C. In fact, we do the same for variables, so
## destructors are called when the proc returns, not at scope exit!
## This makes certains idioms easier to support. (Taking the slice
## of a temporary object.)
##
## foo(bar(X(), Y()))
## X and Y get destroyed after bar completes:
##
## var tmp: object
## foo( (move tmp.x, X(); move tmp.y, Y(); tmp.bar = bar(tmpX, tmpY);
##       tmp.bar))
## destroy(tmp.bar)
## destroy(tmp.x); destroy(tmp.y)
##

#[
From https://github.com/nim-lang/Nim/wiki/Destructors

Rule      Pattern                 Transformed into
----      -------                 ----------------
1.1	      var x: T; stmts	        var x: T; try stmts
                                  finally: `=destroy`(x)
2         x = f()                 `=sink`(x, f())
3         x = lastReadOf z        `=sink`(x, z); wasMoved(z)
3.2       x = path z; body        ``x = bitwiseCopy(path z);``
                                  do not emit `=destroy(x)`. Note: body
                                  must not mutate ``z`` nor ``x``. All
                                  assignments to ``x`` must be of the form
                                  ``path z`` but the ``z`` can differ.
                                  Neither ``z`` nor ``x`` can have the
                                  flag ``sfAddrTaken`` to ensure no other
                                  aliasing is going on.
4.1       y = sinkParam           `=sink`(y, sinkParam)
4.2       x = y                   `=`(x, y) # a copy
5.1       f_sink(g())             f_sink(g())
5.2       f_sink(y)               f_sink(copy y); # copy unless we can see it's the last read
5.3       f_sink(move y)          f_sink(y); wasMoved(y) # explicit moves empties 'y'
5.4       f_noSink(g())           var tmp = bitwiseCopy(g()); f(tmp); `=destroy`(tmp)

Rule 3.2 describes a "cursor" variable, a variable that is only used as a
view into some data structure. See ``compiler/cursors.nim`` for details.

Note: In order to avoid the very common combination ``reset(x); =sink(x, y)`` for
variable definitions we must turn "the first sink/assignment" operation into a
copyMem. This is harder than it looks:

  while true:
    try:
      if cond: break # problem if we run destroy(x) here :-/
      var x = f()
    finally:
      destroy(x)

And the C++ optimizers don't sweat to optimize it for us, so we don't have
to do it.
]#

import
  intsets, ast, astalgo, msgs, renderer, magicsys, types, idents,
  strutils, options, dfa, lowerings, tables, modulegraphs, msgs,
  lineinfos, parampatterns, sighashes

const
  InterestingSyms = {skVar, skResult, skLet, skForVar, skTemp}

type
  Con = object
    owner: PSym
    g: ControlFlowGraph
    jumpTargets: IntSet
    destroys, topLevelVars: PNode
    graph: ModuleGraph
    emptyNode: PNode
    otherRead: PNode
    inLoop: int
    uninit: IntSet # set of uninit'ed vars
    uninitComputed: bool

const toDebug = "" # "server" # "serverNimAsyncContinue"

template dbg(body) =
  when toDebug.len > 0:
    if c.owner.name.s == toDebug or toDebug == "always":
      body

proc isLastRead(location: PNode; c: var Con; pc, comesFrom: int): int =
  var pc = pc
  while pc < c.g.len:
    case c.g[pc].kind
    of def:
      if defInstrTargets(c.g[pc], location):
        # the path lead to a redefinition of 's' --> abandon it.
        return high(int)
      inc pc
    of use:
      if useInstrTargets(c.g[pc], location):
        c.otherRead = c.g[pc].n
        return -1
      inc pc
    of goto:
      pc = pc + c.g[pc].dest
    of fork:
      # every branch must lead to the last read of the location:
      let variantA = isLastRead(location, c, pc+1, pc)
      if variantA < 0: return -1
      var variantB = isLastRead(location, c, pc + c.g[pc].dest, pc)
      if variantB < 0: return -1
      elif variantB == high(int):
        variantB = variantA
      pc = variantB
    of InstrKind.join:
      let dest = pc + c.g[pc].dest
      if dest == comesFrom: return pc + 1
      inc pc
  return pc

proc isLastRead(n: PNode; c: var Con): bool =
  # first we need to search for the instruction that belongs to 'n':
  c.otherRead = nil
  var instr = -1
  let m = dfa.skipConvDfa(n)

  for i in 0..<c.g.len:
    # This comparison is correct and MUST not be ``instrTargets``:
    if c.g[i].kind == use and c.g[i].n == m:
      if instr < 0:
        instr = i
        break

  dbg:
    echo "starting point for ", n, " is ", instr, " ", n.kind

  if instr < 0: return false
  # we go through all paths beginning from 'instr+1' and need to
  # ensure that we don't find another 'use X' instruction.
  if instr+1 >= c.g.len: return true

  result = isLastRead(n, c, instr+1, -1) >= 0
  dbg:
    echo "ugh ", c.otherRead.isNil, " ", result

  when false:
    let s = n.sym
    var pcs: seq[int] = @[instr+1]
    var takenGotos: IntSet
    var takenForks = initIntSet()
    while pcs.len > 0:
      var pc = pcs.pop

      takenGotos = initIntSet()
      while pc < c.g.len:
        case c.g[pc].kind
        of def:
          if c.g[pc].sym == s:
            # the path lead to a redefinition of 's' --> abandon it.
            break
          inc pc
        of use:
          if c.g[pc].sym == s:
            c.otherRead = c.g[pc].n
            return false
          inc pc
        of goto:
          # we must leave endless loops eventually:
          if not takenGotos.containsOrIncl(pc):
            pc = pc + c.g[pc].dest
          else:
            inc pc
        of fork:
          # we follow the next instruction but push the dest onto our "work" stack:
          if not takenForks.containsOrIncl(pc):
            pcs.add pc + c.g[pc].dest
          inc pc
        of InstrKind.join:
          inc pc
    #echo c.graph.config $ n.info, " last read here!"
    return true

proc initialized(code: ControlFlowGraph; pc: int,
                 init, uninit: var IntSet; comesFrom: int): int =
  ## Computes the set of definitely initialized variables accross all code paths
  ## as an IntSet of IDs.
  var pc = pc
  while pc < code.len:
    case code[pc].kind
    of goto:
      pc = pc + code[pc].dest
    of fork:
      let target = pc + code[pc].dest
      var initA = initIntSet()
      var initB = initIntSet()
      let pcA = initialized(code, pc+1, initA, uninit, pc)
      discard initialized(code, target, initB, uninit, pc)
      # we add vars if they are in both branches:
      for v in initA:
        if v in initB:
          init.incl v
      pc = pcA+1
    of InstrKind.join:
      let target = pc + code[pc].dest
      if comesFrom == target: return pc
      inc pc
    of use:
      let v = code[pc].sym
      if v.kind != skParam and v.id notin init:
        # attempt to read an uninit'ed variable
        uninit.incl v.id
      inc pc
    of def:
      let v = code[pc].sym
      init.incl v.id
      inc pc
  return pc

template interestingSym(s: PSym): bool =
  s.owner == c.owner and s.kind in InterestingSyms and hasDestructor(s.typ)

template isUnpackedTuple(s: PSym): bool =
  ## we move out all elements of unpacked tuples,
  ## hence unpacked tuples themselves don't need to be destroyed
  s.kind == skTemp and s.typ.kind == tyTuple

proc checkForErrorPragma(c: Con; t: PType; ri: PNode; opname: string) =
  var m = "'" & opname & "' is not available for type <" & typeToString(t) & ">"
  if opname == "=" and ri != nil:
    m.add "; requires a copy because it's not the last read of '"
    m.add renderTree(ri)
    m.add '\''
    if c.otherRead != nil:
      m.add "; another read is done here: "
      m.add c.graph.config $ c.otherRead.info
    elif ri.kind == nkSym and ri.sym.kind == skParam and not isSinkType(ri.sym.typ):
      m.add "; try to make "
      m.add renderTree(ri)
      m.add " a 'sink' parameter"
  m.add "; routine: "
  m.add c.owner.name.s
  localError(c.graph.config, ri.info, errGenerated, m)

proc makePtrType(c: Con, baseType: PType): PType =
  result = newType(tyPtr, c.owner)
  addSonSkipIntLit(result, baseType)

proc genOp(c: Con; t: PType; kind: TTypeAttachedOp; dest, ri: PNode): PNode =
  var op = t.attachedOps[kind]

  if op == nil or op.ast[genericParamsPos].kind != nkEmpty:
    # give up and find the canonical type instead:
    let h = sighashes.hashType(t, {CoType, CoConsiderOwned, CoDistinct})
    let canon = c.graph.canonTypes.getOrDefault(h)
    if canon != nil:
      op = canon.attachedOps[kind]

  if op == nil:
    globalError(c.graph.config, dest.info, "internal error: '" & AttachedOpToStr[kind] &
      "' operator not found for type " & typeToString(t))
  elif op.ast[genericParamsPos].kind != nkEmpty:
    globalError(c.graph.config, dest.info, "internal error: '" & AttachedOpToStr[kind] &
      "' operator is generic")
  if sfError in op.flags: checkForErrorPragma(c, t, ri, AttachedOpToStr[kind])
  let addrExp = newNodeIT(nkHiddenAddr, dest.info, makePtrType(c, dest.typ))
  addrExp.add(dest)
  result = newTree(nkCall, newSymNode(op), addrExp)

when false:
  proc preventMoveRef(dest, ri: PNode): bool =
    let lhs = dest.typ.skipTypes({tyGenericInst, tyAlias, tySink})
    var ri = ri
    if ri.kind in nkCallKinds and ri[0].kind == nkSym and ri[0].sym.magic == mUnown:
      ri = ri[1]
    let rhs = ri.typ.skipTypes({tyGenericInst, tyAlias, tySink})
    result = lhs.kind == tyRef and rhs.kind == tyOwned

proc canBeMoved(t: PType): bool {.inline.} =
  let t = t.skipTypes({tyGenericInst, tyAlias, tySink})
  result = t.kind != tyRef and t.attachedOps[attachedSink] != nil

proc genSink(c: Con; t: PType; dest, ri: PNode): PNode =
  let t = t.skipTypes({tyGenericInst, tyAlias, tySink})
  let k = if t.attachedOps[attachedSink] != nil: attachedSink
          else: attachedAsgn
  if t.attachedOps[k] != nil:
    result = genOp(c, t, k, dest, ri)
  else:
    # in rare cases only =destroy exists but no sink or assignment
    # (see Pony object in tmove_objconstr.nim)
    # we generate a fast assignment in this case:
    result = newTree(nkFastAsgn, dest)

proc genCopy(c: var Con; t: PType; dest, ri: PNode): PNode =
  if tfHasOwned in t.flags:
    # try to improve the error message here:
    if c.otherRead == nil: discard isLastRead(ri, c)
    checkForErrorPragma(c, t, ri, "=")
  let t = t.skipTypes({tyGenericInst, tyAlias, tySink})
  result = genOp(c, t, attachedAsgn, dest, ri)

proc genCopyNoCheck(c: Con; t: PType; dest, ri: PNode): PNode =
  let t = t.skipTypes({tyGenericInst, tyAlias, tySink})
  result = genOp(c, t, attachedAsgn, dest, ri)

proc genDestroy(c: Con; t: PType; dest: PNode): PNode =
  let t = t.skipTypes({tyGenericInst, tyAlias, tySink})
  result = genOp(c, t, attachedDestructor, dest, nil)

proc addTopVar(c: var Con; v: PNode) =
  c.topLevelVars.add newTree(nkIdentDefs, v, c.emptyNode, c.emptyNode)

proc getTemp(c: var Con; typ: PType; info: TLineInfo): PNode =
  let sym = newSym(skTemp, getIdent(c.graph.cache, ":tmpD"), c.owner, info)
  sym.typ = typ
  result = newSymNode(sym)
  c.addTopVar(result)

proc p(n: PNode; c: var Con): PNode

template recurse(n, dest) =
  for i in 0..<n.len:
    dest.add p(n[i], c)

proc genMagicCall(n: PNode; c: var Con; magicname: string; m: TMagic): PNode =
  result = newNodeI(nkCall, n.info)
  result.add(newSymNode(createMagic(c.graph, magicname, m)))
  result.add n

proc genWasMoved(n: PNode; c: var Con): PNode =
  # The mWasMoved builtin does not take the address.
  result = genMagicCall(n, c, "wasMoved", mWasMoved)

proc genDefaultCall(t: PType; c: Con; info: TLineInfo): PNode =
  result = newNodeI(nkCall, info)
  result.add(newSymNode(createMagic(c.graph, "default", mDefault)))
  result.typ = t

proc destructiveMoveVar(n: PNode; c: var Con): PNode =
  # generate: (let tmp = v; reset(v); tmp)
  # XXX: Strictly speaking we can only move if there is a ``=sink`` defined
  # or if no ``=sink`` is defined and also no assignment.
  result = newNodeIT(nkStmtListExpr, n.info, n.typ)

  var temp = newSym(skLet, getIdent(c.graph.cache, "blitTmp"), c.owner, n.info)
  temp.typ = n.typ
  var v = newNodeI(nkLetSection, n.info)
  let tempAsNode = newSymNode(temp)

  var vpart = newNodeI(nkIdentDefs, tempAsNode.info, 3)
  vpart.sons[0] = tempAsNode
  vpart.sons[1] = c.emptyNode
  vpart.sons[2] = n
  add(v, vpart)

  result.add v
  result.add genWasMoved(skipConv(n), c)
  result.add tempAsNode

proc sinkParamIsLastReadCheck(c: var Con, s: PNode) =
  assert s.kind == nkSym and s.sym.kind == skParam
  if not isLastRead(s, c):
     localError(c.graph.config, c.otherRead.info, "sink parameter `" & $s.sym.name.s &
         "` is already consumed at " & toFileLineCol(c. graph.config, s.info))

proc passCopyToSink(n: PNode; c: var Con): PNode =
  result = newNodeIT(nkStmtListExpr, n.info, n.typ)
  let tmp = getTemp(c, n.typ, n.info)
  # XXX This is only required if we are in a loop. Since we move temporaries
  # out of loops we need to mark it as 'wasMoved'.
  result.add genWasMoved(tmp, c)
  if hasDestructor(n.typ):
    var m = genCopy(c, n.typ, tmp, n)
    m.add p(n, c)
    result.add m
    if isLValue(n):
      message(c.graph.config, n.info, hintPerformance,
        ("passing '$1' to a sink parameter introduces an implicit copy; " &
        "use 'move($1)' to prevent it") % $n)
  else:
    result.add newTree(nkAsgn, tmp, p(n, c))
  result.add tmp

proc isDangerousSeq(t: PType): bool {.inline.} =
  let t = t.skipTypes(abstractInst)
  result = t.kind == tySequence and tfHasOwned notin t.sons[0].flags

proc containsConstSeq(n: PNode): bool =
  if n.kind == nkBracket and n.len > 0 and n.typ != nil and isDangerousSeq(n.typ):
    return true
  result = false
  case n.kind
  of nkExprEqExpr, nkExprColonExpr, nkHiddenStdConv, nkHiddenSubConv:
    result = containsConstSeq(n[1])
  of nkObjConstr, nkClosure:
    for i in 1 ..< n.len:
      if containsConstSeq(n[i]): return true
  of nkCurly, nkBracket, nkPar, nkTupleConstr:
    for i in 0 ..< n.len:
      if containsConstSeq(n[i]): return true
  else: discard

proc pArg(arg: PNode; c: var Con; isSink: bool): PNode =
  template pArgIfTyped(argPart: PNode): PNode =
    # typ is nil if we are in if/case expr branch with noreturn
    if argPart.typ == nil: p(argPart, c)
    else: pArg(argPart, c, isSink)

  if isSink:
    if arg.kind in nkCallKinds:
      # recurse but skip the call expression in order to prevent
      # destructor injections: Rule 5.1 is different from rule 5.4!
      result = copyNode(arg)
      let parameters = arg[0].typ
      let L = if parameters != nil: parameters.len else: 0
      result.add arg[0]
      for i in 1..<arg.len:
        result.add pArg(arg[i], c, i < L and isSinkTypeForParam(parameters[i]))
    elif arg.containsConstSeq:
      # const sequences are not mutable and so we need to pass a copy to the
      # sink parameter (bug #11524). Note that the string implemenation is
      # different and can deal with 'const string sunk into var'.
      result = passCopyToSink(arg, c)
    elif arg.kind in {nkBracket, nkObjConstr, nkTupleConstr, nkCharLit..nkTripleStrLit}:
      discard "object construction to sink parameter: nothing to do"
      result = arg
    elif arg.kind == nkSym and isSinkParam(arg.sym):
      # Sinked params can be consumed only once. We need to reset the memory
      # to disable the destructor which we have not elided
      sinkParamIsLastReadCheck(c, arg)
      result = destructiveMoveVar(arg, c)
    elif isAnalysableFieldAccess(arg, c.owner) and isLastRead(arg, c):
      # it is the last read, can be sinked. We need to reset the memory
      # to disable the destructor which we have not elided
      result = destructiveMoveVar(arg, c)
    elif arg.kind in {nkBlockExpr, nkBlockStmt}:
      result = copyNode(arg)
      result.add arg[0]
      result.add pArg(arg[1], c, isSink)
    elif arg.kind == nkStmtListExpr:
      result = copyNode(arg)
      for i in 0..arg.len-2:
        result.add p(arg[i], c)
      result.add pArg(arg[^1], c, isSink)
    elif arg.kind in {nkIfExpr, nkIfStmt}:
      result = copyNode(arg)
      for i in 0..<arg.len:
        var branch = copyNode(arg[i])
        if arg[i].kind in {nkElifBranch, nkElifExpr}:
          branch.add p(arg[i][0], c)
          branch.add pArgIfTyped(arg[i][1])
        else:
          branch.add pArgIfTyped(arg[i][0])
        result.add branch
    elif arg.kind == nkCaseStmt:
      result = copyNode(arg)
      result.add p(arg[0], c)
      for i in 1..<arg.len:
        var branch: PNode
        if arg[i].kind == nkOfBranch:
          branch = arg[i] # of branch conditions are constants
          branch[^1] = pArgIfTyped(arg[i][^1])
        elif arg[i].kind in {nkElifBranch, nkElifExpr}:
          branch = copyNode(arg[i])
          branch.add p(arg[i][0], c)
          branch.add pArgIfTyped(arg[i][1])
        else:
          branch = copyNode(arg[i])
          branch.add pArgIfTyped(arg[i][0])
        result.add branch
    else:
      # an object that is not temporary but passed to a 'sink' parameter
      # results in a copy.
      result = passCopyToSink(arg, c)
  else:
    result = p(arg, c)

proc moveOrCopy(dest, ri: PNode; c: var Con): PNode =
  # unfortunately, this needs to be kept consistent with the cases
  # we handle in the 'case of' statement below:
  const movableNodeKinds = (nkCallKinds + {nkSym, nkTupleConstr, nkObjConstr,
                                           nkBracket, nkBracketExpr, nkNilLit})

  template moveOrCopyIfTyped(riPart: PNode): PNode =
    # typ is nil if we are in if/case expr branch with noreturn
    if riPart.typ == nil: p(riPart, c)
    else: moveOrCopy(dest, riPart, c)

  case ri.kind
  of nkCallKinds:
    result = genSink(c, dest.typ, dest, ri)
    # watch out and no not transform 'ri' twice if it's a call:
    let ri2 = copyNode(ri)
    let parameters = ri[0].typ
    let L = if parameters != nil: parameters.len else: 0
    ri2.add ri[0]
    for i in 1..<ri.len:
      ri2.add pArg(ri[i], c, i < L and isSinkTypeForParam(parameters[i]))
    #recurse(ri, ri2)
    result.add ri2
  of nkBracketExpr:
    if ri[0].kind == nkSym and isUnpackedTuple(ri[0].sym):
      # unpacking of tuple: move out the elements
      result = genSink(c, dest.typ, dest, ri)
      result.add p(ri, c)
    elif isAnalysableFieldAccess(ri, c.owner) and isLastRead(ri, c):
      # Rule 3: `=sink`(x, z); wasMoved(z)
      var snk = genSink(c, dest.typ, dest, ri)
      snk.add ri
      result = newTree(nkStmtList, snk, genWasMoved(ri, c))
    else:
      result = genCopy(c, dest.typ, dest, ri)
      result.add p(ri, c)
  of nkStmtListExpr:
    result = newNodeI(nkStmtList, ri.info)
    for i in 0..ri.len-2:
      result.add p(ri[i], c)
    result.add moveOrCopy(dest, ri[^1], c)
  of nkBlockExpr, nkBlockStmt:
    result = newNodeI(nkBlockStmt, ri.info)
    result.add ri[0] ## add label
    result.add moveOrCopy(dest, ri[1], c)
  of nkIfExpr, nkIfStmt:
    result = newNodeI(nkIfStmt, ri.info)
    for i in 0..<ri.len:
      var branch = copyNode(ri[i])
      if ri[i].kind in {nkElifBranch, nkElifExpr}:
        branch.add p(ri[i][0], c)
        branch.add moveOrCopyIfTyped(ri[i][1])
      else:
        branch.add moveOrCopyIfTyped(ri[i][0])
      result.add branch
  of nkCaseStmt:
    result = newNodeI(nkCaseStmt, ri.info)
    result.add p(ri[0], c)
    for i in 1..<ri.len:
      var branch: PNode
      if ri[i].kind == nkOfBranch:
        branch = ri[i] # of branch conditions are constants
        branch[^1] = moveOrCopyIfTyped(ri[i][^1])
      elif ri[i].kind in {nkElifBranch, nkElifExpr}:
        branch = copyNode(ri[i])
        branch.add p(ri[i][0], c)
        branch.add moveOrCopyIfTyped(ri[i][1])
      else:
        branch = copyNode(ri[i])
        branch.add moveOrCopyIfTyped(ri[i][0])
      result.add branch
  of nkBracket:
    # array constructor
    if ri.len > 0 and isDangerousSeq(ri.typ):
      result = genCopy(c, dest.typ, dest, ri)
    else:
      result = genSink(c, dest.typ, dest, ri)
    let ri2 = copyTree(ri)
    for i in 0..<ri.len:
      # everything that is passed to an array constructor is consumed,
      # so these all act like 'sink' parameters:
      ri2[i] = pArg(ri[i], c, isSink = true)
    result.add ri2
  of nkObjConstr:
    result = genSink(c, dest.typ, dest, ri)
    let ri2 = copyTree(ri)
    for i in 1..<ri.len:
      # everything that is passed to an object constructor is consumed,
      # so these all act like 'sink' parameters:
      ri2[i].sons[1] = pArg(ri[i][1], c, isSink = true)
    result.add ri2
  of nkTupleConstr, nkClosure:
    result = genSink(c, dest.typ, dest, ri)
    let ri2 = copyTree(ri)
    for i in ord(ri.kind == nkClosure)..<ri.len:
      # everything that is passed to an tuple constructor is consumed,
      # so these all act like 'sink' parameters:
      if ri[i].kind == nkExprColonExpr:
        ri2[i].sons[1] = pArg(ri[i][1], c, isSink = true)
      else:
        ri2[i] = pArg(ri[i], c, isSink = true)
    result.add ri2
  of nkNilLit:
    result = genSink(c, dest.typ, dest, ri)
    result.add ri
  of nkSym:
    if isSinkParam(ri.sym):
      # Rule 3: `=sink`(x, z); wasMoved(z)
      sinkParamIsLastReadCheck(c, ri)
      var snk = genSink(c, dest.typ, dest, ri)
      snk.add ri
      result = newTree(nkStmtList, snk, genWasMoved(ri, c))
    elif ri.sym.kind != skParam and ri.sym.owner == c.owner and
        isLastRead(ri, c) and canBeMoved(dest.typ):
      # Rule 3: `=sink`(x, z); wasMoved(z)
      var snk = genSink(c, dest.typ, dest, ri)
      snk.add ri
      result = newTree(nkStmtList, snk, genWasMoved(ri, c))
    else:
      result = genCopy(c, dest.typ, dest, ri)
      result.add p(ri, c)
  of nkHiddenSubConv, nkHiddenStdConv:
    if sameType(ri.typ, ri[1].typ):
      result = moveOrCopy(dest, ri[1], c)
    elif ri[1].kind in movableNodeKinds:
      result = moveOrCopy(dest, ri[1], c)
      var b = newNodeIT(ri.kind, ri.info, ri.typ)
      b.add ri[0] # add empty node
      let L = result.len-1
      b.add result[L]
      result[L] = b
    else:
      result = genCopy(c, dest.typ, dest, ri)
      result.add p(ri, c)
  of nkObjDownConv, nkObjUpConv:
    if ri[0].kind in movableNodeKinds:
      result = moveOrCopy(dest, ri[0], c)
      var b = newNodeIT(ri.kind, ri.info, ri.typ)
      let L = result.len-1
      b.add result[L]
      result[L] = b
    else:
      result = genCopy(c, dest.typ, dest, ri)
      result.add p(ri, c)
  else:
    if isAnalysableFieldAccess(ri, c.owner) and isLastRead(ri, c) and
        canBeMoved(dest.typ):
      # Rule 3: `=sink`(x, z); wasMoved(z)
      var snk = genSink(c, dest.typ, dest, ri)
      snk.add ri
      result = newTree(nkStmtList, snk, genWasMoved(ri, c))
    else:
      # XXX At least string literals can be moved?
      result = genCopy(c, dest.typ, dest, ri)
      result.add p(ri, c)

proc computeUninit(c: var Con) =
  if not c.uninitComputed:
    c.uninitComputed = true
    c.uninit = initIntSet()
    var init = initIntSet()
    discard initialized(c.g, pc = 0, init, c.uninit, comesFrom = -1)

proc injectDefaultCalls(n: PNode, c: var Con) =
  case n.kind
  of nkVarSection, nkLetSection:
    for i in 0..<n.len:
      let it = n[i]
      let L = it.len-1
      let ri = it[L]
      if it.kind == nkIdentDefs and ri.kind == nkEmpty:
        computeUninit(c)
        for j in 0..L-2:
          let v = it[j]
          doAssert v.kind == nkSym
          if c.uninit.contains(v.sym.id):
            it[L] = genDefaultCall(v.sym.typ, c, v.info)
            break
  of nkNone..nkNilLit, nkTypeSection, nkProcDef, nkConverterDef, nkMethodDef,
      nkIteratorDef, nkMacroDef, nkTemplateDef, nkLambda, nkDo, nkFuncDef:
    discard
  else:
    for i in 0..<safeLen(n):
      injectDefaultCalls(n[i], c)

proc isCursor(n: PNode): bool {.inline.} =
  result = n.kind == nkSym and sfCursor in n.sym.flags

proc keepVar(n, it: PNode, c: var Con): PNode =
  # keep the var but transform 'ri':
  result = copyNode(n)
  var itCopy = copyNode(it)
  for j in 0..it.len-2:
    itCopy.add it[j]
  itCopy.add p(it[it.len-1], c)
  result.add itCopy

proc p(n: PNode; c: var Con): PNode =
  case n.kind
  of nkVarSection, nkLetSection:
    discard "transform; var x = y to  var x; x op y  where op is a move or copy"
    result = newNodeI(nkStmtList, n.info)

    for i in 0..<n.len:
      let it = n[i]
      let L = it.len
      var ri = it[L-1]
      if it.kind == nkVarTuple and hasDestructor(ri.typ):
        let x = lowerTupleUnpacking(c.graph, it, c.owner)
        result.add p(x, c)
      elif it.kind == nkIdentDefs and hasDestructor(it[0].typ) and not isCursor(it[0]):
        for j in 0..L-3:
          let v = it[j]
          if v.kind == nkSym:
            if sfCompileTime in v.sym.flags: continue
            # move the variable declaration to the top of the frame:
            c.addTopVar v
            # make sure it's destroyed at the end of the proc:
            if not isUnpackedTuple(it[0].sym):
              c.destroys.add genDestroy(c, v.typ, v)
          if ri.kind == nkEmpty and c.inLoop > 0:
            ri = genDefaultCall(v.typ, c, v.info)
          if ri.kind != nkEmpty:
            let r = moveOrCopy(v, ri, c)
            result.add r
      else:
        result.add keepVar(n, it, c)
  of nkCallKinds:
    let parameters = n[0].typ
    let L = if parameters != nil: parameters.len else: 0
    for i in 1 ..< n.len:
      n.sons[i] = pArg(n[i], c, i < L and isSinkTypeForParam(parameters[i]))
    if n.typ != nil and hasDestructor(n.typ):
      discard "produce temp creation"
      result = newNodeIT(nkStmtListExpr, n.info, n.typ)
      let tmp = getTemp(c, n.typ, n.info)
      var sinkExpr = genSink(c, n.typ, tmp, n)
      sinkExpr.add n
      result.add sinkExpr
      result.add tmp
      c.destroys.add genDestroy(c, n.typ, tmp)
    else:
      result = n
  of nkAsgn, nkFastAsgn:
    if hasDestructor(n[0].typ) and n[1].kind notin {nkProcDef, nkDo, nkLambda}:
      # rule (self-assignment-removal):
      if n[1].kind == nkSym and n[0].kind == nkSym and n[0].sym == n[1].sym:
        result = newNodeI(nkEmpty, n.info)
      else:
        result = moveOrCopy(n[0], n[1], c)
    else:
      result = copyNode(n)
      recurse(n, result)
  of nkNone..nkNilLit, nkTypeSection, nkProcDef, nkConverterDef, nkMethodDef,
      nkIteratorDef, nkMacroDef, nkTemplateDef, nkLambda, nkDo, nkFuncDef:
    result = n
  of nkCast, nkHiddenStdConv, nkHiddenSubConv, nkConv:
    result = copyNode(n)
    # Destination type
    result.add n[0]
    # Analyse the inner expression
    result.add p(n[1], c)
  of nkWhen:
    # This should be a "when nimvm" node.
    result = copyTree(n)
    result[1][0] = p(result[1][0], c)
  of nkRaiseStmt:
    if optNimV2 in c.graph.config.globalOptions and n[0].kind != nkEmpty:
      if n[0].kind in nkCallKinds:
        let call = copyNode(n[0])
        recurse(n[0], call)
        result = copyNode(n)
        result.add call
      else:
        let t = n[0].typ
        let tmp = getTemp(c, t, n.info)
        var m = genCopyNoCheck(c, t, tmp, n[0])

        m.add p(n[0], c)
        result = newTree(nkStmtList, genWasMoved(tmp, c), m)
        var toDisarm = n[0]
        if toDisarm.kind == nkStmtListExpr: toDisarm = toDisarm.lastSon
        if toDisarm.kind == nkSym and toDisarm.sym.owner == c.owner:
          result.add genWasMoved(toDisarm, c)
        result.add newTree(nkRaiseStmt, tmp)
    else:
      result = copyNode(n)
      recurse(n, result)
  of nkForStmt, nkParForStmt, nkWhileStmt:
    inc c.inLoop
    result = copyNode(n)
    recurse(n, result)
    dec c.inLoop
  else:
    result = copyNode(n)
    recurse(n, result)

proc extractDestroysForTemporaries(c: Con, destroys: PNode): PNode =
  result = newNodeI(nkStmtList, destroys.info)
  for i in 0 ..< destroys.len:
    if destroys[i][1][0].sym.kind == skTemp:
      result.add destroys[i]
      destroys[i] = c.emptyNode

proc reverseDestroys(destroys: PNode) =
  var reversed: seq[PNode]
  for i in countdown(destroys.len - 1, 0):
    reversed.add(destroys[i])
  destroys.sons = reversed

proc injectDestructorCalls*(g: ModuleGraph; owner: PSym; n: PNode): PNode =
  if sfGeneratedOp in owner.flags or isInlineIterator(owner): return n
  var c: Con
  c.owner = owner
  c.destroys = newNodeI(nkStmtList, n.info)
  c.topLevelVars = newNodeI(nkVarSection, n.info)
  c.graph = g
  c.emptyNode = newNodeI(nkEmpty, n.info)
  let cfg = constructCfg(owner, n)
  shallowCopy(c.g, cfg)
  c.jumpTargets = initIntSet()
  for i in 0..<c.g.len:
    if c.g[i].kind in {goto, fork}:
      c.jumpTargets.incl(i+c.g[i].dest)
  dbg:
    echo "injecting into ", n
    echoCfg(c.g)
  if owner.kind in {skProc, skFunc, skMethod, skIterator, skConverter}:
    let params = owner.typ.n
    for i in 1 ..< params.len:
      let param = params[i].sym
      if isSinkTypeForParam(param.typ) and hasDestructor(param.typ.skipTypes({tySink})):
        c.destroys.add genDestroy(c, param.typ.skipTypes({tyGenericInst, tyAlias, tySink}), params[i])

  #if optNimV2 in c.graph.config.globalOptions:
  #  injectDefaultCalls(n, c)
  let body = p(n, c)
  result = newNodeI(nkStmtList, n.info)
  if c.topLevelVars.len > 0:
    result.add c.topLevelVars
  if c.destroys.len > 0:
    reverseDestroys(c.destroys)
    if owner.kind == skModule:
      result.add newTryFinally(body, extractDestroysForTemporaries(c, c.destroys))
      g.globalDestructors.add c.destroys
    else:
      result.add newTryFinally(body, c.destroys)
  else:
    result.add body

  dbg:
    echo "------------------------------------"
    echo owner.name.s, " transformed to: "
    echo result