1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
|
#
#
# The Nim Compiler
# (c) Copyright 2017 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module implements the module graph data structure. The module graph
## represents a complete Nim project. Single modules can either be kept in RAM
## or stored in a Sqlite database.
##
## The caching of modules is critical for 'nimsuggest' and is tricky to get
## right. If module E is being edited, we need autocompletion (and type
## checking) for E but we don't want to recompile depending
## modules right away for faster turnaround times. Instead we mark the module's
## dependencies as 'dirty'. Let D be a dependency of E. If D is dirty, we
## need to recompile it and all of its dependencies that are marked as 'dirty'.
## 'nimsuggest sug' actually is invoked for the file being edited so we know
## its content changed and there is no need to compute any checksums.
## Instead of a recursive algorithm, we use an iterative algorithm:
##
## - If a module gets recompiled, its dependencies need to be updated.
## - Its dependent module stays the same.
##
import ast, intsets, tables, options, lineinfos, hashes, idents,
incremental, btrees, md5
type
SigHash* = distinct MD5Digest
ModuleGraph* = ref object
modules*: seq[PSym] ## indexed by int32 fileIdx
packageSyms*: TStrTable
deps*: IntSet # the dependency graph or potentially its transitive closure.
importDeps*: Table[FileIndex, seq[FileIndex]] # explicit import module dependencies
suggestMode*: bool # whether we are in nimsuggest mode or not.
invalidTransitiveClosure: bool
inclToMod*: Table[FileIndex, FileIndex] # mapping of include file to the
# first module that included it
importStack*: seq[FileIndex] # The current import stack. Used for detecting recursive
# module dependencies.
backend*: RootRef # minor hack so that a backend can extend this easily
config*: ConfigRef
cache*: IdentCache
vm*: RootRef # unfortunately the 'vm' state is shared project-wise, this will
# be clarified in later compiler implementations.
doStopCompile*: proc(): bool {.closure.}
usageSym*: PSym # for nimsuggest
owners*: seq[PSym]
methods*: seq[tuple[methods: seq[PSym], dispatcher: PSym]] # needs serialization!
systemModule*: PSym
sysTypes*: array[TTypeKind, PType]
compilerprocs*: TStrTable
exposed*: TStrTable
intTypeCache*: array[-5..64, PType]
opContains*, opNot*: PSym
emptyNode*: PNode
incr*: IncrementalCtx
canonTypes*: Table[SigHash, PType]
symBodyHashes*: Table[int, SigHash] # symId to digest mapping
importModuleCallback*: proc (graph: ModuleGraph; m: PSym, fileIdx: FileIndex): PSym {.nimcall.}
includeFileCallback*: proc (graph: ModuleGraph; m: PSym, fileIdx: FileIndex): PNode {.nimcall.}
recordStmt*: proc (graph: ModuleGraph; m: PSym; n: PNode) {.nimcall.}
cacheSeqs*: Table[string, PNode] # state that is shared to suppor the 'macrocache' API
cacheCounters*: Table[string, BiggestInt]
cacheTables*: Table[string, BTree[string, PNode]]
passes*: seq[TPass]
onDefinition*: proc (graph: ModuleGraph; s: PSym; info: TLineInfo) {.nimcall.}
onDefinitionResolveForward*: proc (graph: ModuleGraph; s: PSym; info: TLineInfo) {.nimcall.}
onUsage*: proc (graph: ModuleGraph; s: PSym; info: TLineInfo) {.nimcall.}
globalDestructors*: seq[PNode]
TPassContext* = object of RootObj # the pass's context
PPassContext* = ref TPassContext
TPassOpen* = proc (graph: ModuleGraph; module: PSym): PPassContext {.nimcall.}
TPassClose* = proc (graph: ModuleGraph; p: PPassContext, n: PNode): PNode {.nimcall.}
TPassProcess* = proc (p: PPassContext, topLevelStmt: PNode): PNode {.nimcall.}
TPass* = tuple[open: TPassOpen,
process: TPassProcess,
close: TPassClose,
isFrontend: bool]
const
cb64 = [
"A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N",
"O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z",
"a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n",
"o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z",
"0", "1", "2", "3", "4", "5", "6", "7", "8", "9a",
"9b", "9c"]
proc toBase64a(s: cstring, len: int): string =
## encodes `s` into base64 representation.
result = newStringOfCap(((len + 2) div 3) * 4)
result.add "__"
var i = 0
while i < len - 2:
let a = ord(s[i])
let b = ord(s[i+1])
let c = ord(s[i+2])
result.add cb64[a shr 2]
result.add cb64[((a and 3) shl 4) or ((b and 0xF0) shr 4)]
result.add cb64[((b and 0x0F) shl 2) or ((c and 0xC0) shr 6)]
result.add cb64[c and 0x3F]
inc(i, 3)
if i < len-1:
let a = ord(s[i])
let b = ord(s[i+1])
result.add cb64[a shr 2]
result.add cb64[((a and 3) shl 4) or ((b and 0xF0) shr 4)]
result.add cb64[((b and 0x0F) shl 2)]
elif i < len:
let a = ord(s[i])
result.add cb64[a shr 2]
result.add cb64[(a and 3) shl 4]
proc `$`*(u: SigHash): string =
toBase64a(cast[cstring](unsafeAddr u), sizeof(u))
proc `==`*(a, b: SigHash): bool =
result = equalMem(unsafeAddr a, unsafeAddr b, sizeof(a))
proc hash*(u: SigHash): Hash =
result = 0
for x in 0..3:
result = (result shl 8) or u.MD5Digest[x].int
proc hash*(x: FileIndex): Hash {.borrow.}
when defined(nimfind):
template onUse*(info: TLineInfo; s: PSym) =
when compiles(c.c.graph):
if c.c.graph.onUsage != nil: c.c.graph.onUsage(c.c.graph, s, info)
else:
if c.graph.onUsage != nil: c.graph.onUsage(c.graph, s, info)
template onDef*(info: TLineInfo; s: PSym) =
when compiles(c.c.graph):
if c.c.graph.onDefinition != nil: c.c.graph.onDefinition(c.c.graph, s, info)
else:
if c.graph.onDefinition != nil: c.graph.onDefinition(c.graph, s, info)
template onDefResolveForward*(info: TLineInfo; s: PSym) =
when compiles(c.c.graph):
if c.c.graph.onDefinitionResolveForward != nil:
c.c.graph.onDefinitionResolveForward(c.c.graph, s, info)
else:
if c.graph.onDefinitionResolveForward != nil:
c.graph.onDefinitionResolveForward(c.graph, s, info)
else:
template onUse*(info: TLineInfo; s: PSym) = discard
template onDef*(info: TLineInfo; s: PSym) = discard
template onDefResolveForward*(info: TLineInfo; s: PSym) = discard
proc stopCompile*(g: ModuleGraph): bool {.inline.} =
result = g.doStopCompile != nil and g.doStopCompile()
proc createMagic*(g: ModuleGraph; name: string, m: TMagic): PSym =
result = newSym(skProc, getIdent(g.cache, name), nil, unknownLineInfo(), {})
result.magic = m
proc newModuleGraph*(cache: IdentCache; config: ConfigRef): ModuleGraph =
result = ModuleGraph()
initStrTable(result.packageSyms)
result.deps = initIntSet()
result.importDeps = initTable[FileIndex, seq[FileIndex]]()
result.modules = @[]
result.importStack = @[]
result.inclToMod = initTable[FileIndex, FileIndex]()
result.config = config
result.cache = cache
result.owners = @[]
result.methods = @[]
initStrTable(result.compilerprocs)
initStrTable(result.exposed)
result.opNot = createMagic(result, "not", mNot)
result.opContains = createMagic(result, "contains", mInSet)
result.emptyNode = newNode(nkEmpty)
init(result.incr)
result.recordStmt = proc (graph: ModuleGraph; m: PSym; n: PNode) {.nimcall.} =
discard
result.cacheSeqs = initTable[string, PNode]()
result.cacheCounters = initTable[string, BiggestInt]()
result.cacheTables = initTable[string, BTree[string, PNode]]()
result.canonTypes = initTable[SigHash, PType]()
result.symBodyHashes = initTable[int, SigHash]()
proc resetAllModules*(g: ModuleGraph) =
initStrTable(g.packageSyms)
g.deps = initIntSet()
g.modules = @[]
g.importStack = @[]
g.inclToMod = initTable[FileIndex, FileIndex]()
g.usageSym = nil
g.owners = @[]
g.methods = @[]
initStrTable(g.compilerprocs)
initStrTable(g.exposed)
proc getModule*(g: ModuleGraph; fileIdx: FileIndex): PSym =
if fileIdx.int32 >= 0 and fileIdx.int32 < g.modules.len:
result = g.modules[fileIdx.int32]
proc dependsOn(a, b: int): int {.inline.} = (a shl 15) + b
proc addDep*(g: ModuleGraph; m: PSym, dep: FileIndex) =
assert m.position == m.info.fileIndex.int32
addModuleDep(g.incr, g.config, m.info.fileIndex, dep, isIncludeFile = false)
if g.suggestMode:
g.deps.incl m.position.dependsOn(dep.int)
# we compute the transitive closure later when quering the graph lazily.
# this improves efficiency quite a lot:
#invalidTransitiveClosure = true
proc addIncludeDep*(g: ModuleGraph; module, includeFile: FileIndex) =
addModuleDep(g.incr, g.config, module, includeFile, isIncludeFile = true)
discard hasKeyOrPut(g.inclToMod, includeFile, module)
proc parentModule*(g: ModuleGraph; fileIdx: FileIndex): FileIndex =
## returns 'fileIdx' if the file belonging to this index is
## directly used as a module or else the module that first
## references this include file.
if fileIdx.int32 >= 0 and fileIdx.int32 < g.modules.len and g.modules[fileIdx.int32] != nil:
result = fileIdx
else:
result = g.inclToMod.getOrDefault(fileIdx)
proc transitiveClosure(g: var IntSet; n: int) =
# warshall's algorithm
for k in 0..<n:
for i in 0..<n:
for j in 0..<n:
if i != j and not g.contains(i.dependsOn(j)):
if g.contains(i.dependsOn(k)) and g.contains(k.dependsOn(j)):
g.incl i.dependsOn(j)
proc markDirty*(g: ModuleGraph; fileIdx: FileIndex) =
let m = g.getModule fileIdx
if m != nil: incl m.flags, sfDirty
proc markClientsDirty*(g: ModuleGraph; fileIdx: FileIndex) =
# we need to mark its dependent modules D as dirty right away because after
# nimsuggest is done with this module, the module's dirty flag will be
# cleared but D still needs to be remembered as 'dirty'.
if g.invalidTransitiveClosure:
g.invalidTransitiveClosure = false
transitiveClosure(g.deps, g.modules.len)
# every module that *depends* on this file is also dirty:
for i in 0i32..<g.modules.len.int32:
let m = g.modules[i]
if m != nil and g.deps.contains(i.dependsOn(fileIdx.int)):
incl m.flags, sfDirty
proc isDirty*(g: ModuleGraph; m: PSym): bool =
result = g.suggestMode and sfDirty in m.flags
|