1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
|
#
#
# The Nim Compiler
# (c) Copyright 2017 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module contains the data structures for the semantic checking phase.
import
strutils, intsets, options, lexer, ast, astalgo, trees, treetab,
wordrecg,
ropes, msgs, platform, os, condsyms, idents, renderer, types, extccomp, math,
magicsys, nversion, nimsets, parser, times, passes, rodread, vmdef,
modulegraphs, configuration
type
TOptionEntry* = object # entries to put on a stack for pragma parsing
options*: TOptions
defaultCC*: TCallingConvention
dynlib*: PLib
notes*: TNoteKinds
otherPragmas*: PNode # every pragma can be pushed
POptionEntry* = ref TOptionEntry
PProcCon* = ref TProcCon
TProcCon* = object # procedure context; also used for top-level
# statements
owner*: PSym # the symbol this context belongs to
resultSym*: PSym # the result symbol (if we are in a proc)
selfSym*: PSym # the 'self' symbol (if available)
nestedLoopCounter*: int # whether we are in a loop or not
nestedBlockCounter*: int # whether we are in a block or not
inTryStmt*: int # whether we are in a try statement; works also
# in standalone ``except`` and ``finally``
next*: PProcCon # used for stacking procedure contexts
wasForwarded*: bool # whether the current proc has a separate header
mapping*: TIdTable
TMatchedConcept* = object
candidateType*: PType
prev*: ptr TMatchedConcept
depth*: int
TInstantiationPair* = object
genericSym*: PSym
inst*: PInstantiation
TExprFlag* = enum
efLValue, efWantIterator, efInTypeof,
efNeedStatic,
# Use this in contexts where a static value is mandatory
efPreferStatic,
# Use this in contexts where a static value could bring more
# information, but it's not strictly mandatory. This may become
# the default with implicit statics in the future.
efPreferNilResult,
# Use this if you want a certain result (e.g. static value),
# but you don't want to trigger a hard error. For example,
# you may be in position to supply a better error message
# to the user.
efWantStmt, efAllowStmt, efDetermineType, efExplain,
efAllowDestructor, efWantValue, efOperand, efNoSemCheck,
efNoEvaluateGeneric, efInCall, efFromHlo
TExprFlags* = set[TExprFlag]
TTypeAttachedOp* = enum
attachedAsgn,
attachedSink,
attachedDeepCopy,
attachedDestructor
PContext* = ref TContext
TContext* = object of TPassContext # a context represents a module
module*: PSym # the module sym belonging to the context
currentScope*: PScope # current scope
importTable*: PScope # scope for all imported symbols
topLevelScope*: PScope # scope for all top-level symbols
p*: PProcCon # procedure context
matchedConcept*: ptr TMatchedConcept # the current concept being matched
friendModules*: seq[PSym] # friend modules; may access private data;
# this is used so that generic instantiations
# can access private object fields
instCounter*: int # to prevent endless instantiations
ambiguousSymbols*: IntSet # ids of all ambiguous symbols (cannot
# store this info in the syms themselves!)
inGenericContext*: int # > 0 if we are in a generic type
inUnrolledContext*: int # > 0 if we are unrolling a loop
compilesContextId*: int # > 0 if we are in a ``compiles`` magic
compilesContextIdGenerator*: int
inGenericInst*: int # > 0 if we are instantiating a generic
converters*: TSymSeq # sequence of converters
patterns*: TSymSeq # sequence of pattern matchers
optionStack*: seq[POptionEntry]
symMapping*: TIdTable # every gensym'ed symbol needs to be mapped
# to some new symbol in a generic instantiation
libs*: seq[PLib] # all libs used by this module
semConstExpr*: proc (c: PContext, n: PNode): PNode {.nimcall.} # for the pragmas
semExpr*: proc (c: PContext, n: PNode, flags: TExprFlags = {}): PNode {.nimcall.}
semTryExpr*: proc (c: PContext, n: PNode, flags: TExprFlags = {}): PNode {.nimcall.}
semTryConstExpr*: proc (c: PContext, n: PNode): PNode {.nimcall.}
semOperand*: proc (c: PContext, n: PNode, flags: TExprFlags = {}): PNode {.nimcall.}
semConstBoolExpr*: proc (c: PContext, n: PNode): PNode {.nimcall.} # XXX bite the bullet
semOverloadedCall*: proc (c: PContext, n, nOrig: PNode,
filter: TSymKinds, flags: TExprFlags): PNode {.nimcall.}
semTypeNode*: proc(c: PContext, n: PNode, prev: PType): PType {.nimcall.}
semInferredLambda*: proc(c: PContext, pt: TIdTable, n: PNode): PNode
semGenerateInstance*: proc (c: PContext, fn: PSym, pt: TIdTable,
info: TLineInfo): PSym
includedFiles*: IntSet # used to detect recursive include files
pureEnumFields*: TStrTable # pure enum fields that can be used unambiguously
userPragmas*: TStrTable
evalContext*: PEvalContext
unknownIdents*: IntSet # ids of all unknown identifiers to prevent
# naming it multiple times
generics*: seq[TInstantiationPair] # pending list of instantiated generics to compile
topStmts*: int # counts the number of encountered top level statements
lastGenericIdx*: int # used for the generics stack
hloLoopDetector*: int # used to prevent endless loops in the HLO
inParallelStmt*: int
instTypeBoundOp*: proc (c: PContext; dc: PSym; t: PType; info: TLineInfo;
op: TTypeAttachedOp; col: int): PSym {.nimcall.}
selfName*: PIdent
cache*: IdentCache
graph*: ModuleGraph
signatures*: TStrTable
recursiveDep*: string
suggestionsMade*: bool
features*: set[Feature]
inTypeContext*: int
typesWithOps*: seq[(PType, PType)] #\
# We need to instantiate the type bound ops lazily after
# the generic type has been constructed completely. See
# tests/destructor/topttree.nim for an example that
# would otherwise fail.
runnableExamples*: PNode
template config*(c: PContext): ConfigRef = c.graph.config
proc makeInstPair*(s: PSym, inst: PInstantiation): TInstantiationPair =
result.genericSym = s
result.inst = inst
proc filename*(c: PContext): string =
# the module's filename
return toFilename(FileIndex c.module.position)
proc scopeDepth*(c: PContext): int {.inline.} =
result = if c.currentScope != nil: c.currentScope.depthLevel
else: 0
proc getCurrOwner*(c: PContext): PSym =
# owner stack (used for initializing the
# owner field of syms)
# the documentation comment always gets
# assigned to the current owner
result = c.graph.owners[^1]
proc pushOwner*(c: PContext; owner: PSym) =
add(c.graph.owners, owner)
proc popOwner*(c: PContext) =
var length = len(c.graph.owners)
if length > 0: setLen(c.graph.owners, length - 1)
else: internalError(c.config, "popOwner")
proc lastOptionEntry*(c: PContext): POptionEntry =
result = c.optionStack[^1]
proc popProcCon*(c: PContext) {.inline.} = c.p = c.p.next
proc put*(p: PProcCon; key, val: PSym) =
if p.mapping.data == nil: initIdTable(p.mapping)
#echo "put into table ", key.info
p.mapping.idTablePut(key, val)
proc get*(p: PProcCon; key: PSym): PSym =
if p.mapping.data == nil: return nil
result = PSym(p.mapping.idTableGet(key))
proc getGenSym*(c: PContext; s: PSym): PSym =
if sfGenSym notin s.flags: return s
var it = c.p
while it != nil:
result = get(it, s)
if result != nil:
#echo "got from table ", result.name.s, " ", result.info
return result
it = it.next
result = s
proc considerGenSyms*(c: PContext; n: PNode) =
if n.kind == nkSym:
let s = getGenSym(c, n.sym)
if n.sym != s:
n.sym = s
else:
for i in 0..<n.safeLen:
considerGenSyms(c, n.sons[i])
proc newOptionEntry*(conf: ConfigRef): POptionEntry =
new(result)
result.options = gOptions
result.defaultCC = ccDefault
result.dynlib = nil
result.notes = conf.notes
proc newContext*(graph: ModuleGraph; module: PSym; cache: IdentCache): PContext =
new(result)
result.ambiguousSymbols = initIntSet()
result.optionStack = @[]
result.libs = @[]
result.optionStack.add(newOptionEntry(graph.config))
result.module = module
result.friendModules = @[module]
result.converters = @[]
result.patterns = @[]
result.includedFiles = initIntSet()
initStrTable(result.pureEnumFields)
initStrTable(result.userPragmas)
result.generics = @[]
result.unknownIdents = initIntSet()
result.cache = cache
result.graph = graph
initStrTable(result.signatures)
result.typesWithOps = @[]
result.features = graph.config.features
proc inclSym(sq: var TSymSeq, s: PSym) =
var L = len(sq)
for i in countup(0, L - 1):
if sq[i].id == s.id: return
setLen(sq, L + 1)
sq[L] = s
proc addConverter*(c: PContext, conv: PSym) =
inclSym(c.converters, conv)
proc addPattern*(c: PContext, p: PSym) =
inclSym(c.patterns, p)
proc newLib*(kind: TLibKind): PLib =
new(result)
result.kind = kind #initObjectSet(result.syms)
proc addToLib*(lib: PLib, sym: PSym) =
#if sym.annex != nil and not isGenericRoutine(sym):
# LocalError(sym.info, errInvalidPragma)
sym.annex = lib
proc newTypeS*(kind: TTypeKind, c: PContext): PType =
result = newType(kind, getCurrOwner(c))
proc makePtrType*(c: PContext, baseType: PType): PType =
result = newTypeS(tyPtr, c)
addSonSkipIntLit(result, baseType)
proc makeTypeWithModifier*(c: PContext,
modifier: TTypeKind,
baseType: PType): PType =
assert modifier in {tyVar, tyLent, tyPtr, tyRef, tyStatic, tyTypeDesc}
if modifier in {tyVar, tyLent, tyTypeDesc} and baseType.kind == modifier:
result = baseType
else:
result = newTypeS(modifier, c)
addSonSkipIntLit(result, baseType)
proc makeVarType*(c: PContext, baseType: PType; kind = tyVar): PType =
if baseType.kind == kind:
result = baseType
else:
result = newTypeS(kind, c)
addSonSkipIntLit(result, baseType)
proc makeTypeDesc*(c: PContext, typ: PType): PType =
if typ.kind == tyTypeDesc:
result = typ
else:
result = newTypeS(tyTypeDesc, c)
result.addSonSkipIntLit(typ)
proc makeTypeSymNode*(c: PContext, typ: PType, info: TLineInfo): PNode =
let typedesc = makeTypeDesc(c, typ)
let sym = newSym(skType, c.cache.idAnon, getCurrOwner(c), info).linkTo(typedesc)
return newSymNode(sym, info)
proc makeTypeFromExpr*(c: PContext, n: PNode): PType =
result = newTypeS(tyFromExpr, c)
assert n != nil
result.n = n
proc newTypeWithSons*(owner: PSym, kind: TTypeKind, sons: seq[PType]): PType =
result = newType(kind, owner)
result.sons = sons
proc newTypeWithSons*(c: PContext, kind: TTypeKind,
sons: seq[PType]): PType =
result = newType(kind, getCurrOwner(c))
result.sons = sons
proc makeStaticExpr*(c: PContext, n: PNode): PNode =
result = newNodeI(nkStaticExpr, n.info)
result.sons = @[n]
result.typ = if n.typ != nil and n.typ.kind == tyStatic: n.typ
else: newTypeWithSons(c, tyStatic, @[n.typ])
proc makeAndType*(c: PContext, t1, t2: PType): PType =
result = newTypeS(tyAnd, c)
result.sons = @[t1, t2]
propagateToOwner(result, t1)
propagateToOwner(result, t2)
result.flags.incl((t1.flags + t2.flags) * {tfHasStatic})
result.flags.incl tfHasMeta
proc makeOrType*(c: PContext, t1, t2: PType): PType =
result = newTypeS(tyOr, c)
if t1.kind != tyOr and t2.kind != tyOr:
result.sons = @[t1, t2]
else:
template addOr(t1) =
if t1.kind == tyOr:
for x in t1.sons: result.rawAddSon x
else:
result.rawAddSon t1
addOr(t1)
addOr(t2)
propagateToOwner(result, t1)
propagateToOwner(result, t2)
result.flags.incl((t1.flags + t2.flags) * {tfHasStatic})
result.flags.incl tfHasMeta
proc makeNotType*(c: PContext, t1: PType): PType =
result = newTypeS(tyNot, c)
result.sons = @[t1]
propagateToOwner(result, t1)
result.flags.incl(t1.flags * {tfHasStatic})
result.flags.incl tfHasMeta
proc nMinusOne(c: PContext; n: PNode): PNode =
result = newNode(nkCall, n.info, @[
newSymNode(getSysMagic(c.graph, n.info, "pred", mPred)), n])
# Remember to fix the procs below this one when you make changes!
proc makeRangeWithStaticExpr*(c: PContext, n: PNode): PType =
let intType = getSysType(c.graph, n.info, tyInt)
result = newTypeS(tyRange, c)
result.sons = @[intType]
if n.typ != nil and n.typ.n == nil:
result.flags.incl tfUnresolved
result.n = newNode(nkRange, n.info, @[
newIntTypeNode(nkIntLit, 0, intType),
makeStaticExpr(c, nMinusOne(c, n))])
template rangeHasUnresolvedStatic*(t: PType): bool =
tfUnresolved in t.flags
proc errorType*(c: PContext): PType =
## creates a type representing an error state
result = newTypeS(tyError, c)
proc errorNode*(c: PContext, n: PNode): PNode =
result = newNodeI(nkEmpty, n.info)
result.typ = errorType(c)
proc fillTypeS*(dest: PType, kind: TTypeKind, c: PContext) =
dest.kind = kind
dest.owner = getCurrOwner(c)
dest.size = - 1
proc makeRangeType*(c: PContext; first, last: BiggestInt;
info: TLineInfo; intType: PType = nil): PType =
let intType = if intType != nil: intType else: getSysType(c.graph, info, tyInt)
var n = newNodeI(nkRange, info)
addSon(n, newIntTypeNode(nkIntLit, first, intType))
addSon(n, newIntTypeNode(nkIntLit, last, intType))
result = newTypeS(tyRange, c)
result.n = n
addSonSkipIntLit(result, intType) # basetype of range
proc markIndirect*(c: PContext, s: PSym) {.inline.} =
if s.kind in {skProc, skFunc, skConverter, skMethod, skIterator}:
incl(s.flags, sfAddrTaken)
# XXX add to 'c' for global analysis
proc illFormedAst*(n: PNode; conf: ConfigRef) =
globalError(conf, n.info, errIllFormedAstX, renderTree(n, {renderNoComments}))
proc illFormedAstLocal*(n: PNode; conf: ConfigRef) =
localError(conf, n.info, errIllFormedAstX, renderTree(n, {renderNoComments}))
proc checkSonsLen*(n: PNode, length: int; conf: ConfigRef) =
if sonsLen(n) != length: illFormedAst(n, conf)
proc checkMinSonsLen*(n: PNode, length: int; conf: ConfigRef) =
if sonsLen(n) < length: illFormedAst(n, conf)
proc isTopLevel*(c: PContext): bool {.inline.} =
result = c.currentScope.depthLevel <= 2
|