summary refs log tree commit diff stats
path: root/compiler/nimsets.nim
blob: d65618e0a51ec12c530988c033d8a0f58a96006a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#
#
#           The Nimrod Compiler
#        (c) Copyright 2012 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

# this unit handles Nimrod sets; it implements symbolic sets

import 
  ast, astalgo, trees, nversion, msgs, platform, bitsets, types, renderer

proc toBitSet*(s: PNode, b: var TBitSet)
  # this function is used for case statement checking:
proc overlap*(a, b: PNode): bool
proc inSet*(s: PNode, elem: PNode): bool
proc someInSet*(s: PNode, a, b: PNode): bool
proc emptyRange*(a, b: PNode): bool
proc setHasRange*(s: PNode): bool
  # returns true if set contains a range (needed by the code generator)
  # these are used for constant folding:
proc unionSets*(a, b: PNode): PNode
proc diffSets*(a, b: PNode): PNode
proc intersectSets*(a, b: PNode): PNode
proc symdiffSets*(a, b: PNode): PNode
proc containsSets*(a, b: PNode): bool
proc equalSets*(a, b: PNode): bool
proc cardSet*(s: PNode): BiggestInt
# implementation

proc inSet(s: PNode, elem: PNode): bool = 
  if s.kind != nkCurly: 
    internalError(s.info, "inSet")
    return false
  for i in countup(0, sonsLen(s) - 1): 
    if s.sons[i].kind == nkRange: 
      if leValue(s.sons[i].sons[0], elem) and
          leValue(elem, s.sons[i].sons[1]): 
        return true
    else: 
      if sameValue(s.sons[i], elem): 
        return true
  result = false

proc overlap(a, b: PNode): bool =
  if a.kind == nkRange:
    if b.kind == nkRange:
      # X..Y and C..D overlap iff (X <= D and C <= Y)
      result = leValue(a.sons[0], b.sons[1]) and
               leValue(b.sons[0], a.sons[1])
    else:
      result = leValue(a.sons[0], b) and leValue(b, a.sons[1])
  else:
    if b.kind == nkRange:
      result = leValue(b.sons[0], a) and leValue(a, b.sons[1])
    else:
      result = sameValue(a, b)

proc someInSet(s: PNode, a, b: PNode): bool = 
  # checks if some element of a..b is in the set s
  if s.kind != nkCurly:
    internalError(s.info, "SomeInSet")
    return false
  for i in countup(0, sonsLen(s) - 1): 
    if s.sons[i].kind == nkRange: 
      if leValue(s.sons[i].sons[0], b) and leValue(b, s.sons[i].sons[1]) or
          leValue(s.sons[i].sons[0], a) and leValue(a, s.sons[i].sons[1]): 
        return true
    else: 
      # a <= elem <= b
      if leValue(a, s.sons[i]) and leValue(s.sons[i], b): 
        return true
  result = false

proc toBitSet(s: PNode, b: var TBitSet) = 
  var first, j: BiggestInt
  first = firstOrd(s.typ.sons[0])
  bitSetInit(b, int(getSize(s.typ)))
  for i in countup(0, sonsLen(s) - 1): 
    if s.sons[i].kind == nkRange: 
      j = getOrdValue(s.sons[i].sons[0])
      while j <= getOrdValue(s.sons[i].sons[1]): 
        bitSetIncl(b, j - first)
        inc(j)
    else: 
      bitSetIncl(b, getOrdValue(s.sons[i]) - first)
  
proc toTreeSet(s: TBitSet, settype: PType, info: TLineInfo): PNode = 
  var 
    a, b, e, first: BiggestInt # a, b are interval borders
    elemType: PType
    n: PNode
  elemType = settype.sons[0]
  first = firstOrd(elemType)
  result = newNodeI(nkCurly, info)
  result.typ = settype
  result.info = info
  e = 0
  while e < len(s) * ElemSize: 
    if bitSetIn(s, e): 
      a = e
      b = e
      while true: 
        inc(b)
        if (b >= len(s) * ElemSize) or not bitSetIn(s, b): break 
      dec(b)
      if a == b: 
        addSon(result, newIntTypeNode(nkIntLit, a + first, elemType))
      else: 
        n = newNodeI(nkRange, info)
        n.typ = elemType
        addSon(n, newIntTypeNode(nkIntLit, a + first, elemType))
        addSon(n, newIntTypeNode(nkIntLit, b + first, elemType))
        addSon(result, n)
      e = b
    inc(e)

template nodeSetOp(a, b: PNode, op: expr) {.dirty.} = 
  var x, y: TBitSet
  toBitSet(a, x)
  toBitSet(b, y)
  op(x, y)
  result = toTreeSet(x, a.typ, a.info)

proc unionSets(a, b: PNode): PNode = nodeSetOp(a, b, bitSetUnion)
proc diffSets(a, b: PNode): PNode = nodeSetOp(a, b, bitSetDiff)
proc intersectSets(a, b: PNode): PNode = nodeSetOp(a, b, bitSetIntersect)
proc symdiffSets(a, b: PNode): PNode = nodeSetOp(a, b, bitSetSymDiff)

proc containsSets(a, b: PNode): bool = 
  var x, y: TBitSet
  toBitSet(a, x)
  toBitSet(b, y)
  result = bitSetContains(x, y)

proc equalSets(a, b: PNode): bool = 
  var x, y: TBitSet
  toBitSet(a, x)
  toBitSet(b, y)
  result = bitSetEquals(x, y)

proc complement*(a: PNode): PNode =
  var x: TBitSet
  toBitSet(a, x)
  for i in countup(0, high(x)): x[i] = not x[i]
  result = toTreeSet(x, a.typ, a.info)

proc cardSet(s: PNode): BiggestInt = 
  # here we can do better than converting it into a compact set
  # we just count the elements directly
  result = 0
  for i in countup(0, sonsLen(s) - 1): 
    if s.sons[i].kind == nkRange: 
      result = result + getOrdValue(s.sons[i].sons[1]) -
          getOrdValue(s.sons[i].sons[0]) + 1
    else: 
      inc(result)
  
proc setHasRange(s: PNode): bool = 
  if s.kind != nkCurly:
    internalError(s.info, "SetHasRange")
    return false
  for i in countup(0, sonsLen(s) - 1): 
    if s.sons[i].kind == nkRange: 
      return true
  result = false

proc emptyRange(a, b: PNode): bool = 
  result = not leValue(a, b)  # a > b iff not (a <= b)