1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
|
#
#
# The Nim Compiler
# (c) Copyright 2012 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module implements the pattern matching features for term rewriting
## macro support.
import
ast, astalgo, types, semdata, sigmatch, msgs, idents, aliases, parampatterns,
trees
type
TPatternContext = object
owner: PSym
mapping: seq[PNode] # maps formal parameters to nodes
formals: int
c: PContext
subMatch: bool # subnode matches are special
mappingIsFull: bool
PPatternContext = var TPatternContext
proc getLazy(c: PPatternContext, sym: PSym): PNode =
if c.mappingIsFull:
result = c.mapping[sym.position]
proc putLazy(c: PPatternContext, sym: PSym, n: PNode) =
if not c.mappingIsFull:
newSeq(c.mapping, c.formals)
c.mappingIsFull = true
c.mapping[sym.position] = n
proc matches(c: PPatternContext, p, n: PNode): bool
proc canonKind(n: PNode): TNodeKind =
## nodekind canonilization for pattern matching
result = n.kind
case result
of nkCallKinds: result = nkCall
of nkStrLit..nkTripleStrLit: result = nkStrLit
of nkFastAsgn: result = nkAsgn
else: discard
proc sameKinds(a, b: PNode): bool {.inline.} =
result = a.kind == b.kind or a.canonKind == b.canonKind
proc sameTrees*(a, b: PNode): bool =
if sameKinds(a, b):
case a.kind
of nkSym: result = a.sym == b.sym
of nkIdent: result = a.ident.id == b.ident.id
of nkCharLit..nkInt64Lit: result = a.intVal == b.intVal
of nkFloatLit..nkFloat64Lit: result = a.floatVal == b.floatVal
of nkStrLit..nkTripleStrLit: result = a.strVal == b.strVal
of nkEmpty, nkNilLit: result = true
of nkType: result = sameTypeOrNil(a.typ, b.typ)
else:
if sonsLen(a) == sonsLen(b):
for i in 0 ..< sonsLen(a):
if not sameTrees(a.sons[i], b.sons[i]): return
result = true
proc inSymChoice(sc, x: PNode): bool =
if sc.kind == nkClosedSymChoice:
for i in 0..<sc.len:
if sc.sons[i].sym == x.sym: return true
elif sc.kind == nkOpenSymChoice:
# same name suffices for open sym choices!
result = sc.sons[0].sym.name.id == x.sym.name.id
proc checkTypes(c: PPatternContext, p: PSym, n: PNode): bool =
# check param constraints first here as this is quite optimized:
if p.constraint != nil:
result = matchNodeKinds(p.constraint, n)
if not result: return
if isNil(n.typ):
result = p.typ.kind in {tyVoid, tyStmt}
else:
result = sigmatch.argtypeMatches(c.c, p.typ, n.typ, fromHlo = true)
proc isPatternParam(c: PPatternContext, p: PNode): bool {.inline.} =
result = p.kind == nkSym and p.sym.kind == skParam and p.sym.owner == c.owner
proc matchChoice(c: PPatternContext, p, n: PNode): bool =
for i in 1 ..< p.len:
if matches(c, p.sons[i], n): return true
proc bindOrCheck(c: PPatternContext, param: PSym, n: PNode): bool =
var pp = getLazy(c, param)
if pp != nil:
# check if we got the same pattern (already unified):
result = sameTrees(pp, n) #matches(c, pp, n)
elif n.kind == nkArgList or checkTypes(c, param, n):
putLazy(c, param, n)
result = true
proc gather(c: PPatternContext, param: PSym, n: PNode) =
var pp = getLazy(c, param)
if pp != nil and pp.kind == nkArgList:
pp.add(n)
else:
pp = newNodeI(nkArgList, n.info, 1)
pp.sons[0] = n
putLazy(c, param, pp)
proc matchNested(c: PPatternContext, p, n: PNode, rpn: bool): bool =
# match ``op * param`` or ``op *| param``
proc matchStarAux(c: PPatternContext, op, n, arglist: PNode,
rpn: bool): bool =
result = true
if n.kind in nkCallKinds and matches(c, op.sons[1], n.sons[0]):
for i in 1..sonsLen(n)-1:
if not matchStarAux(c, op, n[i], arglist, rpn): return false
if rpn: arglist.add(n.sons[0])
elif n.kind == nkHiddenStdConv and n.sons[1].kind == nkBracket:
let n = n.sons[1]
for i in 0..<n.len:
if not matchStarAux(c, op, n[i], arglist, rpn): return false
elif checkTypes(c, p.sons[2].sym, n):
add(arglist, n)
else:
result = false
if n.kind notin nkCallKinds: return false
if matches(c, p.sons[1], n.sons[0]):
var arglist = newNodeI(nkArgList, n.info)
if matchStarAux(c, p, n, arglist, rpn):
result = bindOrCheck(c, p.sons[2].sym, arglist)
proc matches(c: PPatternContext, p, n: PNode): bool =
let n = skipHidden(n)
if nfNoRewrite in n.flags:
result = false
elif isPatternParam(c, p):
result = bindOrCheck(c, p.sym, n)
elif n.kind == nkSym and p.kind == nkIdent:
result = p.ident.id == n.sym.name.id
elif n.kind == nkSym and inSymChoice(p, n):
result = true
elif n.kind == nkSym and n.sym.kind == skConst:
# try both:
if p.kind == nkSym: result = p.sym == n.sym
elif matches(c, p, n.sym.ast): result = true
elif p.kind == nkPattern:
# pattern operators: | *
let opr = p.sons[0].ident.s
case opr
of "|": result = matchChoice(c, p, n)
of "*": result = matchNested(c, p, n, rpn=false)
of "**": result = matchNested(c, p, n, rpn=true)
of "~": result = not matches(c, p.sons[1], n)
else: doAssert(false, "invalid pattern")
# template {add(a, `&` * b)}(a: string{noalias}, b: varargs[string]) =
# add(a, b)
elif p.kind == nkCurlyExpr:
if p.sons[1].kind == nkPrefix:
if matches(c, p.sons[0], n):
gather(c, p.sons[1].sons[1].sym, n)
result = true
else:
assert isPatternParam(c, p.sons[1])
if matches(c, p.sons[0], n):
result = bindOrCheck(c, p.sons[1].sym, n)
elif sameKinds(p, n):
case p.kind
of nkSym: result = p.sym == n.sym
of nkIdent: result = p.ident.id == n.ident.id
of nkCharLit..nkInt64Lit: result = p.intVal == n.intVal
of nkFloatLit..nkFloat64Lit: result = p.floatVal == n.floatVal
of nkStrLit..nkTripleStrLit: result = p.strVal == n.strVal
of nkEmpty, nkNilLit, nkType:
result = true
else:
var plen = sonsLen(p)
# special rule for p(X) ~ f(...); this also works for stuff like
# partial case statements, etc! - Not really ... :-/
let v = lastSon(p)
if isPatternParam(c, v) and v.sym.typ.kind == tyVarargs:
var arglist: PNode
if plen <= sonsLen(n):
for i in 0 .. plen - 2:
if not matches(c, p.sons[i], n.sons[i]): return
if plen == sonsLen(n) and lastSon(n).kind == nkHiddenStdConv and
lastSon(n).sons[1].kind == nkBracket:
# unpack varargs:
let n = lastSon(n).sons[1]
arglist = newNodeI(nkArgList, n.info, n.len)
for i in 0..<n.len: arglist.sons[i] = n.sons[i]
else:
arglist = newNodeI(nkArgList, n.info, sonsLen(n) - plen + 1)
# f(1, 2, 3)
# p(X)
for i in 0 .. sonsLen(n) - plen:
arglist.sons[i] = n.sons[i + plen - 1]
return bindOrCheck(c, v.sym, arglist)
elif plen-1 == sonsLen(n):
for i in 0 .. plen - 2:
if not matches(c, p.sons[i], n.sons[i]): return
arglist = newNodeI(nkArgList, n.info)
return bindOrCheck(c, v.sym, arglist)
if plen == sonsLen(n):
for i in 0 ..< sonsLen(p):
if not matches(c, p.sons[i], n.sons[i]): return
result = true
proc matchStmtList(c: PPatternContext, p, n: PNode): PNode =
proc matchRange(c: PPatternContext, p, n: PNode, i: int): bool =
for j in 0 ..< p.len:
if not matches(c, p.sons[j], n.sons[i+j]):
# we need to undo any bindings:
when defined(nimNoNilSeqs):
c.mapping = @[]
c.mappingIsFull = false
else:
if not isNil(c.mapping): c.mapping = nil
return false
result = true
if p.kind == nkStmtList and n.kind == p.kind and p.len < n.len:
let n = flattenStmts(n)
# no need to flatten 'p' here as that has already been done
for i in 0 .. n.len - p.len:
if matchRange(c, p, n, i):
c.subMatch = true
result = newNodeI(nkStmtList, n.info, 3)
result.sons[0] = extractRange(nkStmtList, n, 0, i-1)
result.sons[1] = extractRange(nkStmtList, n, i, i+p.len-1)
result.sons[2] = extractRange(nkStmtList, n, i+p.len, n.len-1)
break
elif matches(c, p, n):
result = n
proc aliasAnalysisRequested(params: PNode): bool =
if params.len >= 2:
for i in 1 ..< params.len:
let param = params.sons[i].sym
if whichAlias(param) != aqNone: return true
proc addToArgList(result, n: PNode) =
if n.typ != nil and n.typ.kind != tyStmt:
if n.kind != nkArgList: result.add(n)
else:
for i in 0 ..< n.len: result.add(n.sons[i])
proc applyRule*(c: PContext, s: PSym, n: PNode): PNode =
## returns a tree to semcheck if the rule triggered; nil otherwise
var ctx: TPatternContext
ctx.owner = s
ctx.c = c
ctx.formals = sonsLen(s.typ)-1
var m = matchStmtList(ctx, s.ast.sons[patternPos], n)
if isNil(m): return nil
# each parameter should have been bound; we simply setup a call and
# let semantic checking deal with the rest :-)
result = newNodeI(nkCall, n.info)
result.add(newSymNode(s, n.info))
let params = s.typ.n
let requiresAA = aliasAnalysisRequested(params)
var args: PNode
if requiresAA:
args = newNodeI(nkArgList, n.info)
for i in 1 ..< params.len:
let param = params.sons[i].sym
let x = getLazy(ctx, param)
# couldn't bind parameter:
if isNil(x): return nil
result.add(x)
if requiresAA: addToArgList(args, x)
# perform alias analysis here:
if requiresAA:
for i in 1 ..< params.len:
var rs = result.sons[i]
let param = params.sons[i].sym
case whichAlias(param)
of aqNone: discard
of aqShouldAlias:
# it suffices that it aliases for sure with *some* other param:
var ok = false
for arg in items(args):
if arg != rs and aliases.isPartOf(rs, arg) == arYes:
ok = true
break
# constraint not fulfilled:
if not ok: return nil
of aqNoAlias:
# it MUST not alias with any other param:
var ok = true
for arg in items(args):
if arg != rs and aliases.isPartOf(rs, arg) != arNo:
ok = false
break
# constraint not fulfilled:
if not ok: return nil
markUsed(c.config, n.info, s, c.graph.usageSym)
if ctx.subMatch:
assert m.len == 3
m.sons[1] = result
result = m
|