summary refs log tree commit diff stats
path: root/compiler/semcall.nim
blob: a33ad90130ef51e72b5d009c068dbe596c4e2d38 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
msgid ""
msgstr ""
"Date: 1998-08-22 16:12:20-0400\n"
"From: Webmaster Jim <jspath@bcpl.net>\n"
"Content-Type: text/plain; charset=\n"
"Xgettext-Options: --default-domain=po/de\n"
"Files: src/LYMain.c\n"

#: src/LYMain.c:2502
msgid "%s Version %s %s"
msgstr "%s Versi�n %s"

#: src/LYMain.c:2504
msgid "Copyrights held by the University of Kansas, CERN, and other contributors.\n"
msgstr "El copyright sostuvo al lado de la universidad de Kansas, de la CERN, y de otros contribuidores.\n"

#: src/LYMain.c:2506
msgid "Distributed under the GNU General Public License.\n"
msgstr "Distribuido bajo la licencia el p�blico en general de GNU.\n"

#: src/LYMain.c:2508
msgid ""
"See http://lynx.browser.org/ and the online help for more information.\n"
"\n"
msgstr ""
"Vea http://lynx.browser.org/ y la ayuda en l�nea para m�s informaci�n.\n"
"\n"
='#n282'>282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
#
#
#           The Nim Compiler
#        (c) Copyright 2013 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## This module implements semantic checking for calls.
# included from sem.nim

from algorithm import sort

proc sameMethodDispatcher(a, b: PSym): bool =
  result = false
  if a.kind == skMethod and b.kind == skMethod:
    var aa = lastSon(a.ast)
    var bb = lastSon(b.ast)
    if aa.kind == nkSym and bb.kind == nkSym:
      if aa.sym == bb.sym:
        result = true
    else:
      discard
      # generics have no dispatcher yet, so we need to compare the method
      # names; however, the names are equal anyway because otherwise we
      # wouldn't even consider them to be overloaded. But even this does
      # not work reliably! See tmultim6 for an example:
      # method collide[T](a: TThing, b: TUnit[T]) is instantiated and not
      # method collide[T](a: TUnit[T], b: TThing)! This means we need to
      # *instantiate* every candidate! However, we don't keep more than 2-3
      # candidates around so we cannot implement that for now. So in order
      # to avoid subtle problems, the call remains ambiguous and needs to
      # be disambiguated by the programmer; this way the right generic is
      # instantiated.

proc determineType(c: PContext, s: PSym)

proc initCandidateSymbols(c: PContext, headSymbol: PNode,
                          initialBinding: PNode,
                          filter: TSymKinds,
                          best, alt: var TCandidate,
                          o: var TOverloadIter,
                          diagnostics: bool): seq[tuple[s: PSym, scope: int]] =
  result = @[]
  var symx = initOverloadIter(o, c, headSymbol)
  while symx != nil:
    if symx.kind in filter:
      result.add((symx, o.lastOverloadScope))
    symx = nextOverloadIter(o, c, headSymbol)
  if result.len > 0:
    initCandidate(c, best, result[0].s, initialBinding,
                  result[0].scope, diagnostics)
    initCandidate(c, alt, result[0].s, initialBinding,
                  result[0].scope, diagnostics)
    best.state = csNoMatch

proc pickBestCandidate(c: PContext, headSymbol: PNode,
                       n, orig: PNode,
                       initialBinding: PNode,
                       filter: TSymKinds,
                       best, alt: var TCandidate,
                       errors: var CandidateErrors,
                       diagnosticsFlag: bool,
                       errorsEnabled: bool) =
  var o: TOverloadIter
  var sym = initOverloadIter(o, c, headSymbol)
  var scope = o.lastOverloadScope
  # Thanks to the lazy semchecking for operands, we need to check whether
  # 'initCandidate' modifies the symbol table (via semExpr).
  # This can occur in cases like 'init(a, 1, (var b = new(Type2); b))'
  let counterInitial = c.currentScope.symbols.counter
  var syms: seq[tuple[s: PSym, scope: int]]
  var noSyms = true
  var nextSymIndex = 0
  while sym != nil:
    if sym.kind in filter:
      # Initialise 'best' and 'alt' with the first available symbol
      initCandidate(c, best, sym, initialBinding, scope, diagnosticsFlag)
      initCandidate(c, alt, sym, initialBinding, scope, diagnosticsFlag)
      best.state = csNoMatch
      break
    else:
      sym = nextOverloadIter(o, c, headSymbol)
      scope = o.lastOverloadScope
  var z: TCandidate
  while sym != nil:
    if sym.kind notin filter:
      sym = nextOverloadIter(o, c, headSymbol)
      scope = o.lastOverloadScope
      continue
    determineType(c, sym)
    initCandidate(c, z, sym, initialBinding, scope, diagnosticsFlag)
    if c.currentScope.symbols.counter == counterInitial or syms.len != 0:
      matches(c, n, orig, z)
      if z.state == csMatch:
        # little hack so that iterators are preferred over everything else:
        if sym.kind == skIterator: inc(z.exactMatches, 200)
        case best.state
        of csEmpty, csNoMatch: best = z
        of csMatch:
          var cmp = cmpCandidates(best, z)
          if cmp < 0: best = z   # x is better than the best so far
          elif cmp == 0: alt = z # x is as good as the best so far
      elif errorsEnabled or z.diagnosticsEnabled:
        errors.add(CandidateError(
          sym: sym,
          firstMismatch: z.firstMismatch,
          diagnostics: z.diagnostics))
    else:
      # Symbol table has been modified. Restart and pre-calculate all syms
      # before any further candidate init and compare. SLOW, but rare case.
      syms = initCandidateSymbols(c, headSymbol, initialBinding, filter,
                                  best, alt, o, diagnosticsFlag)
      noSyms = false
    if noSyms:
      sym = nextOverloadIter(o, c, headSymbol)
      scope = o.lastOverloadScope
    elif nextSymIndex < syms.len:
      # rare case: retrieve the next pre-calculated symbol
      sym = syms[nextSymIndex].s
      scope = syms[nextSymIndex].scope
      nextSymIndex += 1
    else:
      break

proc effectProblem(f, a: PType; result: var string; c: PContext) =
  if f.kind == tyProc and a.kind == tyProc:
    if tfThread in f.flags and tfThread notin a.flags:
      result.add "\n  This expression is not GC-safe. Annotate the " &
          "proc with {.gcsafe.} to get extended error information."
    elif tfNoSideEffect in f.flags and tfNoSideEffect notin a.flags:
      result.add "\n  This expression can have side effects. Annotate the " &
          "proc with {.noSideEffect.} to get extended error information."
    else:
      case compatibleEffects(f, a)
      of efCompat: discard
      of efRaisesDiffer:
        result.add "\n  The `.raises` requirements differ."
      of efRaisesUnknown:
        result.add "\n  The `.raises` requirements differ. Annotate the " &
            "proc with {.raises: [].} to get extended error information."
      of efTagsDiffer:
        result.add "\n  The `.tags` requirements differ."
      of efTagsUnknown:
        result.add "\n  The `.tags` requirements differ. Annotate the " &
            "proc with {.tags: [].} to get extended error information."
      of efLockLevelsDiffer:
        result.add "\n  The `.locks` requirements differ. Annotate the " &
            "proc with {.locks: 0.} to get extended error information."
      when defined(drnim):
        if not c.graph.compatibleProps(c.graph, f, a):
          result.add "\n  The `.requires` or `.ensures` properties are incompatible."

proc renderNotLValue(n: PNode): string =
  result = $n
  let n = if n.kind == nkHiddenDeref: n[0] else: n
  if n.kind == nkHiddenCallConv and n.len > 1:
    result = $n[0] & "(" & result & ")"
  elif n.kind in {nkHiddenStdConv, nkHiddenSubConv} and n.len == 2:
    result = typeToString(n.typ.skipTypes(abstractVar)) & "(" & result & ")"

proc presentFailedCandidates(c: PContext, n: PNode, errors: CandidateErrors):
                            (TPreferedDesc, string) =
  var prefer = preferName
  # to avoid confusing errors like:
  #   got (SslPtr, SocketHandle)
  #   but expected one of:
  #   openssl.SSL_set_fd(ssl: SslPtr, fd: SocketHandle): cint
  # we do a pre-analysis. If all types produce the same string, we will add
  # module information.
  let proto = describeArgs(c, n, 1, preferName)
  for err in errors:
    var errProto = ""
    let n = err.sym.typ.n
    for i in 1..<n.len:
      var p = n[i]
      if p.kind == nkSym:
        errProto.add(typeToString(p.sym.typ, preferName))
        if i != n.len-1: errProto.add(", ")
      # else: ignore internal error as we're already in error handling mode
    if errProto == proto:
      prefer = preferModuleInfo
      break

  # we pretend procs are attached to the type of the first
  # argument in order to remove plenty of candidates. This is
  # comparable to what C# does and C# is doing fine.
  var filterOnlyFirst = false
  if optShowAllMismatches notin c.config.globalOptions:
    for err in errors:
      if err.firstMismatch.arg > 1:
        filterOnlyFirst = true
        break

  var maybeWrongSpace = false

  var candidatesAll: seq[string]
  var candidates = ""
  var skipped = 0
  for err in errors:
    candidates.setLen 0
    if filterOnlyFirst and err.firstMismatch.arg == 1:
      inc skipped
      continue
    if err.sym.kind in routineKinds and err.sym.ast != nil:
      candidates.add(renderTree(err.sym.ast,
            {renderNoBody, renderNoComments, renderNoPragmas}))
    else:
      candidates.add(getProcHeader(c.config, err.sym, prefer))
    candidates.addDeclaredLocMaybe(c.config, err.sym)
    candidates.add("\n")
    let nArg = if err.firstMismatch.arg < n.len: n[err.firstMismatch.arg] else: nil
    let nameParam = if err.firstMismatch.formal != nil: err.firstMismatch.formal.name.s else: ""
    if n.len > 1:
      candidates.add("  first type mismatch at position: " & $err.firstMismatch.arg)
      # candidates.add "\n  reason: " & $err.firstMismatch.kind # for debugging
      case err.firstMismatch.kind
      of kUnknownNamedParam:
        if nArg == nil:
          candidates.add("\n  unknown named parameter")
        else:
          candidates.add("\n  unknown named parameter: " & $nArg[0])
      of kAlreadyGiven: candidates.add("\n  named param already provided: " & $nArg[0])
      of kPositionalAlreadyGiven: candidates.add("\n  positional param was already given as named param")
      of kExtraArg: candidates.add("\n  extra argument given")
      of kMissingParam: candidates.add("\n  missing parameter: " & nameParam)
      of kTypeMismatch, kVarNeeded:
        doAssert nArg != nil
        var wanted = err.firstMismatch.formal.typ
        doAssert err.firstMismatch.formal != nil
        candidates.add("\n  required type for " & nameParam &  ": ")
        candidates.add typeToString(wanted)
        candidates.addDeclaredLocMaybe(c.config, wanted)
        candidates.add "\n  but expression '"
        if err.firstMismatch.kind == kVarNeeded:
          candidates.add renderNotLValue(nArg)
          candidates.add "' is immutable, not 'var'"
        else:
          candidates.add renderTree(nArg)
          candidates.add "' is of type: "
          var got = nArg.typ
          candidates.add typeToString(got)
          candidates.addDeclaredLocMaybe(c.config, got)
          doAssert wanted != nil
          if got != nil: effectProblem(wanted, got, candidates, c)
      of kUnknown: discard "do not break 'nim check'"
      candidates.add "\n"
      if err.firstMismatch.arg == 1 and nArg.kind == nkTupleConstr and
          n.kind == nkCommand:
        maybeWrongSpace = true
    for diag in err.diagnostics:
      candidates.add(diag & "\n")
    candidatesAll.add candidates
  candidatesAll.sort # fix #13538
  candidates = join(candidatesAll)
  if skipped > 0:
    candidates.add($skipped & " other mismatching symbols have been " &
        "suppressed; compile with --showAllMismatches:on to see them\n")
  if maybeWrongSpace:
    candidates.add("maybe misplaced space between " & renderTree(n[0]) & " and '(' \n")

  result = (prefer, candidates)

const
  errTypeMismatch = "type mismatch: got <"
  errButExpected = "but expected one of: "
  errUndeclaredField = "undeclared field: '$1'"
  errUndeclaredRoutine = "attempting to call undeclared routine: '$1'"
  errBadRoutine = "attempting to call routine: '$1'$2"
  errAmbiguousCallXYZ = "ambiguous call; both $1 and $2 match for: $3"

proc notFoundError*(c: PContext, n: PNode, errors: CandidateErrors) =
  # Gives a detailed error message; this is separated from semOverloadedCall,
  # as semOverlodedCall is already pretty slow (and we need this information
  # only in case of an error).
  if c.config.m.errorOutputs == {}:
    # fail fast:
    globalError(c.config, n.info, "type mismatch")
    return
  if errors.len == 0:
    localError(c.config, n.info, "expression '$1' cannot be called" % n[0].renderTree)
    return

  let (prefer, candidates) = presentFailedCandidates(c, n, errors)
  var result = errTypeMismatch
  result.add(describeArgs(c, n, 1, prefer))
  result.add('>')
  if candidates != "":
    result.add("\n" & errButExpected & "\n" & candidates)
  localError(c.config, n.info, result & "\nexpression: " & $n)

proc bracketNotFoundError(c: PContext; n: PNode) =
  var errors: CandidateErrors = @[]
  var o: TOverloadIter
  let headSymbol = n[0]
  var symx = initOverloadIter(o, c, headSymbol)
  while symx != nil:
    if symx.kind in routineKinds:
      errors.add(CandidateError(sym: symx,
                                firstMismatch: MismatchInfo(),
                                diagnostics: @[],
                                enabled: false))
    symx = nextOverloadIter(o, c, headSymbol)
  if errors.len == 0:
    localError(c.config, n.info, "could not resolve: " & $n)
  else:
    notFoundError(c, n, errors)

proc getMsgDiagnostic(c: PContext, flags: TExprFlags, n, f: PNode): string =
  if c.compilesContextId > 0:
    # we avoid running more diagnostic when inside a `compiles(expr)`, to
    # errors while running diagnostic (see test D20180828T234921), and
    # also avoid slowdowns in evaluating `compiles(expr)`.
    discard
  else:
    var o: TOverloadIter
    var sym = initOverloadIter(o, c, f)
    while sym != nil:
      result &= "\n  found $1" % [getSymRepr(c.config, sym)]
      sym = nextOverloadIter(o, c, f)

  let ident = considerQuotedIdent(c, f, n).s
  if {nfDotField, nfExplicitCall} * n.flags == {nfDotField}:
    let sym = n[1].typ.sym
    var typeHint = ""
    if sym == nil:
      # Perhaps we're in a `compiles(foo.bar)` expression, or
      # in a concept, e.g.:
      #   ExplainedConcept {.explain.} = concept x
      #     x.foo is int
      # We could use: `(c.config $ n[1].info)` to get more context.
      discard
    else:
      typeHint = " for type " & getProcHeader(c.config, sym)
    result = errUndeclaredField % ident & typeHint & " " & result
  else:
    if result.len == 0: result = errUndeclaredRoutine % ident
    else: result = errBadRoutine % [ident, result]

proc resolveOverloads(c: PContext, n, orig: PNode,
                      filter: TSymKinds, flags: TExprFlags,
                      errors: var CandidateErrors,
                      errorsEnabled: bool): TCandidate =
  var initialBinding: PNode
  var alt: TCandidate
  var f = n[0]
  if f.kind == nkBracketExpr:
    # fill in the bindings:
    semOpAux(c, f)
    initialBinding = f
    f = f[0]
  else:
    initialBinding = nil

  template pickBest(headSymbol) =
    pickBestCandidate(c, headSymbol, n, orig, initialBinding,
                      filter, result, alt, errors, efExplain in flags,
                      errorsEnabled)
  pickBest(f)

  let overloadsState = result.state
  if overloadsState != csMatch:
    if c.p != nil and c.p.selfSym != nil:
      # we need to enforce semchecking of selfSym again because it
      # might need auto-deref:
      var hiddenArg = newSymNode(c.p.selfSym)
      hiddenArg.typ = nil
      n.sons.insert(hiddenArg, 1)
      orig.sons.insert(hiddenArg, 1)

      pickBest(f)

      if result.state != csMatch:
        n.sons.delete(1)
        orig.sons.delete(1)
        excl n.flags, nfExprCall
      else: return

    if nfDotField in n.flags:
      internalAssert c.config, f.kind == nkIdent and n.len >= 2

      # leave the op head symbol empty,
      # we are going to try multiple variants
      n.sons[0..1] = [nil, n[1], f]
      orig.sons[0..1] = [nil, orig[1], f]

      template tryOp(x) =
        let op = newIdentNode(getIdent(c.cache, x), n.info)
        n[0] = op
        orig[0] = op
        pickBest(op)

      if nfExplicitCall in n.flags:
        tryOp ".()"

      if result.state in {csEmpty, csNoMatch}:
        tryOp "."

    elif nfDotSetter in n.flags and f.kind == nkIdent and n.len == 3:
      # we need to strip away the trailing '=' here:
      let calleeName = newIdentNode(getIdent(c.cache, f.ident.s[0..^2]), n.info)
      let callOp = newIdentNode(getIdent(c.cache, ".="), n.info)
      n.sons[0..1] = [callOp, n[1], calleeName]
      orig.sons[0..1] = [callOp, orig[1], calleeName]
      pickBest(callOp)

    if overloadsState == csEmpty and result.state == csEmpty:
      if efNoUndeclared notin flags: # for tests/pragmas/tcustom_pragma.nim
        localError(c.config, n.info, getMsgDiagnostic(c, flags, n, f))
      return
    elif result.state != csMatch:
      if nfExprCall in n.flags:
        localError(c.config, n.info, "expression '$1' cannot be called" %
                   renderTree(n, {renderNoComments}))
      else:
        if {nfDotField, nfDotSetter} * n.flags != {}:
          # clean up the inserted ops
          n.sons.delete(2)
          n[0] = f
      return
  if alt.state == csMatch and cmpCandidates(result, alt) == 0 and
      not sameMethodDispatcher(result.calleeSym, alt.calleeSym):
    internalAssert c.config, result.state == csMatch
    #writeMatches(result)
    #writeMatches(alt)
    if c.config.m.errorOutputs == {}:
      # quick error message for performance of 'compiles' built-in:
      globalError(c.config, n.info, errGenerated, "ambiguous call")
    elif c.config.errorCounter == 0:
      # don't cascade errors
      var args = "("
      for i in 1..<n.len:
        if i > 1: args.add(", ")
        args.add(typeToString(n[i].typ))
      args.add(")")

      localError(c.config, n.info, errAmbiguousCallXYZ % [
        getProcHeader(c.config, result.calleeSym),
        getProcHeader(c.config, alt.calleeSym),
        args])

proc instGenericConvertersArg*(c: PContext, a: PNode, x: TCandidate) =
  let a = if a.kind == nkHiddenDeref: a[0] else: a
  if a.kind == nkHiddenCallConv and a[0].kind == nkSym:
    let s = a[0].sym
    if s.ast != nil and s.ast[genericParamsPos].kind != nkEmpty:
      let finalCallee = generateInstance(c, s, x.bindings, a.info)
      a[0].sym = finalCallee
      a[0].typ = finalCallee.typ
      #a.typ = finalCallee.typ[0]

proc instGenericConvertersSons*(c: PContext, n: PNode, x: TCandidate) =
  assert n.kind in nkCallKinds
  if x.genericConverter:
    for i in 1..<n.len:
      instGenericConvertersArg(c, n[i], x)

proc indexTypesMatch(c: PContext, f, a: PType, arg: PNode): PNode =
  var m = newCandidate(c, f)
  result = paramTypesMatch(m, f, a, arg, nil)
  if m.genericConverter and result != nil:
    instGenericConvertersArg(c, result, m)

proc inferWithMetatype(c: PContext, formal: PType,
                       arg: PNode, coerceDistincts = false): PNode =
  var m = newCandidate(c, formal)
  m.coerceDistincts = coerceDistincts
  result = paramTypesMatch(m, formal, arg.typ, arg, nil)
  if m.genericConverter and result != nil:
    instGenericConvertersArg(c, result, m)
  if result != nil:
    # This almost exactly replicates the steps taken by the compiler during
    # param matching. It performs an embarrassing amount of back-and-forth
    # type jugling, but it's the price to pay for consistency and correctness
    result.typ = generateTypeInstance(c, m.bindings, arg.info,
                                      formal.skipTypes({tyCompositeTypeClass}))
  else:
    typeMismatch(c.config, arg.info, formal, arg.typ, arg)
    # error correction:
    result = copyTree(arg)
    result.typ = formal

proc updateDefaultParams(call: PNode) =
  # In generic procs, the default parameter may be unique for each
  # instantiation (see tlateboundgenericparams).
  # After a call is resolved, we need to re-assign any default value
  # that was used during sigmatch. sigmatch is responsible for marking
  # the default params with `nfDefaultParam` and `instantiateProcType`
  # computes correctly the default values for each instantiation.
  let calleeParams = call[0].sym.typ.n
  for i in 1..<call.len:
    if nfDefaultParam in call[i].flags:
      let def = calleeParams[i].sym.ast
      if nfDefaultRefsParam in def.flags: call.flags.incl nfDefaultRefsParam
      call[i] = def

proc getCallLineInfo(n: PNode): TLineInfo =
  case n.kind
  of nkAccQuoted, nkBracketExpr, nkCall, nkCallStrLit, nkCommand:
    if len(n) > 0:
      return getCallLineInfo(n[0])
  of nkDotExpr:
    if len(n) > 1:
      return getCallLineInfo(n[1])
  else:
    discard
  result = n.info

proc semResolvedCall(c: PContext, x: TCandidate,
                     n: PNode, flags: TExprFlags): PNode =
  assert x.state == csMatch
  var finalCallee = x.calleeSym
  let info = getCallLineInfo(n)
  markUsed(c, info, finalCallee)
  onUse(info, finalCallee)
  assert finalCallee.ast != nil
  if x.hasFauxMatch:
    result = x.call
    result[0] = newSymNode(finalCallee, getCallLineInfo(result[0]))
    if containsGenericType(result.typ) or x.fauxMatch == tyUnknown:
      result.typ = newTypeS(x.fauxMatch, c)
      if result.typ.kind == tyError: incl result.typ.flags, tfCheckedForDestructor
    return
  let gp = finalCallee.ast[genericParamsPos]
  if gp.kind != nkEmpty:
    if x.calleeSym.kind notin {skMacro, skTemplate}:
      if x.calleeSym.magic in {mArrGet, mArrPut}:
        finalCallee = x.calleeSym
      else:
        finalCallee = generateInstance(c, x.calleeSym, x.bindings, n.info)
    else:
      # For macros and templates, the resolved generic params
      # are added as normal params.
      for s in instantiateGenericParamList(c, gp, x.bindings):
        case s.kind
        of skConst:
          if not s.ast.isNil:
            x.call.add s.ast
          else:
            x.call.add c.graph.emptyNode
        of skType:
          x.call.add newSymNode(s, n.info)
        else:
          internalAssert c.config, false

  result = x.call
  instGenericConvertersSons(c, result, x)
  result[0] = newSymNode(finalCallee, getCallLineInfo(result[0]))
  result.typ = finalCallee.typ[0]
  updateDefaultParams(result)

proc canDeref(n: PNode): bool {.inline.} =
  result = n.len >= 2 and (let t = n[1].typ;
    t != nil and t.skipTypes({tyGenericInst, tyAlias, tySink}).kind in {tyPtr, tyRef})

proc tryDeref(n: PNode): PNode =
  result = newNodeI(nkHiddenDeref, n.info)
  result.typ = n.typ.skipTypes(abstractInst)[0]
  result.add n

proc semOverloadedCall(c: PContext, n, nOrig: PNode,
                       filter: TSymKinds, flags: TExprFlags): PNode {.nosinks.} =
  var errors: CandidateErrors = @[] # if efExplain in flags: @[] else: nil
  var r = resolveOverloads(c, n, nOrig, filter, flags, errors, efExplain in flags)
  if r.state == csMatch:
    # this may be triggered, when the explain pragma is used
    if errors.len > 0:
      let (_, candidates) = presentFailedCandidates(c, n, errors)
      message(c.config, n.info, hintUserRaw,
              "Non-matching candidates for " & renderTree(n) & "\n" &
              candidates)
    result = semResolvedCall(c, r, n, flags)
  elif implicitDeref in c.features and canDeref(n):
    # try to deref the first argument and then try overloading resolution again:
    #
    # XXX: why is this here?
    # it could be added to the long list of alternatives tried
    # inside `resolveOverloads` or it could be moved all the way
    # into sigmatch with hidden conversion produced there
    #
    n[1] = n[1].tryDeref
    var r = resolveOverloads(c, n, nOrig, filter, flags, errors, efExplain in flags)
    if r.state == csMatch: result = semResolvedCall(c, r, n, flags)
    else:
      # get rid of the deref again for a better error message:
      n[1] = n[1][0]
      #notFoundError(c, n, errors)
      if efExplain notin flags:
        # repeat the overload resolution,
        # this time enabling all the diagnostic output (this should fail again)
        discard semOverloadedCall(c, n, nOrig, filter, flags + {efExplain})
      elif efNoUndeclared notin flags:
        notFoundError(c, n, errors)
  else:
    if efExplain notin flags:
      # repeat the overload resolution,
      # this time enabling all the diagnostic output (this should fail again)
      discard semOverloadedCall(c, n, nOrig, filter, flags + {efExplain})
    elif efNoUndeclared notin flags:
      notFoundError(c, n, errors)

proc explicitGenericInstError(c: PContext; n: PNode): PNode =
  localError(c.config, getCallLineInfo(n), errCannotInstantiateX % renderTree(n))
  result = n

proc explicitGenericSym(c: PContext, n: PNode, s: PSym): PNode =
  # binding has to stay 'nil' for this to work!
  var m = newCandidate(c, s, nil)

  for i in 1..<n.len:
    let formal = s.ast[genericParamsPos][i-1].typ
    var arg = n[i].typ
    # try transforming the argument into a static one before feeding it into
    # typeRel
    if formal.kind == tyStatic and arg.kind != tyStatic:
      let evaluated = c.semTryConstExpr(c, n[i])
      if evaluated != nil:
        arg = newTypeS(tyStatic, c)
        arg.sons = @[evaluated.typ]
        arg.n = evaluated
    let tm = typeRel(m, formal, arg)
    if tm in {isNone, isConvertible}: return nil
  var newInst = generateInstance(c, s, m.bindings, n.info)
  newInst.typ.flags.excl tfUnresolved
  let info = getCallLineInfo(n)
  markUsed(c, info, s)
  onUse(info, s)
  result = newSymNode(newInst, info)

proc explicitGenericInstantiation(c: PContext, n: PNode, s: PSym): PNode =
  assert n.kind == nkBracketExpr
  for i in 1..<n.len:
    let e = semExpr(c, n[i])
    if e.typ == nil:
      n[i].typ = errorType(c)
    else:
      n[i].typ = e.typ.skipTypes({tyTypeDesc})
  var s = s
  var a = n[0]
  if a.kind == nkSym:
    # common case; check the only candidate has the right
    # number of generic type parameters:
    if s.ast[genericParamsPos].safeLen != n.len-1:
      let expected = s.ast[genericParamsPos].safeLen
      localError(c.config, getCallLineInfo(n), errGenerated, "cannot instantiate: '" & renderTree(n) &
         "'; got " & $(n.len-1) & " typeof(s) but expected " & $expected)
      return n
    result = explicitGenericSym(c, n, s)
    if result == nil: result = explicitGenericInstError(c, n)
  elif a.kind in {nkClosedSymChoice, nkOpenSymChoice}:
    # choose the generic proc with the proper number of type parameters.
    # XXX I think this could be improved by reusing sigmatch.paramTypesMatch.
    # It's good enough for now.
    result = newNodeI(a.kind, getCallLineInfo(n))
    for i in 0..<a.len:
      var candidate = a[i].sym
      if candidate.kind in {skProc, skMethod, skConverter,
                            skFunc, skIterator}:
        # it suffices that the candidate has the proper number of generic
        # type parameters:
        if candidate.ast[genericParamsPos].safeLen == n.len-1:
          let x = explicitGenericSym(c, n, candidate)
          if x != nil: result.add(x)
    # get rid of nkClosedSymChoice if not ambiguous:
    if result.len == 1 and a.kind == nkClosedSymChoice:
      result = result[0]
    elif result.len == 0: result = explicitGenericInstError(c, n)
    # candidateCount != 1: return explicitGenericInstError(c, n)
  else:
    result = explicitGenericInstError(c, n)

proc searchForBorrowProc(c: PContext, startScope: PScope, fn: PSym): PSym =
  # Searches for the fn in the symbol table. If the parameter lists are suitable
  # for borrowing the sym in the symbol table is returned, else nil.
  # New approach: generate fn(x, y, z) where x, y, z have the proper types
  # and use the overloading resolution mechanism:
  var call = newNodeI(nkCall, fn.info)
  var hasDistinct = false
  call.add(newIdentNode(fn.name, fn.info))
  for i in 1..<fn.typ.n.len:
    let param = fn.typ.n[i]
    let t = skipTypes(param.typ, abstractVar-{tyTypeDesc, tyDistinct})
    if t.kind == tyDistinct or param.typ.kind == tyDistinct: hasDistinct = true
    var x: PType
    if param.typ.kind == tyVar:
      x = newTypeS(param.typ.kind, c)
      x.addSonSkipIntLit(t.baseOfDistinct(c.graph, c.idgen), c.idgen)
    else:
      x = t.baseOfDistinct(c.graph, c.idgen)
    call.add(newNodeIT(nkEmpty, fn.info, x))
  if hasDistinct:
    let filter = if fn.kind in {skProc, skFunc}: {skProc, skFunc} else: {fn.kind}
    var resolved = semOverloadedCall(c, call, call, filter, {})
    if resolved != nil:
      result = resolved[0].sym
      if not compareTypes(result.typ[0], fn.typ[0], dcEqIgnoreDistinct):
        result = nil
      elif result.magic in {mArrPut, mArrGet}:
        # cannot borrow these magics for now
        result = nil