summary refs log tree commit diff stats
path: root/compiler/scriptconfig.nim
blob: adc228d1ec3c16f4cfbbecd2df083ff5543d784d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
#
#
#           The Nim Compiler
#        (c) Copyright 2015 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## Implements the new configuration system for Nim. Uses Nim as a scripting
## language.

import
  ast, modules, idents, passes, condsyms,
  options, sem, llstream, vm, vmdef, commands,
  os, times, osproc, wordrecg, strtabs, modulegraphs,
  pathutils

when defined(nimPreviewSlimSystem):
  import std/syncio

# we support 'cmpIgnoreStyle' natively for efficiency:
from strutils import cmpIgnoreStyle, contains

proc listDirs(a: VmArgs, filter: set[PathComponent]) =
  let dir = getString(a, 0)
  var result: seq[string] = @[]
  for kind, path in walkDir(dir):
    if kind in filter: result.add path
  setResult(a, result)

proc setupVM*(module: PSym; cache: IdentCache; scriptName: string;
              graph: ModuleGraph; idgen: IdGenerator): PEvalContext =
  # For Nimble we need to export 'setupVM'.
  result = newCtx(module, cache, graph, idgen)
  result.mode = emRepl
  registerAdditionalOps(result)
  let conf = graph.config

  # captured vars:
  var errorMsg: string
  var vthisDir = scriptName.splitFile.dir

  template cbconf(name, body) {.dirty.} =
    result.registerCallback "stdlib.system." & astToStr(name),
      proc (a: VmArgs) =
        body

  template cbexc(name, exc, body) {.dirty.} =
    result.registerCallback "stdlib.system." & astToStr(name),
      proc (a: VmArgs) =
        errorMsg = ""
        try:
          body
        except exc:
          errorMsg = getCurrentExceptionMsg()

  template cbos(name, body) {.dirty.} =
    cbexc(name, OSError, body)

  # Idea: Treat link to file as a file, but ignore link to directory to prevent
  # endless recursions out of the box.
  cbos listFilesImpl:
    listDirs(a, {pcFile, pcLinkToFile})
  cbos listDirsImpl:
    listDirs(a, {pcDir})
  cbos removeDir:
    if defined(nimsuggest) or graph.config.cmd == cmdCheck:
      discard
    else:
      os.removeDir(getString(a, 0), getBool(a, 1))
  cbos removeFile:
    if defined(nimsuggest) or graph.config.cmd == cmdCheck:
      discard
    else:
      os.removeFile getString(a, 0)
  cbos createDir:
    os.createDir getString(a, 0)

  result.registerCallback "stdlib.system.getError",
    proc (a: VmArgs) = setResult(a, errorMsg)

  cbos setCurrentDir:
    os.setCurrentDir getString(a, 0)
  cbos getCurrentDir:
    setResult(a, os.getCurrentDir())
  cbos moveFile:
    if defined(nimsuggest) or graph.config.cmd == cmdCheck:
      discard
    else:
      os.moveFile(getString(a, 0), getString(a, 1))
  cbos moveDir:
    if defined(nimsuggest) or graph.config.cmd == cmdCheck:
      discard
    else:
      os.moveDir(getString(a, 0), getString(a, 1))
  cbos copyFile:
    if defined(nimsuggest) or graph.config.cmd == cmdCheck:
      discard
    else:
      os.copyFile(getString(a, 0), getString(a, 1))
  cbos copyDir:
    if defined(nimsuggest) or graph.config.cmd == cmdCheck:
      discard
    else:
      os.copyDir(getString(a, 0), getString(a, 1))
  cbos getLastModificationTime:
    setResult(a, getLastModificationTime(getString(a, 0)).toUnix)
  cbos findExe:
    setResult(a, os.findExe(getString(a, 0)))

  cbos rawExec:
    if defined(nimsuggest) or graph.config.cmd == cmdCheck:
      discard
    else:
      setResult(a, osproc.execCmd getString(a, 0))

  cbconf getEnv:
    setResult(a, os.getEnv(a.getString 0, a.getString 1))
  cbconf existsEnv:
    setResult(a, os.existsEnv(a.getString 0))
  cbconf putEnv:
    os.putEnv(a.getString 0, a.getString 1)
  cbconf delEnv:
    os.delEnv(a.getString 0)
  cbconf dirExists:
    setResult(a, os.dirExists(a.getString 0))
  cbconf fileExists:
    setResult(a, os.fileExists(a.getString 0))

  cbconf projectName:
    setResult(a, conf.projectName)
  cbconf projectDir:
    setResult(a, conf.projectPath.string)
  cbconf projectPath:
    setResult(a, conf.projectFull.string)
  cbconf thisDir:
    setResult(a, vthisDir)
  cbconf put:
    options.setConfigVar(conf, getString(a, 0), getString(a, 1))
  cbconf get:
    setResult(a, options.getConfigVar(conf, a.getString 0))
  cbconf exists:
    setResult(a, options.existsConfigVar(conf, a.getString 0))
  cbconf nimcacheDir:
    setResult(a, options.getNimcacheDir(conf).string)
  cbconf paramStr:
    setResult(a, os.paramStr(int a.getInt 0))
  cbconf paramCount:
    setResult(a, os.paramCount())
  cbconf cmpIgnoreStyle:
    setResult(a, strutils.cmpIgnoreStyle(a.getString 0, a.getString 1))
  cbconf cmpIgnoreCase:
    setResult(a, strutils.cmpIgnoreCase(a.getString 0, a.getString 1))
  cbconf setCommand:
    conf.setCommandEarly(a.getString 0)
    let arg = a.getString 1
    incl(conf.globalOptions, optWasNimscript)
    if arg.len > 0: setFromProjectName(conf, arg)
  cbconf getCommand:
    setResult(a, conf.command)
  cbconf switch:
    processSwitch(a.getString 0, a.getString 1, passPP, module.info, conf)
  cbconf hintImpl:
    processSpecificNote(a.getString 0, wHint, passPP, module.info,
      a.getString 1, conf)
  cbconf warningImpl:
    processSpecificNote(a.getString 0, wWarning, passPP, module.info,
      a.getString 1, conf)
  cbconf patchFile:
    let key = a.getString(0) & "_" & a.getString(1)
    var val = a.getString(2).addFileExt(NimExt)
    if {'$', '~'} in val:
      val = pathSubs(conf, val, vthisDir)
    elif not isAbsolute(val):
      val = vthisDir / val
    conf.moduleOverrides[key] = val
  cbconf selfExe:
    setResult(a, os.getAppFilename())
  cbconf cppDefine:
    options.cppDefine(conf, a.getString(0))
  cbexc stdinReadLine, EOFError:
    if defined(nimsuggest) or graph.config.cmd == cmdCheck:
      discard
    else:
      setResult(a, "")
      setResult(a, stdin.readLine())
  cbexc stdinReadAll, EOFError:
    if defined(nimsuggest) or graph.config.cmd == cmdCheck:
      discard
    else:
      setResult(a, "")
      setResult(a, stdin.readAll())

proc runNimScript*(cache: IdentCache; scriptName: AbsoluteFile;
                   idgen: IdGenerator;
                   freshDefines=true; conf: ConfigRef, stream: PLLStream) =
  let oldSymbolFiles = conf.symbolFiles
  conf.symbolFiles = disabledSf

  let graph = newModuleGraph(cache, conf)
  connectCallbacks(graph)
  if freshDefines: initDefines(conf.symbols)

  defineSymbol(conf.symbols, "nimscript")
  defineSymbol(conf.symbols, "nimconfig")
  registerPass(graph, semPass)
  registerPass(graph, evalPass)

  conf.searchPaths.add(conf.libpath)

  let oldGlobalOptions = conf.globalOptions
  let oldSelectedGC = conf.selectedGC
  undefSymbol(conf.symbols, "nimv2")
  conf.globalOptions.excl {optTinyRtti, optOwnedRefs, optSeqDestructors}
  conf.selectedGC = gcUnselected

  var m = graph.makeModule(scriptName)
  incl(m.flags, sfMainModule)
  var vm = setupVM(m, cache, scriptName.string, graph, idgen)
  graph.vm = vm

  graph.compileSystemModule()
  discard graph.processModule(m, vm.idgen, stream)

  # watch out, "newruntime" can be set within NimScript itself and then we need
  # to remember this:
  if conf.selectedGC == gcUnselected:
    conf.selectedGC = oldSelectedGC
  if optOwnedRefs in oldGlobalOptions:
    conf.globalOptions.incl {optTinyRtti, optOwnedRefs, optSeqDestructors}
    defineSymbol(conf.symbols, "nimv2")
  if conf.selectedGC in {gcArc, gcOrc}:
    conf.globalOptions.incl {optTinyRtti, optSeqDestructors}
    defineSymbol(conf.symbols, "nimv2")

  # ensure we load 'system.nim' again for the real non-config stuff!
  resetSystemArtifacts(graph)
  # do not remove the defined symbols
  #initDefines()
  undefSymbol(conf.symbols, "nimscript")
  undefSymbol(conf.symbols, "nimconfig")
  conf.symbolFiles = oldSymbolFiles
lass="c1">// subtract r/m32 from r32 const uint8_t modrm = next(); const uint8_t arg1 = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "subtract r/m32 from " << rname(arg1) << end(); const int32_t* signed_arg2 = effective_address(modrm); const int32_t signed_result = Reg[arg1].i - *signed_arg2; SF = (signed_result < 0); ZF = (signed_result == 0); int64_t signed_full_result = static_cast<int64_t>(Reg[arg1].i) - *signed_arg2; OF = (signed_result != signed_full_result); // set CF uint32_t unsigned_arg2 = static_cast<uint32_t>(*signed_arg2); uint32_t unsigned_result = Reg[arg1].u - unsigned_arg2; uint64_t unsigned_full_result = static_cast<uint64_t>(Reg[arg1].u) - unsigned_arg2; CF = (unsigned_result != unsigned_full_result); trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); Reg[arg1].i = signed_result; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[arg1].i << end(); break; } :(code) void test_subtract_mem_at_r32_from_r32_signed_overflow() { Reg[EAX].i = 0x2000; Reg[EBX].i = 0x80000000; // smallest negative signed integer run( "== code 0x1\n" // op ModR/M SIB displacement immediate " 2b 18 \n" // subtract *EAX from EBX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) "== data 0x2000\n" "ff ff ff 7f\n" // largest positive signed integer ); CHECK_TRACE_CONTENTS( "run: subtract r/m32 from EBX\n" "run: effective address is 0x00002000 (EAX)\n" "run: effective address contains 7fffffff\n" "run: SF=0; ZF=0; CF=0; OF=1\n" "run: storing 0x00000001\n" ); } void test_subtract_mem_at_r32_from_r32_unsigned_overflow() { Reg[EAX].i = 0x2000; Reg[EBX].i = 0; run( "== code 0x1\n" // op ModR/M SIB displacement immediate " 2b 18 \n" // subtract *EAX from EBX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) "== data 0x2000\n" "01 00 00 00\n" // 1 ); CHECK_TRACE_CONTENTS( "run: subtract r/m32 from EBX\n" "run: effective address is 0x00002000 (EAX)\n" "run: effective address contains 1\n" "run: SF=1; ZF=0; CF=1; OF=0\n" "run: storing 0xffffffff\n" ); } void test_subtract_mem_at_r32_from_r32_signed_and_unsigned_overflow() { Reg[EAX].i = 0x2000; Reg[EBX].i = 0; run( "== code 0x1\n" // op ModR/M SIB displacement immediate " 2b 18 \n" // subtract *EAX from EBX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) "== data 0x2000\n" "00 00 00 80\n" // smallest negative signed integer ); CHECK_TRACE_CONTENTS( "run: subtract r/m32 from EBX\n" "run: effective address is 0x00002000 (EAX)\n" "run: effective address contains 80000000\n" "run: SF=1; ZF=0; CF=1; OF=1\n" "run: storing 0x80000000\n" ); } //:: and :(code) void test_and_r32_with_mem_at_r32() { Reg[EAX].i = 0x2000; Reg[EBX].i = 0xff; run( "== code 0x1\n" // op ModR/M SIB displacement immediate " 21 18 \n" // and EBX with *EAX // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX) "== data 0x2000\n" "0d 0c 0b 0a\n" // 0x0a0b0c0d ); CHECK_TRACE_CONTENTS( "run: and EBX with r/m32\n" "run: effective address is 0x00002000 (EAX)\n" "run: storing 0x0000000d\n" ); } //: :(before "End Initialize Op Names") put_new(Name, "23", "r32 = bitwise AND of r32 with rm32 (and)"); :(code) void test_and_mem_at_r32_with_r32() { Reg[EAX].i = 0x2000; Reg[EBX].i = 0x0a0b0c0d; run( "== code 0x1\n" // op ModR/M SIB displacement immediate " 23 18 \n" // and *EAX with EBX // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX) "== data 0x2000\n" "ff 00 00 00\n" // 0x000000ff ); CHECK_TRACE_CONTENTS( "run: and r/m32 with EBX\n" "run: effective address is 0x00002000 (EAX)\n" "run: storing 0x0000000d\n" ); } :(before "End Single-Byte Opcodes") case 0x23: { // and r/m32 with r32 const uint8_t modrm = next(); const uint8_t arg1 = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "and r/m32 with " << rname(arg1) << end(); // bitwise ops technically operate on unsigned numbers, but it makes no // difference const int32_t* signed_arg2 = effective_address(modrm); Reg[arg1].i &= *signed_arg2; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[arg1].i << end(); SF = (Reg[arg1].i >> 31); ZF = (Reg[arg1].i == 0); CF = false; OF = false; trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } //:: or :(code) void test_or_r32_with_mem_at_r32() { Reg[EAX].i = 0x2000; Reg[EBX].i = 0xa0b0c0d0; run( "== code 0x1\n" // op ModR/M SIB displacement immediate " 09 18 #\n" // EBX with *EAX // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX) "== data 0x2000\n" "0d 0c 0b 0a\n" // 0x0a0b0c0d ); CHECK_TRACE_CONTENTS( "run: or EBX with r/m32\n" "run: effective address is 0x00002000 (EAX)\n" "run: storing 0xaabbccdd\n" ); } //: :(before "End Initialize Op Names") put_new(Name, "0b", "r32 = bitwise OR of r32 with rm32 (or)"); :(code) void test_or_mem_at_r32_with_r32() { Reg[EAX].i = 0x2000; Reg[EBX].i = 0xa0b0c0d0; run( "== code 0x1\n" // op ModR/M SIB displacement immediate " 0b 18 \n" // or *EAX with EBX // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX) "== data 0x2000\n" "0d 0c 0b 0a\n" // 0x0a0b0c0d ); CHECK_TRACE_CONTENTS( "run: or r/m32 with EBX\n" "run: effective address is 0x00002000 (EAX)\n" "run: storing 0xaabbccdd\n" ); } :(before "End Single-Byte Opcodes") case 0x0b: { // or r/m32 with r32 const uint8_t modrm = next(); const uint8_t arg1 = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "or r/m32 with " << rname(arg1) << end(); // bitwise ops technically operate on unsigned numbers, but it makes no // difference const int32_t* signed_arg2 = effective_address(modrm); Reg[arg1].i |= *signed_arg2; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[arg1].i << end(); SF = (Reg[arg1].i >> 31); ZF = (Reg[arg1].i == 0); CF = false; OF = false; trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } //:: xor :(code) void test_xor_r32_with_mem_at_r32() { Reg[EAX].i = 0x2000; Reg[EBX].i = 0xa0b0c0d0; run( "== code 0x1\n" // op ModR/M SIB displacement immediate " 31 18 \n" // xor EBX with *EAX "== data 0x2000\n" "0d 0c bb aa\n" // 0xaabb0c0d ); CHECK_TRACE_CONTENTS( "run: xor EBX with r/m32\n" "run: effective address is 0x00002000 (EAX)\n" "run: storing 0x0a0bccdd\n" ); } //: :(before "End Initialize Op Names") put_new(Name, "33", "r32 = bitwise XOR of r32 with rm32 (xor)"); :(code) void test_xor_mem_at_r32_with_r32() { Reg[EAX].i = 0x2000; Reg[EBX].i = 0xa0b0c0d0; run( "== code 0x1\n" // op ModR/M SIB displacement immediate " 33 18 \n" // xor *EAX with EBX // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX) "== data 0x2000\n" "0d 0c 0b 0a\n" // 0x0a0b0c0d ); CHECK_TRACE_CONTENTS( "run: xor r/m32 with EBX\n" "run: effective address is 0x00002000 (EAX)\n" "run: storing 0xaabbccdd\n" ); } :(before "End Single-Byte Opcodes") case 0x33: { // xor r/m32 with r32 const uint8_t modrm = next(); const uint8_t arg1 = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "xor r/m32 with " << rname(arg1) << end(); // bitwise ops technically operate on unsigned numbers, but it makes no // difference const int32_t* signed_arg2 = effective_address(modrm); Reg[arg1].i |= *signed_arg2; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[arg1].i << end(); SF = (Reg[arg1].i >> 31); ZF = (Reg[arg1].i == 0); CF = false; OF = false; trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } //:: not :(code) void test_not_of_mem_at_r32() { Reg[EBX].i = 0x2000; run( "== code 0x1\n" // op ModR/M SIB displacement immediate " f7 13 \n" // not *EBX // ModR/M in binary: 00 (indirect mode) 010 (subop not) 011 (dest EBX) "== data 0x2000\n" "ff 00 0f 0f\n" // 0x0f0f00ff ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: effective address is 0x00002000 (EBX)\n" "run: subop: not\n" "run: storing 0xf0f0ff00\n" ); } //:: compare (cmp) :(code) void test_compare_mem_at_r32_with_r32_greater() { Reg[EAX].i = 0x2000; Reg[EBX].i = 0x0a0b0c07; run( "== code 0x1\n" // op ModR/M SIB displacement immediate " 39 18 \n" // compare *EAX with EBX // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX) "== data 0x2000\n" "0d 0c 0b 0a\n" // 0x0a0b0c0d ); CHECK_TRACE_CONTENTS( "run: compare r/m32 with EBX\n" "run: effective address is 0x00002000 (EAX)\n" "run: SF=0; ZF=0; CF=0; OF=0\n" ); } :(code) void test_compare_mem_at_r32_with_r32_lesser() { Reg[EAX].i = 0x2000; Reg[EBX].i = 0x0a0b0c0d; run( "== code 0x1\n" // op ModR/M SIB displacement immediate " 39 18 \n" // compare *EAX with EBX // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX) "== data 0x2000\n" "07 0c 0b 0a\n" // 0x0a0b0c0d ); CHECK_TRACE_CONTENTS( "run: compare r/m32 with EBX\n" "run: effective address is 0x00002000 (EAX)\n" "run: SF=1; ZF=0; CF=1; OF=0\n" ); } :(code) void test_compare_mem_at_r32_with_r32_equal() { Reg[EAX].i = 0x2000; Reg[EBX].i = 0x0a0b0c0d; run( "== code 0x1\n" // op ModR/M SIB displacement immediate " 39 18 \n" // compare *EAX and EBX // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX) "== data 0x2000\n" "0d 0c 0b 0a\n" // 0x0a0b0c0d ); CHECK_TRACE_CONTENTS( "run: compare r/m32 with EBX\n" "run: effective address is 0x00002000 (EAX)\n" "run: SF=0; ZF=1; CF=0; OF=0\n" ); } //: :(before "End Initialize Op Names") put_new(Name, "3b", "compare: set SF if r32 < rm32 (cmp)"); :(code) void test_compare_r32_with_mem_at_r32_greater() { Reg[EAX].i = 0x2000; Reg[EBX].i = 0x0a0b0c0d; run( "== code 0x1\n" // op ModR/M SIB displacement immediate " 3b 18 \n" // compare EBX with *EAX // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX) "== data 0x2000\n" "07 0c 0b 0a\n" // 0x0a0b0c07 ); CHECK_TRACE_CONTENTS( "run: compare EBX with r/m32\n" "run: effective address is 0x00002000 (EAX)\n" "run: SF=0; ZF=0; CF=0; OF=0\n" ); } :(before "End Single-Byte Opcodes") case 0x3b: { // set SF if r32 < r/m32 const uint8_t modrm = next(); const uint8_t reg1 = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "compare " << rname(reg1) << " with r/m32" << end(); const int32_t* signed_arg2 = effective_address(modrm); const int32_t signed_difference = Reg[reg1].i - *signed_arg2; SF = (signed_difference < 0); ZF = (signed_difference == 0); int64_t full_signed_difference = static_cast<int64_t>(Reg[reg1].i) - *signed_arg2; OF = (signed_difference != full_signed_difference); const uint32_t unsigned_arg2 = static_cast<uint32_t>(*signed_arg2); const uint32_t unsigned_difference = Reg[reg1].u - unsigned_arg2; const uint64_t full_unsigned_difference = static_cast<uint64_t>(Reg[reg1].u) - unsigned_arg2; CF = (unsigned_difference != full_unsigned_difference); trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } :(code) void test_compare_r32_with_mem_at_r32_lesser_unsigned_and_signed() { Reg[EAX].i = 0x2000; Reg[EBX].i = 0x0a0b0c07; run( "== code 0x1\n" // op ModR/M SIB displacement immediate " 3b 18 \n" // compare EBX with *EAX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) "== data 0x2000\n" "0d 0c 0b 0a\n" // 0x0a0b0c0d ); CHECK_TRACE_CONTENTS( "run: compare EBX with r/m32\n" "run: effective address is 0x00002000 (EAX)\n" "run: effective address contains a0b0c0d\n" "run: SF=1; ZF=0; CF=1; OF=0\n" ); } void test_compare_r32_with_mem_at_r32_lesser_unsigned_and_signed_due_to_overflow() { Reg[EAX].i = 0x2000; Reg[EBX].i = 0x7fffffff; // largest positive signed integer run( "== code 0x1\n" // op ModR/M SIB displacement immediate " 3b 18 \n" // compare EBX with *EAX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) "== data 0x2000\n" "00 00 00 80\n" // smallest negative signed integer ); CHECK_TRACE_CONTENTS( "run: compare EBX with r/m32\n" "run: effective address is 0x00002000 (EAX)\n" "run: effective address contains 80000000\n" "run: SF=1; ZF=0; CF=1; OF=1\n" ); } void test_compare_r32_with_mem_at_r32_lesser_signed() { Reg[EAX].i = 0x2000; Reg[EBX].i = 0xffffffff; // -1 run( "== code 0x1\n" // op ModR/M SIB displacement immediate " 3b 18 \n" // compare EBX with *EAX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) "== data 0x2000\n" "01 00 00 00\n" // 1 ); CHECK_TRACE_CONTENTS( "run: compare EBX with r/m32\n" "run: effective address is 0x00002000 (EAX)\n" "run: effective address contains 1\n" "run: SF=1; ZF=0; CF=0; OF=0\n" ); } void test_compare_r32_with_mem_at_r32_lesser_unsigned() { Reg[EAX].i = 0x2000; Reg[EBX].i = 0x00000001; // 1 run( "== code 0x1\n" // op ModR/M SIB displacement immediate " 3b 18 \n" // compare EBX with *EAX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) "== data 0x2000\n" "ff ff ff ff\n" // -1 ); CHECK_TRACE_CONTENTS( "run: compare EBX with r/m32\n" "run: effective address is 0x00002000 (EAX)\n" "run: effective address contains ffffffff\n" "run: SF=0; ZF=0; CF=1; OF=0\n" ); } void test_compare_r32_with_mem_at_r32_equal() { Reg[EAX].i = 0x2000; Reg[EBX].i = 0x0a0b0c0d; run( "== code 0x1\n" // op ModR/M SIB displacement immediate " 3b 18 \n" // compare EBX with *EAX // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX) "== data 0x2000\n" "0d 0c 0b 0a\n" // 0x0a0b0c0d ); CHECK_TRACE_CONTENTS( "run: compare EBX with r/m32\n" "run: effective address is 0x00002000 (EAX)\n" "run: SF=0; ZF=1; CF=0; OF=0\n" ); } //:: copy (mov) void test_copy_r32_to_mem_at_r32() { Reg[EBX].i = 0xaf; Reg[EAX].i = 0x60; run( "== code 0x1\n" // op ModR/M SIB displacement immediate " 89 18 \n" // copy EBX to *EAX // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: copy EBX to r/m32\n" "run: effective address is 0x00000060 (EAX)\n" "run: storing 0x000000af\n" ); } //: :(before "End Initialize Op Names") put_new(Name, "8b", "copy rm32 to r32 (mov)"); :(code) void test_copy_mem_at_r32_to_r32() { Reg[EAX].i = 0x2000; run( "== code 0x1\n" // op ModR/M SIB displacement immediate " 8b 18 \n" // copy *EAX to EBX "== data 0x2000\n" "af 00 00 00\n" // 0x000000af ); CHECK_TRACE_CONTENTS( "run: copy r/m32 to EBX\n" "run: effective address is 0x00002000 (EAX)\n" "run: storing 0x000000af\n" ); } :(before "End Single-Byte Opcodes") case 0x8b: { // copy r32 to r/m32 const uint8_t modrm = next(); const uint8_t rdest = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "copy r/m32 to " << rname(rdest) << end(); const int32_t* src = effective_address(modrm); Reg[rdest].i = *src; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *src << end(); break; } //:: jump :(code) void test_jump_mem_at_r32() { Reg[EAX].i = 0x2000; run( "== code 0x1\n" // op ModR/M SIB displacement immediate " ff 20 \n" // jump to *EAX // ModR/M in binary: 00 (indirect mode) 100 (jump to r/m32) 000 (src EAX) " b8 00 00 00 01\n" " b8 00 00 00 02\n" "== data 0x2000\n" "08 00 00 00\n" // 0x00000008 ); CHECK_TRACE_CONTENTS( "run: 0x00000001 opcode: ff\n" "run: jump to r/m32\n" "run: effective address is 0x00002000 (EAX)\n" "run: jumping to 0x00000008\n" "run: 0x00000008 opcode: b8\n" ); CHECK_TRACE_DOESNT_CONTAIN("run: 0x00000003 opcode: b8"); } :(before "End Op ff Subops") case 4: { // jump to r/m32 trace(Callstack_depth+1, "run") << "jump to r/m32" << end(); const int32_t* arg2 = effective_address(modrm); EIP = *arg2; trace(Callstack_depth+1, "run") << "jumping to 0x" << HEXWORD << EIP << end(); break; } //:: push :(code) void test_push_mem_at_r32() { Reg[EAX].i = 0x2000; Mem.push_back(vma(0xbd000000)); // manually allocate memory Reg[ESP].u = 0xbd000014; run( "== code 0x1\n" // op ModR/M SIB displacement immediate " ff 30 \n" // push *EAX to stack "== data 0x2000\n" "af 00 00 00\n" // 0x000000af ); CHECK_TRACE_CONTENTS( "run: push r/m32\n" "run: effective address is 0x00002000 (EAX)\n" "run: decrementing ESP to 0xbd000010\n" "run: pushing value 0x000000af\n" ); } :(before "End Op ff Subops") case 6: { // push r/m32 to stack trace(Callstack_depth+1, "run") << "push r/m32" << end(); const int32_t* val = effective_address(modrm); push(*val); break; } //:: pop :(before "End Initialize Op Names") put_new(Name, "8f", "pop top of stack to rm32 (pop)"); :(code) void test_pop_mem_at_r32() { Reg[EAX].i = 0x60; Mem.push_back(vma(0xbd000000)); // manually allocate memory Reg[ESP].u = 0xbd000000; write_mem_i32(0xbd000000, 0x00000030); run( "== code 0x1\n" // op ModR/M SIB displacement immediate " 8f 00 \n" // pop stack into *EAX // ModR/M in binary: 00 (indirect mode) 000 (pop r/m32) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: pop into r/m32\n" "run: effective address is 0x00000060 (EAX)\n" "run: popping value 0x00000030\n" "run: incrementing ESP to 0xbd000004\n" ); } :(before "End Single-Byte Opcodes") case 0x8f: { // pop stack into r/m32 const uint8_t modrm = next(); const uint8_t subop = (modrm>>3)&0x7; switch (subop) { case 0: { trace(Callstack_depth+1, "run") << "pop into r/m32" << end(); int32_t* dest = effective_address(modrm); *dest = pop(); break; } } break; } //:: special-case for loading address from disp32 rather than register :(code) void test_add_r32_to_mem_at_displacement() { Reg[EBX].i = 0x10; // source run( "== code 0x1\n" // op ModR/M SIB displacement immediate " 01 1d 00 20 00 00 \n" // add EBX to *0x2000 // ModR/M in binary: 00 (indirect mode) 011 (src EBX) 101 (dest in disp32) "== data 0x2000\n" "01 00 00 00\n" // 0x00000001 ); CHECK_TRACE_CONTENTS( "run: add EBX to r/m32\n" "run: effective address is 0x00002000 (disp32)\n" "run: storing 0x00000011\n" ); } :(before "End Mod 0 Special-cases(addr)") case 5: // exception: mod 0b00 rm 0b101 => incoming disp32 addr = next32(); trace(Callstack_depth+1, "run") << "effective address is 0x" << HEXWORD << addr << " (disp32)" << end(); break; //: :(code) void test_add_r32_to_mem_at_r32_plus_disp8() { Reg[EBX].i = 0x10; // source Reg[EAX].i = 0x1ffe; // dest run( "== code 0x1\n" // op ModR/M SIB displacement immediate " 01 58 02 \n" // add EBX to *(EAX+2) // ModR/M in binary: 01 (indirect+disp8 mode) 011 (src EBX) 000 (dest EAX) "== data 0x2000\n" "01 00 00 00\n" // 0x00000001 ); CHECK_TRACE_CONTENTS( "run: add EBX to r/m32\n" "run: effective address is initially 0x00001ffe (EAX)\n" "run: effective address is 0x00002000 (after adding disp8)\n" "run: storing 0x00000011\n" ); } :(before "End Mod Special-cases(addr)") case 1: // indirect + disp8 addressing switch (rm) { default: addr = Reg[rm].u; trace(Callstack_depth+1, "run") << "effective address is initially 0x" << HEXWORD << addr << " (" << rname(rm) << ")" << end(); break; // End Mod 1 Special-cases(addr) } if (addr > 0) { addr += static_cast<int8_t>(next()); trace(Callstack_depth+1, "run") << "effective address is 0x" << HEXWORD << addr << " (after adding disp8)" << end(); } break; :(code) void test_add_r32_to_mem_at_r32_plus_negative_disp8() { Reg[EBX].i = 0x10; // source Reg[EAX].i = 0x2001; // dest run( "== code 0x1\n" // op ModR/M SIB displacement immediate " 01 58 ff \n" // add EBX to *(EAX-1) // ModR/M in binary: 01 (indirect+disp8 mode) 011 (src EBX) 000 (dest EAX) "== data 0x2000\n" "01 00 00 00\n" // 0x00000001 ); CHECK_TRACE_CONTENTS( "run: add EBX to r/m32\n" "run: effective address is initially 0x00002001 (EAX)\n" "run: effective address is 0x00002000 (after adding disp8)\n" "run: storing 0x00000011\n" ); } //: :(code) void test_add_r32_to_mem_at_r32_plus_disp32() { Reg[EBX].i = 0x10; // source Reg[EAX].i = 0x1ffe; // dest run( "== code 0x1\n" // op ModR/M SIB displacement immediate " 01 98 02 00 00 00 \n" // add EBX to *(EAX+2) // ModR/M in binary: 10 (indirect+disp32 mode) 011 (src EBX) 000 (dest EAX) "== data 0x2000\n" "01 00 00 00\n" // 0x00000001 ); CHECK_TRACE_CONTENTS( "run: add EBX to r/m32\n" "run: effective address is initially 0x00001ffe (EAX)\n" "run: effective address is 0x00002000 (after adding disp32)\n" "run: storing 0x00000011\n" ); } :(before "End Mod Special-cases(addr)") case 2: // indirect + disp32 addressing switch (rm) { default: addr = Reg[rm].u; trace(Callstack_depth+1, "run") << "effective address is initially 0x" << HEXWORD << addr << " (" << rname(rm) << ")" << end(); break; // End Mod 2 Special-cases(addr) } if (addr > 0) { addr += next32(); trace(Callstack_depth+1, "run") << "effective address is 0x" << HEXWORD << addr << " (after adding disp32)" << end(); } break; :(code) void test_add_r32_to_mem_at_r32_plus_negative_disp32() { Reg[EBX].i = 0x10; // source Reg[EAX].i = 0x2001; // dest run( "== code 0x1\n" // op ModR/M SIB displacement immediate " 01 98 ff ff ff ff \n" // add EBX to *(EAX-1) // ModR/M in binary: 10 (indirect+disp32 mode) 011 (src EBX) 000 (dest EAX) "== data 0x2000\n" "01 00 00 00\n" // 0x00000001 ); CHECK_TRACE_CONTENTS( "run: add EBX to r/m32\n" "run: effective address is initially 0x00002001 (EAX)\n" "run: effective address is 0x00002000 (after adding disp32)\n" "run: storing 0x00000011\n" ); } //:: copy address (lea) :(before "End Initialize Op Names") put_new(Name, "8d", "copy address in rm32 into r32 (lea)"); :(code) void test_copy_address() { Reg[EAX].u = 0x2000; run( "== code 0x1\n" // op ModR/M SIB displacement immediate " 8d 18 \n" // copy address in EAX into EBX // ModR/M in binary: 00 (indirect mode) 011 (dest EBX) 000 (src EAX) ); CHECK_TRACE_CONTENTS( "run: copy address into EBX\n" "run: effective address is 0x00002000 (EAX)\n" ); } :(before "End Single-Byte Opcodes") case 0x8d: { // copy address of m32 to r32 const uint8_t modrm = next(); const uint8_t arg1 = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "copy address into " << rname(arg1) << end(); Reg[arg1].u = effective_address_number(modrm); break; }