1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
|
#
#
# The Nim Compiler
# (c) Copyright 2013 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module implements destructors.
# included from sem.nim
# special marker values that indicates that we are
# 1) AnalyzingDestructor: currently analyzing the type for destructor
# generation (needed for recursive types)
# 2) DestructorIsTrivial: completed the analysis before and determined
# that the type has a trivial destructor
var analyzingDestructor, destructorIsTrivial: PSym
new(analyzingDestructor)
new(destructorIsTrivial)
var
destructorName = getIdent"destroy_"
destructorParam = getIdent"this_"
destructorPragma = newIdentNode(getIdent"destructor", unknownLineInfo())
rangeDestructorProc*: PSym
proc instantiateDestructor(c: PContext, typ: PType): PType
proc doDestructorStuff(c: PContext, s: PSym, n: PNode) =
var t = s.typ.sons[1].skipTypes({tyVar})
if t.kind == tyGenericInvocation:
for i in 1 .. <t.sonsLen:
if t.sons[i].kind != tyGenericParam:
localError(n.info, errDestructorNotGenericEnough)
return
t = t.base
elif t.kind == tyCompositeTypeClass:
t = t.base
if t.kind != tyGenericBody:
localError(n.info, errDestructorNotGenericEnough)
return
t.destructor = s
# automatically insert calls to base classes' destructors
if n.sons[bodyPos].kind != nkEmpty:
for i in countup(0, t.sonsLen - 1):
# when inheriting directly from object
# there will be a single nil son
if t.sons[i] == nil: continue
let destructableT = instantiateDestructor(c, t.sons[i])
if destructableT != nil:
n.sons[bodyPos].addSon(newNode(nkCall, t.sym.info, @[
useSym(destructableT.destructor),
n.sons[paramsPos][1][0]]))
proc destroyFieldOrFields(c: PContext, field: PNode, holder: PNode): PNode
proc destroySym(c: PContext, field: PSym, holder: PNode): PNode =
let destructableT = instantiateDestructor(c, field.typ)
if destructableT != nil:
result = newNode(nkCall, field.info, @[
useSym(destructableT.destructor),
newNode(nkDotExpr, field.info, @[holder, useSym(field)])])
proc destroyCase(c: PContext, n: PNode, holder: PNode): PNode =
var nonTrivialFields = 0
result = newNode(nkCaseStmt, n.info, @[])
# case x.kind
result.addSon(newNode(nkDotExpr, n.info, @[holder, n.sons[0]]))
for i in countup(1, n.len - 1):
# of A, B:
let ni = n[i]
var caseBranch = newNode(ni.kind, ni.info, ni.sons[0..ni.len-2])
let stmt = destroyFieldOrFields(c, ni.lastSon, holder)
if stmt == nil:
caseBranch.addSon(newNode(nkStmtList, ni.info, @[]))
else:
caseBranch.addSon(stmt)
nonTrivialFields += stmt.len
result.addSon(caseBranch)
# maybe no fields were destroyed?
if nonTrivialFields == 0:
result = nil
proc destroyFieldOrFields(c: PContext, field: PNode, holder: PNode): PNode =
template maybeAddLine(e: expr): stmt =
let stmt = e
if stmt != nil:
if result == nil: result = newNode(nkStmtList)
result.addSon(stmt)
case field.kind
of nkRecCase:
maybeAddLine destroyCase(c, field, holder)
of nkSym:
maybeAddLine destroySym(c, field.sym, holder)
of nkRecList:
for son in field:
maybeAddLine destroyFieldOrFields(c, son, holder)
else:
internalAssert false
proc generateDestructor(c: PContext, t: PType): PNode =
## generate a destructor for a user-defined object or tuple type
## returns nil if the destructor turns out to be trivial
# XXX: This may be true for some C-imported types such as
# Tposix_spawnattr
if t.n == nil or t.n.sons == nil: return
internalAssert t.n.kind == nkRecList
let destructedObj = newIdentNode(destructorParam, unknownLineInfo())
# call the destructods of all fields
result = destroyFieldOrFields(c, t.n, destructedObj)
# base classes' destructors will be automatically called by
# semProcAux for both auto-generated and user-defined destructors
proc instantiateDestructor(c: PContext, typ: PType): PType =
# returns nil if a variable of type `typ` doesn't require a
# destructor. Otherwise, returns the type, which holds the
# destructor that must be used for the varialbe.
# The destructor is either user-defined or automatically
# generated by the compiler in a member-wise fashion.
var t = skipTypes(typ, {tyConst, tyMutable}).skipGenericAlias
let typeHoldingUserDefinition = if t.kind == tyGenericInst: t.base else: t
if typeHoldingUserDefinition.destructor != nil:
# XXX: This is not entirely correct for recursive types, but we need
# it temporarily to hide the "destroy is already defined" problem
if typeHoldingUserDefinition.destructor notin
[analyzingDestructor, destructorIsTrivial]:
return typeHoldingUserDefinition
else:
return nil
t = t.skipTypes({tyGenericInst})
case t.kind
of tySequence, tyArray, tyArrayConstr, tyOpenArray, tyVarargs:
if instantiateDestructor(c, t.sons[0]) != nil:
if rangeDestructorProc == nil:
rangeDestructorProc = searchInScopes(c, getIdent"nimDestroyRange")
t.destructor = rangeDestructorProc
return t
else:
return nil
of tyTuple, tyObject:
t.destructor = analyzingDestructor
let generated = generateDestructor(c, t)
if generated != nil:
internalAssert t.sym != nil
var i = t.sym.info
let fullDef = newNode(nkProcDef, i, @[
newIdentNode(destructorName, i),
emptyNode,
emptyNode,
newNode(nkFormalParams, i, @[
emptyNode,
newNode(nkIdentDefs, i, @[
newIdentNode(destructorParam, i),
symNodeFromType(c, makeVarType(c, t), t.sym.info),
emptyNode]),
]),
newNode(nkPragma, i, @[destructorPragma]),
emptyNode,
generated
])
let semantizedDef = semProc(c, fullDef)
t.destructor = semantizedDef[namePos].sym
return t
else:
t.destructor = destructorIsTrivial
return nil
else:
return nil
proc insertDestructors(c: PContext,
varSection: PNode): tuple[outer, inner: PNode] =
# Accepts a var or let section.
#
# When a var section has variables with destructors
# the var section is split up and finally blocks are inserted
# immediately after all "destructable" vars
#
# In case there were no destrucable variables, the proc returns
# (nil, nil) and the enclosing stmt-list requires no modifications.
#
# Otherwise, after the try blocks are created, the rest of the enclosing
# stmt-list should be inserted in the most `inner` such block (corresponding
# to the last variable).
#
# `outer` is a statement list that should replace the original var section.
# It will include the new truncated var section followed by the outermost
# try block.
let totalVars = varSection.sonsLen
for j in countup(0, totalVars - 1):
let
varId = varSection[j][0]
varTyp = varId.sym.typ
info = varId.info
if varTyp == nil or sfGlobal in varId.sym.flags: continue
let destructableT = instantiateDestructor(c, varTyp)
if destructableT != nil:
var tryStmt = newNodeI(nkTryStmt, info)
if j < totalVars - 1:
var remainingVars = newNodeI(varSection.kind, info)
remainingVars.sons = varSection.sons[(j+1)..varSection.len-1]
let (outer, inner) = insertDestructors(c, remainingVars)
if outer != nil:
tryStmt.addSon(outer)
result.inner = inner
else:
result.inner = newNodeI(nkStmtList, info)
result.inner.addSon(remainingVars)
tryStmt.addSon(result.inner)
else:
result.inner = newNodeI(nkStmtList, info)
tryStmt.addSon(result.inner)
tryStmt.addSon(
newNode(nkFinally, info, @[
semStmt(c, newNode(nkCall, info, @[
useSym(destructableT.destructor),
useSym(varId.sym)]))]))
result.outer = newNodeI(nkStmtList, info)
varSection.sons.setLen(j+1)
result.outer.addSon(varSection)
result.outer.addSon(tryStmt)
return
|