summary refs log tree commit diff stats
path: root/compiler/semexprs.nim
blob: 398424bbf4e912263800071071bd5ffdcf20f69e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
generated by cgit-pink 1.4.1-2-gfad0 (git 2.36.2.497.gbbea4dcf42) at 2025-06-18 11:50:28 +0000
 


5'>2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
#
#
#           The Nim Compiler
#        (c) Copyright 2013 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

# this module does the semantic checking for expressions
# included from sem.nim

when defined(nimCompilerStacktraceHints):
  import std/stackframes

const
  errExprXHasNoType = "expression '$1' has no type (or is ambiguous)"
  errXExpectsTypeOrValue = "'$1' expects a type or value"
  errVarForOutParamNeededX = "for a 'var' type a variable needs to be passed; but '$1' is immutable"
  errXStackEscape = "address of '$1' may not escape its stack frame"
  errExprHasNoAddress = "expression has no address"
  errCannotInterpretNodeX = "cannot evaluate '$1'"
  errNamedExprExpected = "named expression expected"
  errNamedExprNotAllowed = "named expression not allowed here"
  errFieldInitTwice = "field initialized twice: '$1'"
  errUndeclaredFieldX = "undeclared field: '$1'"

proc semTemplateExpr(c: PContext, n: PNode, s: PSym,
                     flags: TExprFlags = {}; expectedType: PType = nil): PNode =
  rememberExpansion(c, n.info, s)
  let info = getCallLineInfo(n)
  markUsed(c, info, s)
  onUse(info, s)
  # Note: This is n.info on purpose. It prevents template from creating an info
  # context when called from an another template
  pushInfoContext(c.config, n.info, s.detailedInfo)
  result = evalTemplate(n, s, getCurrOwner(c), c.config, c.cache,
                        c.templInstCounter, c.idgen, efFromHlo in flags)
  if efNoSemCheck notin flags:
    result = semAfterMacroCall(c, n, result, s, flags, expectedType)
  popInfoContext(c.config)

  # XXX: A more elaborate line info rewrite might be needed
  result.info = info

proc semFieldAccess(c: PContext, n: PNode, flags: TExprFlags = {}): PNode

template rejectEmptyNode(n: PNode) =
  # No matter what a nkEmpty node is not what we want here
  if n.kind == nkEmpty: illFormedAst(n, c.config)

proc semOperand(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
  rejectEmptyNode(n)
  # same as 'semExprWithType' but doesn't check for proc vars
  result = semExpr(c, n, flags + {efOperand})
  if result.typ != nil:
    # XXX tyGenericInst here?
    if result.typ.kind == tyProc and hasUnresolvedParams(result, {efOperand}):
      #and tfUnresolved in result.typ.flags:
      let owner = result.typ.owner
      let err =
        # consistent error message with evaltempl/semMacroExpr
        if owner != nil and owner.kind in {skTemplate, skMacro}:
          errMissingGenericParamsForTemplate % n.renderTree
        else:
          errProcHasNoConcreteType % n.renderTree
      localError(c.config, n.info, err)
    if result.typ.kind in {tyVar, tyLent}: result = newDeref(result)
  elif {efWantStmt, efAllowStmt} * flags != {}:
    result.typ = newTypeS(tyVoid, c)
  else:
    localError(c.config, n.info, errExprXHasNoType %
               renderTree(result, {renderNoComments}))
    result.typ = errorType(c)

proc semExprCheck(c: PContext, n: PNode, flags: TExprFlags, expectedType: PType = nil): PNode =
  rejectEmptyNode(n)
  result = semExpr(c, n, flags+{efWantValue}, expectedType)

  let
    isEmpty = result.kind == nkEmpty
    isTypeError = result.typ != nil and result.typ.kind == tyError

  if isEmpty or isTypeError:
    # bug #12741, redundant error messages are the lesser evil here:
    localError(c.config, n.info, errExprXHasNoType %
                renderTree(result, {renderNoComments}))

  if isEmpty:
    # do not produce another redundant error message:
    result = errorNode(c, n)

proc ambiguousSymChoice(c: PContext, orig, n: PNode): PNode =
  let first = n[0].sym
  if first.kind == skEnumField:
    # choose the first resolved enum field, i.e. the latest in scope
    # to mirror behavior before overloadable enums
    if hintAmbiguousEnum in c.config.notes:
      var err = "ambiguous enum field '" & first.name.s &
        "' assumed to be of type " & typeToString(first.typ) &
        " -- use one of the following:\n"
      for child in n:
        let candidate = child.sym
        err.add "  " & candidate.owner.name.s & "." & candidate.name.s & "\n"
      message(c.config, orig.info, hintAmbiguousEnum, err)
    result = n[0]
  else:
    var err = "ambiguous identifier '" & first.name.s &
      "' -- use one of the following:\n"
    for child in n:
      let candidate = child.sym
      err.add "  " & candidate.owner.name.s & "." & candidate.name.s
      err.add ": " & typeToString(candidate.typ) & "\n"
    localError(c.config, orig.info, err)
    n.typ = errorType(c)
    result = n

proc semExprWithType(c: PContext, n: PNode, flags: TExprFlags = {}, expectedType: PType = nil): PNode =
  result = semExprCheck(c, n, flags-{efTypeAllowed}, expectedType)
  if result.typ == nil and efInTypeof in flags:
    result.typ = c.voidType
  elif (result.typ == nil or result.typ.kind == tyNone) and
      efTypeAllowed in flags and
      result.kind == nkClosedSymChoice and result.len > 0:
    result = ambiguousSymChoice(c, n, result)
  elif result.typ == nil or result.typ == c.enforceVoidContext:
    localError(c.config, n.info, errExprXHasNoType %
                renderTree(result, {renderNoComments}))
    result.typ = errorType(c)
  elif result.typ.kind == tyError:
    # associates the type error to the current owner
    result.typ = errorType(c)
  elif efTypeAllowed in flags and result.typ.kind == tyProc and
      hasUnresolvedParams(result, {}):
    # mirrored with semOperand but only on efTypeAllowed
    let owner = result.typ.owner
    let err =
      # consistent error message with evaltempl/semMacroExpr
      if owner != nil and owner.kind in {skTemplate, skMacro}:
        errMissingGenericParamsForTemplate % n.renderTree
      else:
        errProcHasNoConcreteType % n.renderTree
    localError(c.config, n.info, err)
    result.typ = errorType(c)
  else:
    if result.typ.kind in {tyVar, tyLent}: result = newDeref(result)

proc semExprNoDeref(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
  result = semExprCheck(c, n, flags)
  if result.typ == nil:
    localError(c.config, n.info, errExprXHasNoType %
               renderTree(result, {renderNoComments}))
    result.typ = errorType(c)

proc semSymGenericInstantiation(c: PContext, n: PNode, s: PSym): PNode =
  result = symChoice(c, n, s, scClosed)

proc inlineConst(c: PContext, n: PNode, s: PSym): PNode {.inline.} =
  result = copyTree(s.astdef)
  if result.isNil:
    localError(c.config, n.info, "constant of type '" & typeToString(s.typ) & "' has no value")
    result = newSymNode(s)
  else:
    result.typ = s.typ
    result.info = n.info

type
  TConvStatus = enum
    convOK,
    convNotNeedeed,
    convNotLegal,
    convNotInRange

proc checkConversionBetweenObjects(castDest, src: PType; pointers: int): TConvStatus =
  let diff = inheritanceDiff(castDest, src)
  return if diff == high(int) or (pointers > 1 and diff != 0):
      convNotLegal
    else:
      convOK

const
  IntegralTypes = {tyBool, tyEnum, tyChar, tyInt..tyUInt64}

proc checkConvertible(c: PContext, targetTyp: PType, src: PNode): TConvStatus =
  let srcTyp = src.typ.skipTypes({tyStatic})
  result = convOK
  if sameType(targetTyp, srcTyp) and targetTyp.sym == srcTyp.sym:
    # don't annoy conversions that may be needed on another processor:
    if targetTyp.kind notin IntegralTypes+{tyRange}:
      result = convNotNeedeed
    return
  var d = skipTypes(targetTyp, abstractVar)
  var s = srcTyp
  if s.kind in tyUserTypeClasses and s.isResolvedUserTypeClass:
    s = s.lastSon
  s = skipTypes(s, abstractVar-{tyTypeDesc, tyOwned})
  if s.kind == tyOwned and d.kind != tyOwned:
    s = s.lastSon
  var pointers = 0
  while (d != nil) and (d.kind in {tyPtr, tyRef, tyOwned}):
    if s.kind == tyOwned and d.kind != tyOwned:
      s = s.lastSon
    elif d.kind != s.kind:
      break
    else:
      d = d.lastSon
      s = s.lastSon
    inc pointers

  let targetBaseTyp = skipTypes(targetTyp, abstractVarRange)
  let srcBaseTyp = skipTypes(srcTyp, abstractVarRange-{tyTypeDesc})

  if d == nil:
    result = convNotLegal
  elif d.skipTypes(abstractInst).kind == tyObject and s.skipTypes(abstractInst).kind == tyObject:
    result = checkConversionBetweenObjects(d.skipTypes(abstractInst), s.skipTypes(abstractInst), pointers)
  elif (targetBaseTyp.kind in IntegralTypes) and
      (srcBaseTyp.kind in IntegralTypes):
    if targetTyp.kind == tyEnum and srcBaseTyp.kind == tyEnum:
      message(c.config, src.info, warnSuspiciousEnumConv, "suspicious code: enum to enum conversion")
    # `elif` would be incorrect here
    if targetTyp.kind == tyBool:
      discard "convOk"
    elif targetTyp.isOrdinalType:
      if src.kind in nkCharLit..nkUInt64Lit and
          src.getInt notin firstOrd(c.config, targetTyp)..lastOrd(c.config, targetTyp):
        result = convNotInRange
      elif src.kind in nkFloatLit..nkFloat64Lit and
          (classify(src.floatVal) in {fcNan, fcNegInf, fcInf} or
            src.floatVal.int64 notin firstOrd(c.config, targetTyp)..lastOrd(c.config, targetTyp)):
        result = convNotInRange
    elif targetBaseTyp.kind in tyFloat..tyFloat64:
      if src.kind in nkFloatLit..nkFloat64Lit and
          not floatRangeCheck(src.floatVal, targetTyp):
        result = convNotInRange
      elif src.kind in nkCharLit..nkUInt64Lit and
          not floatRangeCheck(src.intVal.float, targetTyp):
        result = convNotInRange
  else:
    # we use d, s here to speed up that operation a bit:
    case cmpTypes(c, d, s)
    of isNone, isGeneric:
      if not compareTypes(targetTyp.skipTypes(abstractVar), srcTyp.skipTypes({tyOwned}), dcEqIgnoreDistinct):
        result = convNotLegal
    else:
      discard

proc isCastable(c: PContext; dst, src: PType, info: TLineInfo): bool =
  ## Checks whether the source type can be cast to the destination type.
  ## Casting is very unrestrictive; casts are allowed as long as
  ## dst.size >= src.size, and typeAllowed(dst, skParam)
  #const
  #  castableTypeKinds = {tyInt, tyPtr, tyRef, tyCstring, tyString,
  #                       tySequence, tyPointer, tyNil, tyOpenArray,
  #                       tyProc, tySet, tyEnum, tyBool, tyChar}
  let src = src.skipTypes(tyUserTypeClasses)
  if skipTypes(dst, abstractInst-{tyOpenArray}).kind == tyOpenArray:
    return false
  if skipTypes(src, abstractInst-{tyTypeDesc}).kind == tyTypeDesc:
    return false
  if skipTypes(dst, abstractInst).kind == tyBuiltInTypeClass:
    return false
  let conf = c.config
  if conf.selectedGC in {gcArc, gcOrc, gcAtomicArc}:
    let d = skipTypes(dst, abstractInst)
    let s = skipTypes(src, abstractInst)
    if d.kind == tyRef and s.kind == tyRef and s[0].isFinal != d[0].isFinal:
      return false
    elif d.kind in IntegralTypes and s.kind in {tyString, tySequence}:
      return false

  var dstSize, srcSize: BiggestInt
  dstSize = computeSize(conf, dst)
  srcSize = computeSize(conf, src)
  if dstSize == -3 or srcSize == -3: # szUnknownSize
    # The Nim compiler can't detect if it's legal or not.
    # Just assume the programmer knows what he is doing.
    return true
  if dstSize < 0:
    return false
  elif srcSize < 0:
    return false
  elif typeAllowed(dst, skParam, c, {taIsCastable}) != nil:
    return false
  elif dst.kind == tyProc and dst.callConv == ccClosure:
    return src.kind == tyProc and src.callConv == ccClosure
  else:
    result = (dstSize >= srcSize) or
        (skipTypes(dst, abstractInst).kind in IntegralTypes) or
        (skipTypes(src, abstractInst-{tyTypeDesc}).kind in IntegralTypes)
  if result and src.kind == tyNil:
    return dst.size <= conf.target.ptrSize

proc isSymChoice(n: PNode): bool {.inline.} =
  result = n.kind in nkSymChoices

proc maybeLiftType(t: var PType, c: PContext, info: TLineInfo) =
  # XXX: liftParamType started to perform addDecl
  # we could do that instead in semTypeNode by snooping for added
  # gnrc. params, then it won't be necessary to open a new scope here
  openScope(c)
  var lifted = liftParamType(c, skType, newNodeI(nkArgList, info),
                             t, ":anon", info)
  closeScope(c)
  if lifted != nil: t = lifted

proc isOwnedSym(c: PContext; n: PNode): bool =
  let s = qualifiedLookUp(c, n, {})
  result = s != nil and sfSystemModule in s.owner.flags and s.name.s == "owned"

proc semConv(c: PContext, n: PNode; expectedType: PType = nil): PNode =
  if n.len != 2:
    localError(c.config, n.info, "a type conversion takes exactly one argument")
    return n

  result = newNodeI(nkConv, n.info)

  var targetType = semTypeNode(c, n[0], nil)
  case targetType.skipTypes({tyDistinct}).kind
  of tyTypeDesc:
    internalAssert c.config, targetType.len > 0
    if targetType.base.kind == tyNone:
      return semTypeOf(c, n)
    else:
      targetType = targetType.base
  of tyStatic:
    var evaluated = semStaticExpr(c, n[1], expectedType)
    if evaluated.kind == nkType or evaluated.typ.kind == tyTypeDesc:
      result = n
      result.typ = c.makeTypeDesc semStaticType(c, evaluated, nil)
      return
    elif targetType.base.kind == tyNone:
      return evaluated
    else:
      targetType = targetType.base
  of tyAnything, tyUntyped, tyTyped:
    localError(c.config, n.info, "illegal type conversion to '$1'" % typeToString(targetType))
  else: discard

  maybeLiftType(targetType, c, n[0].info)

  if targetType.kind in {tySink, tyLent} or isOwnedSym(c, n[0]):
    let baseType = semTypeNode(c, n[1], nil).skipTypes({tyTypeDesc})
    let t = newTypeS(targetType.kind, c)
    if targetType.kind == tyOwned:
      t.flags.incl tfHasOwned
    t.rawAddSonNoPropagationOfTypeFlags baseType
    result = newNodeI(nkType, n.info)
    result.typ = makeTypeDesc(c, t)
    return

  result.add copyTree(n[0])

  # special case to make MyObject(x = 3) produce a nicer error message:
  if n[1].kind == nkExprEqExpr and
      targetType.skipTypes(abstractPtrs).kind == tyObject:
    localError(c.config, n.info, "object construction uses ':', not '='")
  var op = semExprWithType(c, n[1])
  if op.kind == nkClosedSymChoice and op.len > 0 and
      op[0].sym.kind == skEnumField: # resolves overloadedable enums
    op = ambiguousSymChoice(c, n, op)
  if targetType.kind != tyGenericParam and targetType.isMetaType:
    let final = inferWithMetatype(c, targetType, op, true)
    result.add final
    result.typ = final.typ
    return

  result.typ = targetType
  # XXX op is overwritten later on, this is likely added too early
  # here or needs to be overwritten too then.
  result.add op

  if targetType.kind == tyGenericParam:
    result.typ = makeTypeFromExpr(c, copyTree(result))
    return result

  if not isSymChoice(op):
    let status = checkConvertible(c, result.typ, op)
    case status
    of convOK:
      # handle SomeProcType(SomeGenericProc)
      if op.kind == nkSym and op.sym.isGenericRoutine:
        result[1] = fitNode(c, result.typ, result[1], result.info)
      elif op.kind in {nkPar, nkTupleConstr} and targetType.kind == tyTuple:
        op = fitNode(c, targetType, op, result.info)
    of convNotNeedeed:
      message(c.config, n.info, hintConvFromXtoItselfNotNeeded, result.typ.typeToString)
    of convNotLegal:
      result = fitNode(c, result.typ, result[1], result.info)
      if result == nil:
        localError(c.config, n.info, "illegal conversion from '$1' to '$2'" %
          [op.typ.typeToString, result.typ.typeToString])
    of convNotInRange:
      let value =
        if op.kind in {nkCharLit..nkUInt64Lit}: $op.getInt else: $op.getFloat
      localError(c.config, n.info, errGenerated, value & " can't be converted to " &
        result.typ.typeToString)
  else:
    for i in 0..<op.len:
      let it = op[i]
      let status = checkConvertible(c, result.typ, it)
      if status in {convOK, convNotNeedeed}:
        markUsed(c, n.info, it.sym)
        onUse(n.info, it.sym)
        markIndirect(c, it.sym)
        return it
    errorUseQualifier(c, n.info, op[0].sym)

proc semCast(c: PContext, n: PNode): PNode =
  ## Semantically analyze a casting ("cast[type](param)")
  checkSonsLen(n, 2, c.config)
  let targetType = semTypeNode(c, n[0], nil)
  let castedExpr = semExprWithType(c, n[1])
  if castedExpr.kind == nkClosedSymChoice:
    errorUseQualifier(c, n[1].info, castedExpr)
  if targetType == nil:
    localError(c.config, n.info, "Invalid usage of cast, cast requires a type to convert to, e.g., cast[int](0d).")
  if tfHasMeta in targetType.flags:
    localError(c.config, n[0].info, "cannot cast to a non concrete type: '$1'" % $targetType)
  if not isCastable(c, targetType, castedExpr.typ, n.info):
    localError(c.config, n.info, "expression cannot be cast to '$1'" % $targetType)
  result = newNodeI(nkCast, n.info)
  result.typ = targetType
  result.add copyTree(n[0])
  result.add castedExpr

proc semLowHigh(c: PContext, n: PNode, m: TMagic): PNode =
  const
    opToStr: array[mLow..mHigh, string] = ["low", "high"]
  if n.len != 2:
    localError(c.config, n.info, errXExpectsTypeOrValue % opToStr[m])
  else:
    n[1] = semExprWithType(c, n[1], {efDetermineType})
    var typ = skipTypes(n[1].typ, abstractVarRange + {tyTypeDesc, tyUserTypeClassInst})
    case typ.kind
    of tySequence, tyString, tyCstring, tyOpenArray, tyVarargs:
      n.typ = getSysType(c.graph, n.info, tyInt)
    of tyArray:
      n.typ = typ[0] # indextype
      if n.typ.kind == tyRange and emptyRange(n.typ.n[0], n.typ.n[1]): #Invalid range
        n.typ = getSysType(c.graph, n.info, tyInt)
    of tyInt..tyInt64, tyChar, tyBool, tyEnum, tyUInt..tyUInt64, tyFloat..tyFloat64:
      n.typ = n[1].typ.skipTypes({tyTypeDesc})
    of tyGenericParam:
      # prepare this for resolving in semtypinst:
      # we must use copyTree here in order to avoid creating a cycle
      # that could easily turn into an infinite recursion in semtypinst
      n.typ = makeTypeFromExpr(c, n.copyTree)
    else:
      localError(c.config, n.info, "invalid argument for: " & opToStr[m])
  result = n

proc fixupStaticType(c: PContext, n: PNode) =
  # This proc can be applied to evaluated expressions to assign
  # them a static type.
  #
  # XXX: with implicit static, this should not be necessary,
  # because the output type of operations such as `semConstExpr`
  # should be a static type (as well as the type of any other
  # expression that can be implicitly evaluated). For now, we
  # apply this measure only in code that is enlightened to work
  # with static types.
  if n.typ.kind != tyStatic:
    n.typ = newTypeWithSons(getCurrOwner(c), tyStatic, @[n.typ], c.idgen)
    n.typ.n = n # XXX: cycles like the one here look dangerous.
                # Consider using `n.copyTree`

proc isOpImpl(c: PContext, n: PNode, flags: TExprFlags): PNode =
  internalAssert c.config,
    n.len == 3 and
    n[1].typ != nil and
    n[2].kind in {nkStrLit..nkTripleStrLit, nkType}

  var
    res = false
    t1 = n[1].typ
    t2 = n[2].typ

  if t1.kind == tyTypeDesc and t2.kind != tyTypeDesc:
    t1 = t1.base

  if n[2].kind in {nkStrLit..nkTripleStrLit}:
    case n[2].strVal.normalize
    of "closure":
      let t = skipTypes(t1, abstractRange)
      res = t.kind == tyProc and
            t.callConv == ccClosure
    of "iterator":
      # holdover from when `is iterator` didn't work
      let t = skipTypes(t1, abstractRange)
      res = t.kind == tyProc and
            t.callConv == ccClosure and
            tfIterator in t.flags
    else:
      res = false
  else:
    if t1.skipTypes({tyGenericInst, tyAlias, tySink, tyDistinct}).kind != tyGenericBody:
      maybeLiftType(t2, c, n.info)
    else:
      #[
      for this case:
      type Foo = object[T]
      Foo is Foo
      ]#
      discard
    var m = newCandidate(c, t2)
    if efExplain in flags:
      m.diagnostics = @[]
      m.diagnosticsEnabled = true
    res = typeRel(m, t2, t1) >= isSubtype # isNone
    # `res = sameType(t1, t2)` would be wrong, e.g. for `int is (int|float)`

  result = newIntNode(nkIntLit, ord(res))
  result.typ = n.typ

proc semIs(c: PContext, n: PNode, flags: TExprFlags): PNode =
  if n.len != 3:
    localError(c.config, n.info, "'is' operator takes 2 arguments")

  let boolType = getSysType(c.graph, n.info, tyBool)
  result = n
  n.typ = boolType
  var liftLhs = true

  n[1] = semExprWithType(c, n[1], {efDetermineType, efWantIterator})
  if n[2].kind notin {nkStrLit..nkTripleStrLit}:
    let t2 = semTypeNode(c, n[2], nil)
    n[2] = newNodeIT(nkType, n[2].info, t2)
    if t2.kind == tyStatic:
      let evaluated = tryConstExpr(c, n[1])
      if evaluated != nil:
        c.fixupStaticType(evaluated)
        n[1] = evaluated
      else:
        result = newIntNode(nkIntLit, 0)
        result.typ = boolType
        return
    elif t2.kind == tyTypeDesc and
        (t2.base.kind == tyNone or tfExplicit in t2.flags):
      # When the right-hand side is an explicit type, we must
      # not allow regular values to be matched against the type:
      liftLhs = false
  else:
    n[2] = semExpr(c, n[2])

  var lhsType = n[1].typ
  if lhsType.kind != tyTypeDesc:
    if liftLhs:
      n[1] = makeTypeSymNode(c, lhsType, n[1].info)
      lhsType = n[1].typ
  else:
    if lhsType.base.kind == tyNone or
        (c.inGenericContext > 0 and lhsType.base.containsGenericType):
      # BUGFIX: don't evaluate this too early: ``T is void``
      return

  result = isOpImpl(c, n, flags)

proc semOpAux(c: PContext, n: PNode) =
  const flags = {efDetermineType}
  for i in 1..<n.len:
    var a = n[i]
    if a.kind == nkExprEqExpr and a.len == 2:
      let info = a[0].info
      a[0] = newIdentNode(considerQuotedIdent(c, a[0], a), info)
      a[1] = semExprWithType(c, a[1], flags)
      a.typ = a[1].typ
    else:
      n[i] = semExprWithType(c, a, flags)

proc overloadedCallOpr(c: PContext, n: PNode): PNode =
  # quick check if there is *any* () operator overloaded:
  var par = getIdent(c.cache, "()")
  var amb = false
  if searchInScopes(c, par, amb) == nil:
    result = nil
  else:
    result = newNodeI(nkCall, n.info)
    result.add newIdentNode(par, n.info)
    for i in 0..<n.len: result.add n[i]
    result = semExpr(c, result, flags = {efNoUndeclared})

proc changeType(c: PContext; n: PNode, newType: PType, check: bool) =
  case n.kind
  of nkCurly, nkBracket:
    for i in 0..<n.len:
      changeType(c, n[i], elemType(newType), check)
  of nkPar, nkTupleConstr:
    let tup = newType.skipTypes({tyGenericInst, tyAlias, tySink, tyDistinct})
    if tup.kind != tyTuple:
      if tup.kind == tyObject: return
      globalError(c.config, n.info, "no tuple type for constructor")
    elif n.len > 0 and n[0].kind == nkExprColonExpr:
      # named tuple?
      for i in 0..<n.len:
        var m = n[i][0]
        if m.kind != nkSym:
          globalError(c.config, m.info, "invalid tuple constructor")
          return
        if tup.n != nil:
          var f = getSymFromList(tup.n, m.sym.name)
          if f == nil:
            globalError(c.config, m.info, "unknown identifier: " & m.sym.name.s)
            return
          changeType(c, n[i][1], f.typ, check)
        else:
          changeType(c, n[i][1], tup[i], check)
    else:
      for i in 0..<n.len:
        changeType(c, n[i], tup[i], check)
        when false:
          var m = n[i]
          var a = newNodeIT(nkExprColonExpr, m.info, newType[i])
          a.add newSymNode(newType.n[i].sym)
          a.add m
          changeType(m, tup[i], check)
  of nkCharLit..nkUInt64Lit:
    if check and n.kind != nkUInt64Lit and not sameType(n.typ, newType):
      let value = n.intVal
      if value < firstOrd(c.config, newType) or value > lastOrd(c.config, newType):
        localError(c.config, n.info, "cannot convert " & $value &
                                         " to " & typeToString(newType))
  of nkFloatLit..nkFloat64Lit:
    if check and not floatRangeCheck(n.floatVal, newType):
      localError(c.config, n.info, errFloatToString % [$n.floatVal, typeToString(newType)])
  else: discard
  n.typ = newType

proc arrayConstrType(c: PContext, n: PNode): PType =
  var typ = newTypeS(tyArray, c)
  rawAddSon(typ, nil)     # index type
  if n.len == 0:
    rawAddSon(typ, newTypeS(tyEmpty, c)) # needs an empty basetype!
  else:
    var t = skipTypes(n[0].typ, {tyGenericInst, tyVar, tyLent, tyOrdinal, tyAlias, tySink})
    addSonSkipIntLit(typ, t, c.idgen)
  typ[0] = makeRangeType(c, 0, n.len - 1, n.info)
  result = typ

proc semArrayConstr(c: PContext, n: PNode, flags: TExprFlags; expectedType: PType = nil): PNode =
  result = newNodeI(nkBracket, n.info)
  result.typ = newTypeS(tyArray, c)
  var expectedElementType, expectedIndexType: PType = nil
  if expectedType != nil:
    let expected = expectedType.skipTypes(abstractRange-{tyDistinct})
    case expected.kind
    of tyArray:
      expectedIndexType = expected[0]
      expectedElementType = expected[1]
    of tyOpenArray:
      expectedElementType = expected[0]
    else: discard
  rawAddSon(result.typ, nil)     # index type
  var
    firstIndex, lastIndex: Int128
    indexType = getSysType(c.graph, n.info, tyInt)
    lastValidIndex = lastOrd(c.config, indexType)
  if n.len == 0:
    rawAddSon(result.typ,
      if expectedElementType != nil and
          typeAllowed(expectedElementType, skLet, c) == nil:
        expectedElementType
      else:
        newTypeS(tyEmpty, c)) # needs an empty basetype!
    lastIndex = toInt128(-1)
  else:
    var x = n[0]
    if x.kind == nkExprColonExpr and x.len == 2:
      var idx = semConstExpr(c, x[0], expectedIndexType)
      if not isOrdinalType(idx.typ):
        localError(c.config, idx.info, "expected ordinal value for array " &
                   "index, got '$1'" % renderTree(idx))
      else:
        firstIndex = getOrdValue(idx)
        lastIndex = firstIndex
        indexType = idx.typ
        lastValidIndex = lastOrd(c.config, indexType)
        x = x[1]

    let yy = semExprWithType(c, x, {efTypeAllowed}, expectedElementType)
    var typ = yy.typ
    if expectedElementType == nil:
      expectedElementType = typ
    result.add yy
    #var typ = skipTypes(result[0].typ, {tyGenericInst, tyVar, tyLent, tyOrdinal})
    for i in 1..<n.len:
      if lastIndex == lastValidIndex:
        let validIndex = makeRangeType(c, toInt64(firstIndex), toInt64(lastValidIndex), n.info,
                                       indexType)
        localError(c.config, n.info, "size of array exceeds range of index " &
          "type '$1' by $2 elements" % [typeToString(validIndex), $(n.len-i)])

      x = n[i]
      if x.kind == nkExprColonExpr and x.len == 2:
        var idx = semConstExpr(c, x[0], indexType)
        idx = fitNode(c, indexType, idx, x.info)
        if lastIndex+1 != getOrdValue(idx):
          localError(c.config, x.info, "invalid order in array constructor")
        x = x[1]

      let xx = semExprWithType(c, x, {efTypeAllowed}, expectedElementType)
      result.add xx
      typ = commonType(c, typ, xx.typ)
      #n[i] = semExprWithType(c, x, {})
      #result.add fitNode(c, typ, n[i])
      inc(lastIndex)
    addSonSkipIntLit(result.typ, typ, c.idgen)
    for i in 0..<result.len:
      result[i] = fitNode(c, typ, result[i], result[i].info)
  result.typ[0] = makeRangeType(c, toInt64(firstIndex), toInt64(lastIndex), n.info,
                                     indexType)

proc fixAbstractType(c: PContext, n: PNode) =
  for i in 1..<n.len:
    let it = n[i]
    if it == nil:
      localError(c.config, n.info, "'$1' has nil child at index $2" % [renderTree(n, {renderNoComments}), $i])
      return
    # do not get rid of nkHiddenSubConv for OpenArrays, the codegen needs it:
    if it.kind == nkHiddenSubConv and
        skipTypes(it.typ, abstractVar).kind notin {tyOpenArray, tyVarargs}:
      if skipTypes(it[1].typ, abstractVar).kind in
            {tyNil, tyTuple, tySet} or it[1].isArrayConstr:
        var s = skipTypes(it.typ, abstractVar + tyUserTypeClasses)
        if s.kind != tyUntyped:
          changeType(c, it[1], s, check=true)
        n[i] = it[1]

proc isAssignable(c: PContext, n: PNode): TAssignableResult =
  result = parampatterns.isAssignable(c.p.owner, n)

proc isUnresolvedSym(s: PSym): bool =
  result = s.kind == skGenericParam
  if not result and s.typ != nil:
    result = tfInferrableStatic in s.typ.flags or
        (s.kind == skParam and s.typ.isMetaType) or
        (s.kind == skType and
        s.typ.flags * {tfGenericTypeParam, tfImplicitTypeParam} != {})

proc hasUnresolvedArgs(c: PContext, n: PNode): bool =
  # Checks whether an expression depends on generic parameters that
  # don't have bound values yet. E.g. this could happen in situations
  # such as:
  #  type Slot[T] = array[T.size, byte]
  #  proc foo[T](x: default(T))
  #
  # Both static parameter and type parameters can be unresolved.
  case n.kind
  of nkSym:
    return isUnresolvedSym(n.sym)
  of nkIdent, nkAccQuoted:
    let ident = considerQuotedIdent(c, n)
    var amb = false
    let sym = searchInScopes(c, ident, amb)
    if sym != nil:
      return isUnresolvedSym(sym)
    else:
      return false
  else:
    for i in 0..<n.safeLen:
      if hasUnresolvedArgs(c, n[i]): return true
    return false

proc newHiddenAddrTaken(c: PContext, n: PNode, isOutParam: bool): PNode =
  if n.kind == nkHiddenDeref and not (c.config.backend == backendCpp or
                                      sfCompileToCpp in c.module.flags):
    checkSonsLen(n, 1, c.config)
    result = n[0]
  else:
    result = newNodeIT(nkHiddenAddr, n.info, makeVarType(c, n.typ))
    result.add n
    let aa = isAssignable(c, n)
    let sym = getRoot(n)
    if aa notin {arLValue, arLocalLValue}:
      if aa == arDiscriminant and c.inUncheckedAssignSection > 0:
        discard "allow access within a cast(unsafeAssign) section"
      elif strictDefs in c.features and aa == arAddressableConst and
              sym != nil and sym.kind == skLet and isOutParam:
        discard "allow let varaibles to be passed to out parameters"
      else:
        localError(c.config, n.info, errVarForOutParamNeededX % renderNotLValue(n))

proc analyseIfAddressTaken(c: PContext, n: PNode, isOutParam: bool): PNode =
  result = n
  case n.kind
  of nkSym:
    # n.sym.typ can be nil in 'check' mode ...
    if n.sym.typ != nil and
        skipTypes(n.sym.typ, abstractInst-{tyTypeDesc}).kind notin {tyVar, tyLent}:
      incl(n.sym.flags, sfAddrTaken)
      result = newHiddenAddrTaken(c, n, isOutParam)
  of nkDotExpr:
    checkSonsLen(n, 2, c.config)
    if n[1].kind != nkSym:
      internalError(c.config, n.info, "analyseIfAddressTaken")
      return
    if skipTypes(n[1].sym.typ, abstractInst-{tyTypeDesc}).kind notin {tyVar, tyLent}:
      incl(n[1].sym.flags, sfAddrTaken)
      result = newHiddenAddrTaken(c, n, isOutParam)
  of nkBracketExpr:
    checkMinSonsLen(n, 1, c.config)
    if skipTypes(n[0].typ, abstractInst-{tyTypeDesc}).kind notin {tyVar, tyLent}:
      if n[0].kind == nkSym: incl(n[0].sym.flags, sfAddrTaken)
      result = newHiddenAddrTaken(c, n, isOutParam)
  else:
    result = newHiddenAddrTaken(c, n, isOutParam)

proc analyseIfAddressTakenInCall(c: PContext, n: PNode, isConverter = false) =
  checkMinSonsLen(n, 1, c.config)
  const
    FakeVarParams = {mNew, mNewFinalize, mInc, ast.mDec, mIncl, mExcl,
      mSetLengthStr, mSetLengthSeq, mAppendStrCh, mAppendStrStr, mSwap,
      mAppendSeqElem, mNewSeq, mReset, mShallowCopy, mDeepCopy, mMove,
      mWasMoved}

  template checkIfConverterCalled(c: PContext, n: PNode) =
    ## Checks if there is a converter call which wouldn't be checked otherwise
    # Call can sometimes be wrapped in a deref
    let node = if n.kind == nkHiddenDeref: n[0] else: n
    if node.kind == nkHiddenCallConv:
      analyseIfAddressTakenInCall(c, node, true)
  # get the real type of the callee
  # it may be a proc var with a generic alias type, so we skip over them
  var t = n[0].typ.skipTypes({tyGenericInst, tyAlias, tySink})
  if n[0].kind == nkSym and n[0].sym.magic in FakeVarParams:
    # BUGFIX: check for L-Value still needs to be done for the arguments!
    # note sometimes this is eval'ed twice so we check for nkHiddenAddr here:
    for i in 1..<n.len:
      if i < t.len and t[i] != nil and
          skipTypes(t[i], abstractInst-{tyTypeDesc}).kind in {tyVar}:
        let it = n[i]
        let aa = isAssignable(c, it)
        if aa notin {arLValue, arLocalLValue}:
          if it.kind != nkHiddenAddr:
            if aa == arDiscriminant and c.inUncheckedAssignSection > 0:
              discard "allow access within a cast(unsafeAssign) section"
            else:
              localError(c.config, it.info, errVarForOutParamNeededX % $it)
        # Make sure to still check arguments for converters
        c.checkIfConverterCalled(n[i])
    # bug #5113: disallow newSeq(result) where result is a 'var T':
    if n[0].sym.magic in {mNew, mNewFinalize, mNewSeq}:
      var arg = n[1] #.skipAddr
      if arg.kind == nkHiddenDeref: arg = arg[0]
      if arg.kind == nkSym and arg.sym.kind == skResult and
          arg.typ.skipTypes(abstractInst).kind in {tyVar, tyLent}:
        localError(c.config, n.info, errXStackEscape % renderTree(n[1], {renderNoComments}))

    return
  for i in 1..<n.len:
    let n = if n.kind == nkHiddenDeref: n[0] else: n
    c.checkIfConverterCalled(n[i])
    if i < t.len and
        skipTypes(t[i], abstractInst-{tyTypeDesc}).kind in {tyVar}:
      # Converters wrap var parameters in nkHiddenAddr but they haven't been analysed yet.
      # So we need to make sure we are checking them still when in a converter call
      if n[i].kind != nkHiddenAddr or isConverter:
        n[i] = analyseIfAddressTaken(c, n[i].skipAddr(), isOutParam(skipTypes(t[i], abstractInst-{tyTypeDesc})))

include semmagic

proc evalAtCompileTime(c: PContext, n: PNode): PNode =
  result = n
  if n.kind notin nkCallKinds or n[0].kind != nkSym: return
  var callee = n[0].sym
  # workaround for bug #537 (overly aggressive inlining leading to
  # wrong NimNode semantics):
  if n.typ != nil and tfTriggersCompileTime in n.typ.flags: return

  # constant folding that is necessary for correctness of semantic pass:
  if callee.magic != mNone and callee.magic in ctfeWhitelist and n.typ != nil:
    var call = newNodeIT(nkCall, n.info, n.typ)
    call.add(n[0])
    var allConst = true
    for i in 1..<n.len:
      var a = getConstExpr(c.module, n[i], c.idgen, c.graph)
      if a == nil:
        allConst = false
        a = n[i]
        if a.kind == nkHiddenStdConv: a = a[1]
      call.add(a)
    if allConst:
      result = semfold.getConstExpr(c.module, call, c.idgen, c.graph)
      if result.isNil: result = n
      else: return result

  block maybeLabelAsStatic:
    # XXX: temporary work-around needed for tlateboundstatic.
    # This is certainly not correct, but it will get the job
    # done until we have a more robust infrastructure for
    # implicit statics.
    if n.len > 1:
      for i in 1..<n.len:
        # see bug #2113, it's possible that n[i].typ for errornous code:
        if n[i].typ.isNil or n[i].typ.kind != tyStatic or
            tfUnresolved notin n[i].typ.flags:
          break maybeLabelAsStatic
      n.typ = newTypeWithSons(c, tyStatic, @[n.typ])
      n.typ.flags.incl tfUnresolved

  # optimization pass: not necessary for correctness of the semantic pass
  if callee.kind == skConst or
     {sfNoSideEffect, sfCompileTime} * callee.flags != {} and
     {sfForward, sfImportc} * callee.flags == {} and n.typ != nil:

    if callee.kind != skConst and
       sfCompileTime notin callee.flags and
       optImplicitStatic notin c.config.options: return

    if callee.magic notin ctfeWhitelist: return

    if callee.kind notin {skProc, skFunc, skConverter, skConst} or callee.isGenericRoutine:
      return

    if n.typ != nil and typeAllowed(n.typ, skConst, c) != nil: return

    var call = newNodeIT(nkCall, n.info, n.typ)
    call.add(n[0])
    for i in 1..<n.len:
      let a = getConstExpr(c.module, n[i], c.idgen, c.graph)
      if a == nil: return n
      call.add(a)

    #echo "NOW evaluating at compile time: ", call.renderTree
    if c.inStaticContext == 0 or sfNoSideEffect in callee.flags:
      if sfCompileTime in callee.flags:
        result = evalStaticExpr(c.module, c.idgen, c.graph, call, c.p.owner)
        if result.isNil:
          localError(c.config, n.info, errCannotInterpretNodeX % renderTree(call))
        else: result = fixupTypeAfterEval(c, result, n)
      else:
        result = evalConstExpr(c.module, c.idgen, c.graph, call)
        if result.isNil: result = n
        else: result = fixupTypeAfterEval(c, result, n)
    else:
      result = n
    #if result != n:
    #  echo "SUCCESS evaluated at compile time: ", call.renderTree

proc semStaticExpr(c: PContext, n: PNode; expectedType: PType = nil): PNode =
  inc c.inStaticContext
  openScope(c)
  let a = semExprWithType(c, n, expectedType = expectedType)
  closeScope(c)
  dec c.inStaticContext
  if a.findUnresolvedStatic != nil: return a
  result = evalStaticExpr(c.module, c.idgen, c.graph, a, c.p.owner)
  if result.isNil:
    localError(c.config, n.info, errCannotInterpretNodeX % renderTree(n))
    result = c.graph.emptyNode
  else:
    result = fixupTypeAfterEval(c, result, a)

proc semOverloadedCallAnalyseEffects(c: PContext, n: PNode, nOrig: PNode,
                                     flags: TExprFlags; expectedType: PType = nil): PNode =
  if flags*{efInTypeof, efWantIterator, efWantIterable} != {}:
    # consider: 'for x in pReturningArray()' --> we don't want the restriction
    # to 'skIterator' anymore; skIterator is preferred in sigmatch already
    # for typeof support.
    # for ``typeof(countup(1,3))``, see ``tests/ttoseq``.
    result = semOverloadedCall(c, n, nOrig,
      {skProc, skFunc, skMethod, skConverter, skMacro, skTemplate, skIterator}, flags, expectedType)
  else:
    result = semOverloadedCall(c, n, nOrig,
      {skProc, skFunc, skMethod, skConverter, skMacro, skTemplate}, flags, expectedType)

  if result != nil:
    if result[0].kind != nkSym:
      if not (efDetermineType in flags and c.inGenericContext > 0):
        internalError(c.config, "semOverloadedCallAnalyseEffects")
      return
    let callee = result[0].sym
    case callee.kind
    of skMacro, skTemplate: discard
    else:
      if callee.kind == skIterator and callee.id == c.p.owner.id and
          not isClosureIterator(c.p.owner.typ):
        localError(c.config, n.info, errRecursiveDependencyIteratorX % callee.name.s)
        # error correction, prevents endless for loop elimination in transf.
        # See bug #2051:
        result[0] = newSymNode(errorSym(c, n))
      elif callee.kind == skIterator:
        if efWantIterable in flags:
          let typ = newTypeS(tyIterable, c)
          rawAddSon(typ, result.typ)
          result.typ = typ

proc resolveIndirectCall(c: PContext; n, nOrig: PNode;
                         t: PType): TCandidate =
  initCandidate(c, result, t)
  matches(c, n, nOrig, result)

proc bracketedMacro(n: PNode): PSym =
  if n.len >= 1 and n[0].kind == nkSym:
    result = n[0].sym
    if result.kind notin {skMacro, skTemplate}:
      result = nil

proc setGenericParams(c: PContext, n: PNode) =
  for i in 1..<n.len:
    n[i].typ = semTypeNode(c, n[i], nil)

proc afterCallActions(c: PContext; n, orig: PNode, flags: TExprFlags; expectedType: PType = nil): PNode =
  if efNoSemCheck notin flags and n.typ != nil and n.typ.kind == tyError:
    return errorNode(c, n)
  if n.typ != nil and n.typ.kind == tyFromExpr and c.inGenericContext > 0:
    return n

  result = n

  when defined(nimsuggest):
    if c.config.expandProgress:
      if c.config.expandLevels == 0:
        return n
      else:
        c.config.expandLevels -= 1

  let callee = result[0].sym
  case callee.kind
  of skMacro: result = semMacroExpr(c, result, orig, callee, flags, expectedType)
  of skTemplate: result = semTemplateExpr(c, result, callee, flags, expectedType)
  else:
    semFinishOperands(c, result)
    activate(c, result)
    fixAbstractType(c, result)
    analyseIfAddressTakenInCall(c, result)
    if callee.magic != mNone:
      result = magicsAfterOverloadResolution(c, result, flags, expectedType)
    when false:
      if result.typ != nil and
          not (result.typ.kind == tySequence and result.typ[0].kind == tyEmpty):
        liftTypeBoundOps(c, result.typ, n.info)
    #result = patchResolvedTypeBoundOp(c, result)
  if c.matchedConcept == nil:
    result = evalAtCompileTime(c, result)

proc semIndirectOp(c: PContext, n: PNode, flags: TExprFlags; expectedType: PType = nil): PNode =
  result = nil
  checkMinSonsLen(n, 1, c.config)
  var prc = n[0]
  if n[0].kind == nkDotExpr:
    checkSonsLen(n[0], 2, c.config)
    let n0 = semFieldAccess(c, n[0], {efIsDotCall})
    if n0.kind == nkDotCall:
      # it is a static call!
      result = n0
      result.transitionSonsKind(nkCall)
      result.flags.incl nfExplicitCall
      for i in 1..<n.len: result.add n[i]
      return semExpr(c, result, flags)
    else:
      n[0] = n0
  else:
    n[0] = semExpr(c, n[0], {efInCall})
    let t = n[0].typ
    if t != nil and t.kind in {tyVar, tyLent}:
      n[0] = newDeref(n[0])
    elif n[0].kind == nkBracketExpr:
      let s = bracketedMacro(n[0])
      if s != nil:
        setGenericParams(c, n[0])
        return semDirectOp(c, n, flags, expectedType)
    elif isSymChoice(n[0]) and nfDotField notin n.flags:
      # overloaded generic procs e.g. newSeq[int] can end up here
      return semDirectOp(c, n, flags, expectedType)

  var t: PType = nil
  if n[0].typ != nil:
    t = skipTypes(n[0].typ, abstractInst+{tyOwned}-{tyTypeDesc, tyDistinct})
  if t != nil and t.kind == tyTypeDesc:
    if n.len == 1: return semObjConstr(c, n, flags, expectedType)
    return semConv(c, n)

  let nOrig = n.copyTree
  semOpAux(c, n)
  if t != nil and t.kind == tyProc:
    # This is a proc variable, apply normal overload resolution
    let m = resolveIndirectCall(c, n, nOrig, t)
    if m.state != csMatch:
      if c.config.m.errorOutputs == {}:
        # speed up error generation:
        globalError(c.config, n.info, "type mismatch")
        return c.graph.emptyNode
      else:
        var hasErrorType = false
        var msg = "type mismatch: got <"
        for i in 1..<n.len:
          if i > 1: msg.add(", ")
          let nt = n[i].typ
          msg.add(typeToString(nt))
          if nt.kind == tyError:
            hasErrorType = true
            break
        if not hasErrorType:
          let typ = n[0].typ
          msg.add(">\nbut expected one of:\n" &
              typeToString(typ))
          # prefer notin preferToResolveSymbols
          # t.sym != nil
          # sfAnon notin t.sym.flags
          # t.kind != tySequence(It is tyProc)
          if typ.sym != nil and sfAnon notin typ.sym.flags and
                                typ.kind == tyProc:
            # when can `typ.sym != nil` ever happen?
            msg.add(" = " & typeToString(typ, preferDesc))
          msg.addDeclaredLocMaybe(c.config, typ)
          localError(c.config, n.info, msg)
        return errorNode(c, n)
      result = nil
    else:
      result = m.call
      instGenericConvertersSons(c, result, m)

  else:
    result = overloadedCallOpr(c, n) # this uses efNoUndeclared
    # Now that nkSym does not imply an iteration over the proc/iterator space,
    # the old ``prc`` (which is likely an nkIdent) has to be restored:
    if result == nil or result.kind == nkEmpty:
      # XXX: hmm, what kind of symbols will end up here?
      # do we really need to try the overload resolution?
      n[0] = prc
      nOrig[0] = prc
      n.flags.incl nfExprCall
      result = semOverloadedCallAnalyseEffects(c, n, nOrig, flags)
      if result == nil: return errorNode(c, n)
    elif result.kind notin nkCallKinds:
      # the semExpr() in overloadedCallOpr can even break this condition!
      # See bug #904 of how to trigger it:
      return result
  #result = afterCallActions(c, result, nOrig, flags)
  if result[0].kind == nkSym:
    result = afterCallActions(c, result, nOrig, flags, expectedType)
  else:
    fixAbstractType(c, result)
    analyseIfAddressTakenInCall(c, result)

proc semDirectOp(c: PContext, n: PNode, flags: TExprFlags; expectedType: PType = nil): PNode =
  # this seems to be a hotspot in the compiler!
  let nOrig = n.copyTree
  #semLazyOpAux(c, n)
  result = semOverloadedCallAnalyseEffects(c, n, nOrig, flags, expectedType)
  if result != nil: result = afterCallActions(c, result, nOrig, flags, expectedType)
  else: result = errorNode(c, n)

proc buildEchoStmt(c: PContext, n: PNode): PNode =
  # we MUST not check 'n' for semantics again here! But for now we give up:
  result = newNodeI(nkCall, n.info)
  let e = systemModuleSym(c.graph, getIdent(c.cache, "echo"))
  if e != nil:
    result.add(newSymNode(e))
  else:
    result.add localErrorNode(c, n, "system needs: echo")
  result.add(n)
  result.add(newStrNode(nkStrLit, ": " & n.typ.typeToString))
  result = semExpr(c, result)

proc semExprNoType(c: PContext, n: PNode): PNode =
  let isPush = c.config.hasHint(hintExtendedContext)
  if isPush: pushInfoContext(c.config, n.info)
  result = semExpr(c, n, {efWantStmt})
  discardCheck(c, result, {})
  if isPush: popInfoContext(c.config)

proc isTypeExpr(n: PNode): bool =
  case n.kind
  of nkType, nkTypeOfExpr: result = true
  of nkSym: result = n.sym.kind == skType
  else: result = false

proc createSetType(c: PContext; baseType: PType): PType =
  assert baseType != nil
  result = newTypeS(tySet, c)
  rawAddSon(result, baseType)

proc lookupInRecordAndBuildCheck(c: PContext, n, r: PNode, field: PIdent,
                                 check: var PNode): PSym =
  # transform in a node that contains the runtime check for the
  # field, if it is in a case-part...
  result = nil
  case r.kind
  of nkRecList:
    for i in 0..<r.len:
      result = lookupInRecordAndBuildCheck(c, n, r[i], field, check)
      if result != nil: return
  of nkRecCase:
    checkMinSonsLen(r, 2, c.config)
    if (r[0].kind != nkSym): illFormedAst(r, c.config)
    result = lookupInRecordAndBuildCheck(c, n, r[0], field, check)
    if result != nil: return
    let setType = createSetType(c, r[0].typ)
    var s = newNodeIT(nkCurly, r.info, setType)
    for i in 1..<r.len:
      var it = r[i]
      case it.kind
      of nkOfBranch:
        result = lookupInRecordAndBuildCheck(c, n, lastSon(it), field, check)
        if result == nil:
          for j in 0..<it.len-1: s.add copyTree(it[j])
        else:
          if check == nil:
            check = newNodeI(nkCheckedFieldExpr, n.info)
            check.add c.graph.emptyNode # make space for access node
          s = newNodeIT(nkCurly, n.info, setType)
          for j in 0..<it.len - 1: s.add copyTree(it[j])
          var inExpr = newNodeIT(nkCall, n.info, getSysType(c.graph, n.info, tyBool))
          inExpr.add newSymNode(getSysMagic(c.graph, n.info, "contains", mInSet), n.info)
          inExpr.add s
          inExpr.add copyTree(r[0])
          check.add inExpr
          #check.add semExpr(c, inExpr)
          return
      of nkElse:
        result = lookupInRecordAndBuildCheck(c, n, lastSon(it), field, check)
        if result != nil:
          if check == nil:
            check = newNodeI(nkCheckedFieldExpr, n.info)
            check.add c.graph.emptyNode # make space for access node
          var inExpr = newNodeIT(nkCall, n.info, getSysType(c.graph, n.info, tyBool))
          inExpr.add newSymNode(getSysMagic(c.graph, n.info, "contains", mInSet), n.info)
          inExpr.add s
          inExpr.add copyTree(r[0])
          var notExpr = newNodeIT(nkCall, n.info, getSysType(c.graph, n.info, tyBool))
          notExpr.add newSymNode(getSysMagic(c.graph, n.info, "not", mNot), n.info)
          notExpr.add inExpr
          check.add notExpr
          return
      else: illFormedAst(it, c.config)
  of nkSym:
    if r.sym.name.id == field.id: result = r.sym
  else: illFormedAst(n, c.config)

const
  tyTypeParamsHolders = {tyGenericInst, tyCompositeTypeClass}
  tyDotOpTransparent = {tyVar, tyLent, tyPtr, tyRef, tyOwned, tyAlias, tySink}

proc readTypeParameter(c: PContext, typ: PType,
                       paramName: PIdent, info: TLineInfo): PNode =
  # Note: This function will return emptyNode when attempting to read
  # a static type parameter that is not yet resolved (e.g. this may
  # happen in proc signatures such as `proc(x: T): array[T.sizeParam, U]`
  if typ.kind in {tyUserTypeClass, tyUserTypeClassInst}:
    for statement in typ.n:
      case statement.kind
      of nkTypeSection:
        for def in statement:
          if def[0].sym.name.id == paramName.id:
            # XXX: Instead of lifting the section type to a typedesc
            # here, we could try doing it earlier in semTypeSection.
            # This seems semantically correct and then we'll be able
            # to return the section symbol directly here
            let foundType = makeTypeDesc(c, def[2].typ)
            return newSymNode(copySym(def[0].sym, c.idgen).linkTo(foundType), info)

      of nkConstSection:
        for def in statement:
          if def[0].sym.name.id == paramName.id:
            return def[2]

      else:
        discard

  if typ.kind != tyUserTypeClass:
    let ty = if typ.kind == tyCompositeTypeClass: typ[1].skipGenericAlias
             else: typ.skipGenericAlias
    let tbody = ty[0]
    for s in 0..<tbody.len-1:
      let tParam = tbody[s]
      if tParam.sym.name.id == paramName.id:
        let rawTyp = ty[s + 1]
        if rawTyp.kind == tyStatic:
          if rawTyp.n != nil:
            return rawTyp.n
          else:
            return c.graph.emptyNode
        else:
          let foundTyp = makeTypeDesc(c, rawTyp)
          return newSymNode(copySym(tParam.sym, c.idgen).linkTo(foundTyp), info)

  return nil

proc semSym(c: PContext, n: PNode, sym: PSym, flags: TExprFlags): PNode =
  assert n.kind in nkIdentKinds + {nkDotExpr}
  let s = getGenSym(c, sym)
  case s.kind
  of skConst:
    if n.kind != nkDotExpr: # dotExpr is already checked by builtinFieldAccess
      markUsed(c, n.info, s)
    onUse(n.info, s)
    let typ = skipTypes(s.typ, abstractInst-{tyTypeDesc})
    case typ.kind
    of  tyNil, tyChar, tyInt..tyInt64, tyFloat..tyFloat128,
        tyTuple, tySet, tyUInt..tyUInt64:
      if s.magic == mNone: result = inlineConst(c, n, s)
      else: result = newSymNode(s, n.info)
    of tyArray, tySequence:
      # Consider::
      #     const x = []
      #     proc p(a: openarray[int])
      #     proc q(a: openarray[char])
      #     p(x)
      #     q(x)
      #
      # It is clear that ``[]`` means two totally different things. Thus, we
      # copy `x`'s AST into each context, so that the type fixup phase can
      # deal with two different ``[]``.
      if s.astdef.safeLen == 0: result = inlineConst(c, n, s)
      else: result = newSymNode(s, n.info)
    of tyStatic:
      if typ.n != nil:
        result = typ.n
        result.typ = typ.base
      else:
        result = newSymNode(s, n.info)
    else:
      result = newSymNode(s, n.info)
  of skMacro, skTemplate:
    # check if we cannot use alias syntax (no required args or generic params)
    if sfNoalias in s.flags:
      let info = getCallLineInfo(n)
      markUsed(c, info, s)
      onUse(info, s)
      result = symChoice(c, n, s, scClosed)
    else:
      case s.kind
      of skMacro: result = semMacroExpr(c, n, n, s, flags)
      of skTemplate: result = semTemplateExpr(c, n, s, flags)
      else: discard # unreachable
  of skParam:
    markUsed(c, n.info, s)
    onUse(n.info, s)
    if s.typ != nil and s.typ.kind == tyStatic and s.typ.n != nil:
      # XXX see the hack in sigmatch.nim ...
      return s.typ.n
    elif sfGenSym in s.flags:
      # the owner should have been set by now by addParamOrResult
      internalAssert c.config, s.owner != nil
    result = newSymNode(s, n.info)
  of skVar, skLet, skResult, skForVar:
    if s.magic == mNimvm:
      localError(c.config, n.info, "illegal context for 'nimvm' magic")

    if n.kind != nkDotExpr: # dotExpr is already checked by builtinFieldAccess
      markUsed(c, n.info, s)
    onUse(n.info, s)
    result = newSymNode(s, n.info)
    # We cannot check for access to outer vars for example because it's still
    # not sure the symbol really ends up being used:
    # var len = 0 # but won't be called
    # genericThatUsesLen(x) # marked as taking a closure?
    if hasWarn(c.config, warnResultUsed):
      message(c.config, n.info, warnResultUsed)

  of skGenericParam:
    onUse(n.info, s)
    if s.typ.kind == tyStatic:
      result = newSymNode(s, n.info)
      result.typ = s.typ
    elif s.ast != nil:
      result = semExpr(c, s.ast)
    else:
      n.typ = s.typ
      return n
  of skType:
    if n.kind != nkDotExpr: # dotExpr is already checked by builtinFieldAccess
      markUsed(c, n.info, s)
    onUse(n.info, s)
    if s.typ.kind == tyStatic and s.typ.base.kind != tyNone and s.typ.n != nil:
      return s.typ.n
    result = newSymNode(s, n.info)
    result.typ = makeTypeDesc(c, s.typ)
  of skField:
    # old code, not sure if it's live code:
    markUsed(c, n.info, s)
    onUse(n.info, s)
    result = newSymNode(s, n.info)
  of skModule:
    # make sure type is None and not nil for discard checking
    if efWantStmt in flags: s.typ = newTypeS(tyNone, c)
    markUsed(c, n.info, s)
    onUse(n.info, s)
    result = newSymNode(s, n.info)
  else:
    let info = getCallLineInfo(n)
    #if efInCall notin flags:
    markUsed(c, info, s)
    onUse(info, s)
    result = newSymNode(s, info)

proc tryReadingGenericParam(c: PContext, n: PNode, i: PIdent, t: PType): PNode =
  case t.kind
  of tyTypeParamsHolders:
    result = readTypeParameter(c, t, i, n.info)
    if result == c.graph.emptyNode:
      result = n
      n.typ = makeTypeFromExpr(c, n.copyTree)
  of tyUserTypeClasses:
    if t.isResolvedUserTypeClass:
      result = readTypeParameter(c, t, i, n.info)
    else:
      n.typ = makeTypeFromExpr(c, copyTree(n))
      result = n
  of tyGenericParam, tyAnything:
    n.typ = makeTypeFromExpr(c, copyTree(n))
    result = n
  else:
    discard

proc tryReadingTypeField(c: PContext, n: PNode, i: PIdent, ty: PType): PNode =
  var ty = ty.skipTypes(tyDotOpTransparent)
  case ty.kind
  of tyEnum:
    # look up if the identifier belongs to the enum:
    var f = PSym(nil)
    while ty != nil:
      f = getSymFromList(ty.n, i)
      if f != nil: break
      ty = ty.sons[0]         # enum inheritance
    if f != nil:
      result = newSymNode(f)
      result.info = n.info
      result.typ = ty
      markUsed(c, n.info, f)
      onUse(n.info, f)
  of tyObject, tyTuple:
    if ty.n != nil and ty.n.kind == nkRecList:
      let field = lookupInRecord(ty.n, i)
      if field != nil:
        n.typ = makeTypeDesc(c, field.typ)
        result = n
  of tyGenericInst:
    result = tryReadingTypeField(c, n, i, ty.lastSon)
    if result == nil:
      result = tryReadingGenericParam(c, n, i, ty)
  else:
    result = tryReadingGenericParam(c, n, i, ty)

proc builtinFieldAccess(c: PContext; n: PNode; flags: var TExprFlags): PNode =
  ## returns nil if it's not a built-in field access
  checkSonsLen(n, 2, c.config)
  # tests/bind/tbindoverload.nim wants an early exit here, but seems to
  # work without now. template/tsymchoicefield doesn't like an early exit
  # here at all!
  #if isSymChoice(n[1]): return
  when defined(nimsuggest):
    if c.config.cmd == cmdIdeTools:
      suggestExpr(c, n)
      if exactEquals(c.config.m.trackPos, n[1].info): suggestExprNoCheck(c, n)

  var s = qualifiedLookUp(c, n, {checkAmbiguity, checkUndeclared, checkModule})
  if s != nil:
    if s.kind in OverloadableSyms:
      result = symChoice(c, n, s, scClosed)
      if result.kind == nkSym: result = semSym(c, n, s, flags)
    else:
      markUsed(c, n[1].info, s)
      result = semSym(c, n, s, flags)
    onUse(n[1].info, s)
    return

  n[0] = semExprWithType(c, n[0], flags+{efDetermineType, efWantIterable})
  #restoreOldStyleType(n[0])
  var i = considerQuotedIdent(c, n[1], n)
  var ty = n[0].typ
  var f: PSym = nil
  result = nil

  if ty.kind == tyTypeDesc:
    if ty.base.kind == tyNone:
      # This is a still unresolved typedesc parameter.
      # If this is a regular proc, then all bets are off and we must return
      # tyFromExpr, but when this happen in a macro this is not a built-in
      # field access and we leave the compiler to compile a normal call:
      if getCurrOwner(c).kind != skMacro:
        n.typ = makeTypeFromExpr(c, n.copyTree)
        flags.incl efCannotBeDotCall
        return n
      else:
        return nil
    else:
      flags.incl efCannotBeDotCall
      return tryReadingTypeField(c, n, i, ty.base)
  elif isTypeExpr(n.sons[0]):
    flags.incl efCannotBeDotCall
    return tryReadingTypeField(c, n, i, ty)
  elif ty.kind == tyError:
    # a type error doesn't have any builtin fields
    return nil

  if ty.kind in tyUserTypeClasses and ty.isResolvedUserTypeClass:
    ty = ty.lastSon
  ty = skipTypes(ty, {tyGenericInst, tyVar, tyLent, tyPtr, tyRef, tyOwned, tyAlias, tySink, tyStatic})
  while tfBorrowDot in ty.flags: ty = ty.skipTypes({tyDistinct, tyGenericInst, tyAlias})
  var check: PNode = nil
  if ty.kind == tyObject:
    while true:
      check = nil
      f = lookupInRecordAndBuildCheck(c, n, ty.n, i, check)
      if f != nil: break
      if ty[0] == nil: break
      ty = skipTypes(ty[0], skipPtrs)
    if f != nil:
      let visibilityCheckNeeded =
        if n[1].kind == nkSym and n[1].sym == f:
          false # field lookup was done already, likely by hygienic template or bindSym
        else: true
      if not visibilityCheckNeeded or fieldVisible(c, f):
        # is the access to a public field or in the same module or in a friend?
        markUsed(c, n[1].info, f)
        onUse(n[1].info, f)
        let info = n[1].info
        n[0] = makeDeref(n[0])
        n[1] = newSymNode(f) # we now have the correct field
        n[1].info = info # preserve the original info
        n.typ = f.typ
        if check == nil:
          result = n
        else:
          check[0] = n
          check.typ = n.typ
          result = check
  elif ty.kind == tyTuple and ty.n != nil:
    f = getSymFromList(ty.n, i)
    if f != nil:
      markUsed(c, n[1].info, f)
      onUse(n[1].info, f)
      n[0] = makeDeref(n[0])
      n[1] = newSymNode(f)
      n.typ = f.typ
      result = n

  # we didn't find any field, let's look for a generic param
  if result == nil:
    let t = n[0].typ.skipTypes(tyDotOpTransparent)
    result = tryReadingGenericParam(c, n, i, t)
    flags.incl efCannotBeDotCall

proc dotTransformation(c: PContext, n: PNode): PNode =
  if isSymChoice(n[1]) or
      # generics usually leave field names as symchoices, but not types
      (n[1].kind == nkSym and n[1].sym.kind == skType):
    result = newNodeI(nkDotCall, n.info)
    result.add n[1]
    result.add copyTree(n[0])
  else:
    var i = considerQuotedIdent(c, n[1], n)
    result = newNodeI(nkDotCall, n.info)
    result.flags.incl nfDotField
    result.add newIdentNode(i, n[1].info)
    result.add copyTree(n[0])

proc semFieldAccess(c: PContext, n: PNode, flags: TExprFlags): PNode =
  # this is difficult, because the '.' is used in many different contexts
  # in Nim. We first allow types in the semantic checking.
  var f = flags - {efIsDotCall}
  result = builtinFieldAccess(c, n, f)
  if result == nil or ((result.typ == nil or result.typ.skipTypes(abstractInst).kind != tyProc) and
      efIsDotCall in flags and callOperator notin c.features and
      efCannotBeDotCall notin f):
    result = dotTransformation(c, n)

proc buildOverloadedSubscripts(n: PNode, ident: PIdent): PNode =
  result = newNodeI(nkCall, n.info)
  result.add(newIdentNode(ident, n.info))
  for s in n: result.add s

proc semDeref(c: PContext, n: PNode): PNode =
  checkSonsLen(n, 1, c.config)
  n[0] = semExprWithType(c, n[0])
  let a = getConstExpr(c.module, n[0], c.idgen, c.graph)
  if a != nil:
    if a.kind == nkNilLit:
      localError(c.config, n.info, "nil dereference is not allowed")
    n[0] = a
  result = n
  var t = skipTypes(n[0].typ, {tyGenericInst, tyVar, tyLent, tyAlias, tySink, tyOwned})
  case t.kind
  of tyRef, tyPtr: n.typ = t.lastSon
  else: result = nil
  #GlobalError(n[0].info, errCircumNeedsPointer)

proc maybeInstantiateGeneric(c: PContext, n: PNode, s: PSym): PNode =
  ## Instantiates generic if not lacking implicit generics,
  ## otherwise returns n.
  let
    neededGenParams = s.ast[genericParamsPos].len
    heldGenParams = n.len - 1
  var implicitParams = 0
  for x in s.ast[genericParamsPos]:
    if tfImplicitTypeParam in x.typ.flags:
      inc implicitParams
  if heldGenParams != neededGenParams and implicitParams + heldGenParams == neededGenParams:
    # This is an implicit + explicit generic procedure without all args passed,
    # kicking back the sem'd symbol fixes #17212
    # Uncertain the hackiness of this solution.
    result = n
  else:
    result = explicitGenericInstantiation(c, n, s)
    if result == n:
      n[0] = copyTree(result[0])
    else:
      n[0] = result

proc semSubscript(c: PContext, n: PNode, flags: TExprFlags): PNode =
  ## returns nil if not a built-in subscript operator; also called for the
  ## checking of assignments
  if n.len == 1:
    let x = semDeref(c, n)
    if x == nil: return nil
    result = newNodeIT(nkDerefExpr, x.info, x.typ)
    result.add(x[0])
    return
  checkMinSonsLen(n, 2, c.config)
  # signal that generic parameters may be applied after
  n[0] = semExprWithType(c, n[0], {efNoEvaluateGeneric})
  var arr = skipTypes(n[0].typ, {tyGenericInst, tyUserTypeClassInst, tyOwned,
                                      tyVar, tyLent, tyPtr, tyRef, tyAlias, tySink})
  if arr.kind == tyStatic:
    if arr.base.kind == tyNone:
      result = n
      result.typ = semStaticType(c, n[1], nil)
      return
    elif arr.n != nil:
      return semSubscript(c, arr.n, flags)
    else:
      arr = arr.base

  case arr.kind
  of tyArray, tyOpenArray, tyVarargs, tySequence, tyString, tyCstring,
    tyUncheckedArray:
    if n.len != 2: return nil
    n[0] = makeDeref(n[0])
    for i in 1..<n.len:
      n[i] = semExprWithType(c, n[i],
                                  flags*{efInTypeof, efDetermineType})
    # Arrays index type is dictated by the range's type
    if arr.kind == tyArray:
      var indexType = arr[0]
      var arg = indexTypesMatch(c, indexType, n[1].typ, n[1])
      if arg != nil:
        n[1] = arg
        result = n
        result.typ = elemType(arr)
    # Other types have a bit more of leeway
    elif n[1].typ.skipTypes(abstractRange-{tyDistinct}).kind in
        {tyInt..tyInt64, tyUInt..tyUInt64}:
      result = n
      result.typ = elemType(arr)
  of tyTypeDesc:
    # The result so far is a tyTypeDesc bound
    # a tyGenericBody. The line below will substitute
    # it with the instantiated type.
    result = n
    result.typ = makeTypeDesc(c, semTypeNode(c, n, nil))
    #result = symNodeFromType(c, semTypeNode(c, n, nil), n.info)
  of tyTuple:
    if n.len != 2: return nil
    n[0] = makeDeref(n[0])
    # [] operator for tuples requires constant expression:
    n[1] = semConstExpr(c, n[1])
    if skipTypes(n[1].typ, {tyGenericInst, tyRange, tyOrdinal, tyAlias, tySink}).kind in
        {tyInt..tyInt64}:
      let idx = getOrdValue(n[1])
      if idx >= 0 and idx < arr.len: n.typ = arr[toInt(idx)]
      else:
        localError(c.config, n.info,
          "invalid index $1 in subscript for tuple of length $2" %
            [$idx, $arr.len])
      result = n
    else:
      result = nil
  else:
    let s = if n[0].kind == nkSym: n[0].sym
            elif n[0].kind in nkSymChoices: n[0][0].sym
            else: nil
    if s != nil:
      case s.kind
      of skProc, skFunc, skMethod, skConverter, skIterator:
        # type parameters: partial generic specialization
        n[0] = semSymGenericInstantiation(c, n[0], s)
        result = maybeInstantiateGeneric(c, n, s)
      of skMacro, skTemplate:
        if efInCall in flags:
          # We are processing macroOrTmpl[] in macroOrTmpl[](...) call.
          # Return as is, so it can be transformed into complete macro or
          # template call in semIndirectOp caller.
          result = n
        else:
          # We are processing macroOrTmpl[] not in call. Transform it to the
          # macro or template call with generic arguments here.
          n.transitionSonsKind(nkCall)
          case s.kind
          of skMacro: result = semMacroExpr(c, n, n, s, flags)
          of skTemplate: result = semTemplateExpr(c, n, s, flags)
          else: discard
      of skType:
        result = symNodeFromType(c, semTypeNode(c, n, nil), n.info)
      else:
        discard

proc semArrayAccess(c: PContext, n: PNode, flags: TExprFlags; expectedType: PType = nil): PNode =
  result = semSubscript(c, n, flags)
  if result == nil:
    # overloaded [] operator:
    result = semExpr(c, buildOverloadedSubscripts(n, getIdent(c.cache, "[]")), flags, expectedType)

proc propertyWriteAccess(c: PContext, n, nOrig, a: PNode): PNode =
  var id = considerQuotedIdent(c, a[1], a)
  var setterId = newIdentNode(getIdent(c.cache, id.s & '='), n.info)
  # a[0] is already checked for semantics, that does ``builtinFieldAccess``
  # this is ugly. XXX Semantic checking should use the ``nfSem`` flag for
  # nodes?
  let aOrig = nOrig[0]
  result = newTreeI(nkCall, n.info, setterId, a[0], semExprWithType(c, n[1]))
  result.flags.incl nfDotSetter
  let orig = newTreeI(nkCall, n.info, setterId, aOrig[0], nOrig[1])
  result = semOverloadedCallAnalyseEffects(c, result, orig, {})

  if result != nil:
    result = afterCallActions(c, result, nOrig, {})
    #fixAbstractType(c, result)
    #analyseIfAddressTakenInCall(c, result)

proc takeImplicitAddr(c: PContext, n: PNode; isLent: bool): PNode =
  # See RFC #7373, calls returning 'var T' are assumed to
  # return a view into the first argument (if there is one):
  let root = exprRoot(n)
  if root != nil and root.owner == c.p.owner:
    template url: string = "var_t_return.html".createDocLink
    if root.kind in {skLet, skVar, skTemp} and sfGlobal notin root.flags:
      localError(c.config, n.info, "'$1' escapes its stack frame; context: '$2'; see $3" % [
        root.name.s, renderTree(n, {renderNoComments}), url])
    elif root.kind == skParam and root.position != 0:
      localError(c.config, n.info, "'$1' is not the first parameter; context: '$2'; see $3" % [
        root.name.s, renderTree(n, {renderNoComments}), url])
  case n.kind
  of nkHiddenAddr, nkAddr: return n
  of nkDerefExpr: return n[0]
  of nkBracketExpr:
    if n.len == 1: return n[0]
  of nkHiddenDeref:
    # issue #13848
    # `proc fun(a: var int): var int = a`
    discard
  else: discard
  let valid = isAssignable(c, n)
  if valid != arLValue:
    if valid in {arAddressableConst, arLentValue} and isLent:
      discard "ok"
    elif valid == arLocalLValue:
      localError(c.config, n.info, errXStackEscape % renderTree(n, {renderNoComments}))
    else:
      localError(c.config, n.info, errExprHasNoAddress)
  result = newNodeIT(nkHiddenAddr, n.info, if n.typ.kind in {tyVar, tyLent}: n.typ else: makePtrType(c, n.typ))
  result.add(n)

proc asgnToResultVar(c: PContext, n, le, ri: PNode) {.inline.} =
  if le.kind == nkHiddenDeref:
    var x = le[0]
    if x.kind == nkSym:
      if x.sym.kind == skResult and (x.typ.kind in {tyVar, tyLent} or classifyViewType(x.typ) != noView):
        n[0] = x # 'result[]' --> 'result'
        n[1] = takeImplicitAddr(c, ri, x.typ.kind == tyLent)
        x.typ.flags.incl tfVarIsPtr
        #echo x.info, " setting it for this type ", typeToString(x.typ), " ", n.info
      elif sfGlobal in x.sym.flags:
        x.typ.flags.incl tfVarIsPtr

proc borrowCheck(c: PContext, n, le, ri: PNode) =
  const
    PathKinds0 = {nkDotExpr, nkCheckedFieldExpr,
                  nkBracketExpr, nkAddr, nkHiddenAddr,
                  nkObjDownConv, nkObjUpConv}
    PathKinds1 = {nkHiddenStdConv, nkHiddenSubConv}

  proc getRoot(n: PNode; followDeref: bool): PNode =
    result = n
    while true:
      case result.kind
      of nkDerefExpr, nkHiddenDeref:
        if followDeref: result = result[0]
        else: break
      of PathKinds0:
        result = result[0]
      of PathKinds1:
        result = result[1]
      else: break

  proc scopedLifetime(c: PContext; ri: PNode): bool {.inline.} =
    let n = getRoot(ri, followDeref = false)
    result = (ri.kind in nkCallKinds+{nkObjConstr}) or
      (n.kind == nkSym and n.sym.owner == c.p.owner and n.sym.kind != skResult)

  proc escapes(c: PContext; le: PNode): bool {.inline.} =
    # param[].foo[] = self  definitely escapes, we don't need to
    # care about pointer derefs:
    let n = getRoot(le, followDeref = true)
    result = n.kind == nkSym and n.sym.kind == skParam

  # Special typing rule: do not allow to pass 'owned T' to 'T' in 'result = x':
  const absInst = abstractInst - {tyOwned}
  if ri.typ != nil and ri.typ.skipTypes(absInst).kind == tyOwned and
      le.typ != nil and le.typ.skipTypes(absInst).kind != tyOwned and
      scopedLifetime(c, ri):
    if le.kind == nkSym and le.sym.kind == skResult:
      localError(c.config, n.info, "cannot return an owned pointer as an unowned pointer; " &
        "use 'owned(" & typeToString(le.typ) & ")' as the return type")
    elif escapes(c, le):
      localError(c.config, n.info,
        "assignment produces a dangling ref: the unowned ref lives longer than the owned ref")

template resultTypeIsInferrable(typ: PType): untyped =
  typ.isMetaType and typ.kind != tyTypeDesc

proc goodLineInfo(arg: PNode): TLineInfo =
  if arg.kind == nkStmtListExpr and arg.len > 0:
    goodLineInfo(arg[^1])
  else:
    arg.info

proc semAsgn(c: PContext, n: PNode; mode=asgnNormal): PNode =
  checkSonsLen(n, 2, c.config)
  var a = n[0]
  case a.kind
  of nkDotExpr:
    # r.f = x
    # --> `f=` (r, x)
    let nOrig = n.copyTree
    var flags = {efLValue}
    a = builtinFieldAccess(c, a, flags)
    if a == nil:
      a = propertyWriteAccess(c, n, nOrig, n[0])
      if a != nil: return a
      # we try without the '='; proc that return 'var' or macros are still
      # possible:
      a = dotTransformation(c, n[0])
      if a.kind == nkDotCall:
        a.transitionSonsKind(nkCall)
        a = semExprWithType(c, a, {efLValue})
  of nkBracketExpr:
    # a[i] = x
    # --> `[]=`(a, i, x)
    a = semSubscript(c, a, {efLValue})
    if a == nil:
      result = buildOverloadedSubscripts(n[0], getIdent(c.cache, "[]="))
      result.add(n[1])
      if mode == noOverloadedSubscript:
        bracketNotFoundError(c, result)
        return n
      else:
        result = semExprNoType(c, result)
        return result
  of nkCurlyExpr:
    # a{i} = x -->  `{}=`(a, i, x)
    result = buildOverloadedSubscripts(n[0], getIdent(c.cache, "{}="))
    result.add(n[1])
    return semExprNoType(c, result)
  of nkPar, nkTupleConstr:
    if a.len >= 2 or a.kind == nkTupleConstr:
      # unfortunately we need to rewrite ``(x, y) = foo()`` already here so
      # that overloading of the assignment operator still works. Usually we
      # prefer to do these rewritings in transf.nim:
      return semStmt(c, lowerTupleUnpackingForAsgn(c.graph, n, c.idgen, c.p.owner), {})
    else:
      a = semExprWithType(c, a, {efLValue})
  else:
    a = semExprWithType(c, a, {efLValue})
  n[0] = a
  # a = b # both are vars, means: a[] = b[]
  # a = b # b no 'var T' means: a = addr(b)
  var le = a.typ
  let assignable = isAssignable(c, a)
  let root = getRoot(a)
  let useStrictDefLet = root != nil and root.kind == skLet and
                       assignable == arAddressableConst and
                       strictDefs in c.features and isLocalSym(root)
  if le == nil:
    localError(c.config, a.info, "expression has no type")
  elif (skipTypes(le, {tyGenericInst, tyAlias, tySink}).kind notin {tyVar} and
        assignable in {arNone, arLentValue, arAddressableConst} and not useStrictDefLet
        ) or (skipTypes(le, abstractVar).kind in {tyOpenArray, tyVarargs} and views notin c.features):
    # Direct assignment to a discriminant is allowed!
    localError(c.config, a.info, errXCannotBeAssignedTo %
               renderTree(a, {renderNoComments}))
  else:
    let lhs = n[0]
    let rhs = semExprWithType(c, n[1], {efTypeAllowed}, le)
    if lhs.kind == nkSym and lhs.sym.kind == skResult:
      n.typ = c.enforceVoidContext
      if c.p.owner.kind != skMacro and resultTypeIsInferrable(lhs.sym.typ):
        var rhsTyp = rhs.typ
        if rhsTyp.kind in tyUserTypeClasses and rhsTyp.isResolvedUserTypeClass:
          rhsTyp = rhsTyp.lastSon
        if lhs.sym.typ.kind == tyAnything:
          rhsTyp = rhsTyp.skipIntLit(c.idgen)
        if cmpTypes(c, lhs.typ, rhsTyp) in {isGeneric, isEqual}:
          internalAssert c.config, c.p.resultSym != nil
          # Make sure the type is valid for the result variable
          typeAllowedCheck(c, n.info, rhsTyp, skResult)
          lhs.typ = rhsTyp
          c.p.resultSym.typ = rhsTyp
          c.p.owner.typ[0] = rhsTyp
        else:
          typeMismatch(c.config, n.info, lhs.typ, rhsTyp, rhs)
    borrowCheck(c, n, lhs, rhs)

    n[1] = fitNode(c, le, rhs, goodLineInfo(n[1]))
    when false: liftTypeBoundOps(c, lhs.typ, lhs.info)

    fixAbstractType(c, n)
    asgnToResultVar(c, n, n[0], n[1])
  result = n

proc semReturn(c: PContext, n: PNode): PNode =
  result = n
  checkSonsLen(n, 1, c.config)
  if c.p.owner.kind in {skConverter, skMethod, skProc, skFunc, skMacro} or
      (not c.p.owner.typ.isNil and isClosureIterator(c.p.owner.typ)):
    if n[0].kind != nkEmpty:
      if n[0].kind == nkAsgn and n[0][0].kind == nkSym and c.p.resultSym == n[0][0].sym:
        discard "return is already transformed"
      elif c.p.resultSym != nil:
        # transform ``return expr`` to ``result = expr; return``
        var a = newNodeI(nkAsgn, n[0].info)
        a.add newSymNode(c.p.resultSym)
        a.add n[0]
        n[0] = a
      else:
        localError(c.config, n.info, errNoReturnTypeDeclared)
        return
      result[0] = semAsgn(c, n[0])
      # optimize away ``result = result``:
      if result[0][1].kind == nkSym and result[0][1].sym == c.p.resultSym:
        result[0] = c.graph.emptyNode
  else:
    localError(c.config, n.info, "'return' not allowed here")

proc semProcBody(c: PContext, n: PNode; expectedType: PType = nil): PNode =
  when defined(nimsuggest):
    if c.graph.config.expandDone():
      return n
  openScope(c)
  result = semExpr(c, n, expectedType = expectedType)
  if c.p.resultSym != nil and not isEmptyType(result.typ):
    if result.kind == nkNilLit:
      # or ImplicitlyDiscardable(result):
      # new semantic: 'result = x' triggers the void context
      result.typ = nil
    elif result.kind == nkStmtListExpr and result.typ.kind == tyNil:
      # to keep backwards compatibility bodies like:
      #   nil
      #   # comment
      # are not expressions:
      fixNilType(c, result)
    else:
      var a = newNodeI(nkAsgn, n.info, 2)
      a[0] = newSymNode(c.p.resultSym)
      a[1] = result
      result = semAsgn(c, a)
  else:
    discardCheck(c, result, {})

  if c.p.owner.kind notin {skMacro, skTemplate} and
     c.p.resultSym != nil and c.p.resultSym.typ.isMetaType:
    if isEmptyType(result.typ):
      # we inferred a 'void' return type:
      c.p.resultSym.typ = errorType(c)
      c.p.owner.typ[0] = nil
    else:
      localError(c.config, c.p.resultSym.info, errCannotInferReturnType %
        c.p.owner.name.s)
  if isIterator(c.p.owner.typ) and c.p.owner.typ[0] != nil and
      c.p.owner.typ[0].kind == tyAnything:
    localError(c.config, c.p.owner.info, errCannotInferReturnType %
      c.p.owner.name.s)
  closeScope(c)

proc semYieldVarResult(c: PContext, n: PNode, restype: PType) =
  var t = skipTypes(restype, {tyGenericInst, tyAlias, tySink})
  case t.kind
  of tyVar, tyLent:
    t.flags.incl tfVarIsPtr # bugfix for #4048, #4910, #6892
    if n[0].kind in {nkHiddenStdConv, nkHiddenSubConv}:
      n[0] = n[0][1]
    n[0] = takeImplicitAddr(c, n[0], t.kind == tyLent)
  of tyTuple:
    for i in 0..<t.len:
      let e = skipTypes(t[i], {tyGenericInst, tyAlias, tySink})
      if e.kind in {tyVar, tyLent}:
        e.flags.incl tfVarIsPtr # bugfix for #4048, #4910, #6892
        let tupleConstr = if n[0].kind in {nkHiddenStdConv, nkHiddenSubConv}: n[0][1] else: n[0]
        if tupleConstr.kind in {nkPar, nkTupleConstr}:
          if tupleConstr[i].kind == nkExprColonExpr:
            tupleConstr[i][1] = takeImplicitAddr(c, tupleConstr[i][1], e.kind == tyLent)
          else:
            tupleConstr[i] = takeImplicitAddr(c, tupleConstr[i], e.kind == tyLent)
        else:
          localError(c.config, n[0].info, errXExpected, "tuple constructor")
      elif e.kind == tyEmpty:
        localError(c.config, n[0].info, errTypeExpected)
  else:
    when false:
      # XXX investigate what we really need here.
      if isViewType(t):
        n[0] = takeImplicitAddr(c, n[0], false)

proc semYield(c: PContext, n: PNode): PNode =
  result = n
  checkSonsLen(n, 1, c.config)
  if c.p.owner == nil or c.p.owner.kind != skIterator:
    localError(c.config, n.info, errYieldNotAllowedHere)
  elif n[0].kind != nkEmpty:
    n[0] = semExprWithType(c, n[0]) # check for type compatibility:
    var iterType = c.p.owner.typ
    let restype = iterType[0]
    if restype != nil:
      if restype.kind != tyUntyped:
        n[0] = fitNode(c, restype, n[0], n.info)
      if n[0].typ == nil: internalError(c.config, n.info, "semYield")

      if resultTypeIsInferrable(restype):
        let inferred = n[0].typ
        iterType[0] = inferred
        if c.p.resultSym != nil:
          c.p.resultSym.typ = inferred

      semYieldVarResult(c, n, restype)
    else:
      localError(c.config, n.info, errCannotReturnExpr)
  elif c.p.owner.typ[0] != nil:
    localError(c.config, n.info, errGenerated, "yield statement must yield a value")

proc considerQuotedIdentOrDot(c: PContext, n: PNode, origin: PNode = nil): PIdent =
  if n.kind == nkDotExpr:
    let a = considerQuotedIdentOrDot(c, n[0], origin).s
    let b = considerQuotedIdentOrDot(c, n[1], origin).s
    var s = newStringOfCap(a.len + b.len + 1)
    s.add(a)
    s.add('.')
    s.add(b)
    result = getIdent(c.cache, s)
  else:
    result = considerQuotedIdent(c, n, origin)

proc semDefined(c: PContext, n: PNode): PNode =
  checkSonsLen(n, 2, c.config)
  # we replace this node by a 'true' or 'false' node:
  result = newIntNode(nkIntLit, 0)
  result.intVal = ord isDefined(c.config, considerQuotedIdentOrDot(c, n[1], n).s)
  result.info = n.info
  result.typ = getSysType(c.graph, n.info, tyBool)

proc lookUpForDeclared(c: PContext, n: PNode, onlyCurrentScope: bool): PSym =
  case n.kind
  of nkIdent, nkAccQuoted:
    var amb = false
    let ident = considerQuotedIdent(c, n)
    result = if onlyCurrentScope:
               localSearchInScope(c, ident)
             else:
               searchInScopes(c, ident, amb)
  of nkDotExpr:
    result = nil
    if onlyCurrentScope: return
    checkSonsLen(n, 2, c.config)
    var m = lookUpForDeclared(c, n[0], onlyCurrentScope)
    if m != nil and m.kind == skModule:
      let ident = considerQuotedIdent(c, n[1], n)
      if m == c.module:
        result = strTableGet(c.topLevelScope.symbols, ident)
      else:
        result = someSym(c.graph, m, ident)
  of nkSym:
    result = n.sym
  of nkOpenSymChoice, nkClosedSymChoice:
    result = n[0].sym
  else:
    localError(c.config, n.info, "identifier expected, but got: " & renderTree(n))
    result = nil

proc semDeclared(c: PContext, n: PNode, onlyCurrentScope: bool): PNode =
  checkSonsLen(n, 2, c.config)
  # we replace this node by a 'true' or 'false' node:
  result = newIntNode(nkIntLit, 0)
  result.intVal = ord lookUpForDeclared(c, n[1], onlyCurrentScope) != nil
  result.info = n.info
  result.typ = getSysType(c.graph, n.info, tyBool)

proc expectMacroOrTemplateCall(c: PContext, n: PNode): PSym =
  ## The argument to the proc should be nkCall(...) or similar
  ## Returns the macro/template symbol
  if isCallExpr(n):
    var expandedSym = qualifiedLookUp(c, n[0], {checkUndeclared})
    if expandedSym == nil:
      errorUndeclaredIdentifier(c, n.info, n[0].renderTree)
      return errorSym(c, n[0])

    if expandedSym.kind notin {skMacro, skTemplate}:
      localError(c.config, n.info, "'$1' is not a macro or template" % expandedSym.name.s)
      return errorSym(c, n[0])

    result = expandedSym
  else:
    localError(c.config, n.info, "'$1' is not a macro or template" % n.renderTree)
    result = errorSym(c, n)

proc expectString(c: PContext, n: PNode): string =
  var n = semConstExpr(c, n)
  if n.kind in nkStrKinds:
    return n.strVal
  else:
    localError(c.config, n.info, errStringLiteralExpected)

proc newAnonSym(c: PContext; kind: TSymKind, info: TLineInfo): PSym =
  result = newSym(kind, c.cache.idAnon, c.idgen, getCurrOwner(c), info)

proc semExpandToAst(c: PContext, n: PNode): PNode =
  let macroCall = n[1]

  when false:
    let expandedSym = expectMacroOrTemplateCall(c, macroCall)
    if expandedSym.kind == skError: return n

    macroCall[0] = newSymNode(expandedSym, macroCall.info)
    markUsed(c, n.info, expandedSym)
    onUse(n.info, expandedSym)

  if isCallExpr(macroCall):
    for i in 1..<macroCall.len:
      #if macroCall[0].typ[i].kind != tyUntyped:
      macroCall[i] = semExprWithType(c, macroCall[i], {})
    # performing overloading resolution here produces too serious regressions:
    let headSymbol = macroCall[0]
    var cands = 0
    var cand: PSym = nil
    var o: TOverloadIter
    var symx = initOverloadIter(o, c, headSymbol)
    while symx != nil:
      if symx.kind in {skTemplate, skMacro} and symx.typ.len == macroCall.len:
        cand = symx
        inc cands
      symx = nextOverloadIter(o, c, headSymbol)
    if cands == 0:
      localError(c.config, n.info, "expected a template that takes " & $(macroCall.len-1) & " arguments")
    elif cands >= 2:
      localError(c.config, n.info, "ambiguous symbol in 'getAst' context: " & $macroCall)
    else:
      let info = macroCall[0].info
      macroCall[0] = newSymNode(cand, info)
      markUsed(c, info, cand)
      onUse(info, cand)

    # we just perform overloading resolution here:
    #n[1] = semOverloadedCall(c, macroCall, macroCall, {skTemplate, skMacro})
  else:
    localError(c.config, n.info, "getAst takes a call, but got " & n.renderTree)
  # Preserve the magic symbol in order to be handled in evals.nim
  internalAssert c.config, n[0].sym.magic == mExpandToAst
  #n.typ = getSysSym("NimNode").typ # expandedSym.getReturnType
  if n.kind == nkStmtList and n.len == 1: result = n[0]
  else: result = n
  result.typ = sysTypeFromName(c.graph, n.info, "NimNode")

proc semExpandToAst(c: PContext, n: PNode, magicSym: PSym,
                    flags: TExprFlags = {}): PNode =
  if n.len == 2:
    n[0] = newSymNode(magicSym, n.info)
    result = semExpandToAst(c, n)
  else:
    result = semDirectOp(c, n, flags)

proc processQuotations(c: PContext; n: var PNode, op: string,
                       quotes: var seq[PNode],
                       ids: var seq[PNode]) =
  template returnQuote(q) =
    quotes.add q
    n = newIdentNode(getIdent(c.cache, $quotes.len), n.info)
    ids.add n
    return

  template handlePrefixOp(prefixed) =
    if prefixed[0].kind == nkIdent:
      let examinedOp = prefixed[0].ident.s
      if examinedOp == op:
        returnQuote prefixed[1]
      elif examinedOp.startsWith(op):
        prefixed[0] = newIdentNode(getIdent(c.cache, examinedOp.substr(op.len)), prefixed.info)

  if n.kind == nkPrefix:
    checkSonsLen(n, 2, c.config)
    handlePrefixOp(n)
  elif n.kind == nkAccQuoted:
    if op == "``":
      returnQuote n[0]
    else: # [bug #7589](https://github.com/nim-lang/Nim/issues/7589)
      if n.len == 2 and n[0].ident.s == op:
        var tempNode = nkPrefix.newTree()
        tempNode.newSons(2)
        tempNode[0] = n[0]
        tempNode[1] = n[1]
        handlePrefixOp(tempNode)
  elif n.kind == nkIdent:
    if n.ident.s == "result":
      n = ids[0]

  for i in 0..<n.safeLen:
    processQuotations(c, n[i], op, quotes, ids)

proc semQuoteAst(c: PContext, n: PNode): PNode =
  if n.len != 2 and n.len != 3:
    localError(c.config, n.info, "'quote' expects 1 or 2 arguments")
    return n
  # We transform the do block into a template with a param for
  # each interpolation. We'll pass this template to getAst.
  var
    quotedBlock = n[^1]
    op = if n.len == 3: expectString(c, n[1]) else: "``"
    quotes = newSeq[PNode](2)
      # the quotes will be added to a nkCall statement
      # leave some room for the callee symbol and the result symbol
    ids = newSeq[PNode](1)
      # this will store the generated param names
      # leave some room for the result symbol

  if quotedBlock.kind != nkStmtList:
    localError(c.config, n.info, errXExpected, "block")

  # This adds a default first field to pass the result symbol
  ids[0] = newAnonSym(c, skParam, n.info).newSymNode
  processQuotations(c, quotedBlock, op, quotes, ids)

  let dummyTemplateSym = newAnonSym(c, skTemplate, n.info)
  incl(dummyTemplateSym.flags, sfTemplateRedefinition)
  var dummyTemplate = newProcNode(
    nkTemplateDef, quotedBlock.info, body = quotedBlock,
    params = c.graph.emptyNode,
    name = dummyTemplateSym.newSymNode,
              pattern = c.graph.emptyNode, genericParams = c.graph.emptyNode,
              pragmas = c.graph.emptyNode, exceptions = c.graph.emptyNode)

  if ids.len > 0:
    dummyTemplate[paramsPos] = newNodeI(nkFormalParams, n.info)
    dummyTemplate[paramsPos].add getSysSym(c.graph, n.info, "untyped").newSymNode # return type
    dummyTemplate[paramsPos].add newTreeI(nkIdentDefs, n.info, ids[0], getSysSym(c.graph, n.info, "typed").newSymNode, c.graph.emptyNode)
    for i in 1..<ids.len:
      let exp = semExprWithType(c, quotes[i+1], {})
      let typ = exp.typ
      if tfTriggersCompileTime notin typ.flags and exp.kind == nkSym and exp.sym.kind notin routineKinds + {skType}:
        dummyTemplate[paramsPos].add newTreeI(nkIdentDefs, n.info, ids[i], newNodeIT(nkType, n.info, typ), c.graph.emptyNode)
      else:
        dummyTemplate[paramsPos].add newTreeI(nkIdentDefs, n.info, ids[i], getSysSym(c.graph, n.info, "typed").newSymNode, c.graph.emptyNode)
  var tmpl = semTemplateDef(c, dummyTemplate)
  quotes[0] = tmpl[namePos]
  # This adds a call to newIdentNode("result") as the first argument to the template call
  let identNodeSym = getCompilerProc(c.graph, "newIdentNode")
  # so that new Nim compilers can compile old macros.nim versions, we check for 'nil'
  # here and provide the old fallback solution:
  let identNode = if identNodeSym == nil:
                    newIdentNode(getIdent(c.cache, "newIdentNode"), n.info)
                  else:
                    identNodeSym.newSymNode
  quotes[1] = newTreeI(nkCall, n.info, identNode, newStrNode(nkStrLit, "result"))
  result = newTreeI(nkCall, n.info,
     createMagic(c.graph, c.idgen, "getAst", mExpandToAst).newSymNode,
     newTreeI(nkCall, n.info, quotes))
  result = semExpandToAst(c, result)

proc tryExpr(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
  # watch out, hacks ahead:
  when defined(nimsuggest):
    # Remove the error hook so nimsuggest doesn't report errors there
    let tempHook = c.graph.config.structuredErrorHook
    c.graph.config.structuredErrorHook = nil
  let oldErrorCount = c.config.errorCounter
  let oldErrorMax = c.config.errorMax
  let oldCompilesId = c.compilesContextId
  # if this is a nested 'when compiles', do not increase the ID so that
  # generic instantiations can still be cached for this level.
  if c.compilesContextId == 0:
    inc c.compilesContextIdGenerator
    c.compilesContextId = c.compilesContextIdGenerator
  c.config.errorMax = high(int) # `setErrorMaxHighMaybe` not appropriate here

  # open a scope for temporary symbol inclusions:
  let oldScope = c.currentScope
  openScope(c)
  let oldOwnerLen = c.graph.owners.len
  let oldGenerics = c.generics
  let oldErrorOutputs = c.config.m.errorOutputs
  if efExplain notin flags: c.config.m.errorOutputs = {}
  let oldContextLen = msgs.getInfoContextLen(c.config)

  let oldInGenericContext = c.inGenericContext
  let oldInUnrolledContext = c.inUnrolledContext
  let oldInGenericInst = c.inGenericInst
  let oldInStaticContext = c.inStaticContext
  let oldProcCon = c.p
  c.generics = @[]
  var err: string
  try:
    result = semExpr(c, n, flags)
    if result != nil and efNoSem2Check notin flags:
      trackStmt(c, c.module, result, isTopLevel = false)
    if c.config.errorCounter != oldErrorCount:
      result = nil
  except ERecoverableError:
    discard
  # undo symbol table changes (as far as it's possible):
  c.compilesContextId = oldCompilesId
  c.generics = oldGenerics
  c.inGenericContext = oldInGenericContext
  c.inUnrolledContext = oldInUnrolledContext
  c.inGenericInst = oldInGenericInst
  c.inStaticContext = oldInStaticContext
  c.p = oldProcCon
  msgs.setInfoContextLen(c.config, oldContextLen)
  setLen(c.graph.owners, oldOwnerLen)
  c.currentScope = oldScope
  c.config.m.errorOutputs = oldErrorOutputs
  c.config.errorCounter = oldErrorCount
  c.config.errorMax = oldErrorMax
  when defined(nimsuggest):
    # Restore the error hook
    c.graph.config.structuredErrorHook = tempHook

proc semCompiles(c: PContext, n: PNode, flags: TExprFlags): PNode =
  # we replace this node by a 'true' or 'false' node:
  if n.len != 2: return semDirectOp(c, n, flags)

  result = newIntNode(nkIntLit, ord(tryExpr(c, n[1], flags) != nil))
  result.info = n.info
  result.typ = getSysType(c.graph, n.info, tyBool)

proc semShallowCopy(c: PContext, n: PNode, flags: TExprFlags): PNode =
  if n.len == 3:
    # XXX ugh this is really a hack: shallowCopy() can be overloaded only
    # with procs that take not 2 parameters:
    result = newNodeI(nkFastAsgn, n.info)
    result.add(n[1])
    result.add(n[2])
    result = semAsgn(c, result)
  else:
    result = semDirectOp(c, n, flags)

proc createFlowVar(c: PContext; t: PType; info: TLineInfo): PType =
  result = newType(tyGenericInvocation, nextTypeId c.idgen, c.module)
  addSonSkipIntLit(result, magicsys.getCompilerProc(c.graph, "FlowVar").typ, c.idgen)
  addSonSkipIntLit(result, t, c.idgen)
  result = instGenericContainer(c, info, result, allowMetaTypes = false)

proc instantiateCreateFlowVarCall(c: PContext; t: PType;
                                  info: TLineInfo): PSym =
  let sym = magicsys.getCompilerProc(c.graph, "nimCreateFlowVar")
  if sym == nil:
    localError(c.config, info, "system needs: nimCreateFlowVar")
  var bindings: TIdTable
  initIdTable(bindings)
  bindings.idTablePut(sym.ast[genericParamsPos][0].typ, t)
  result = c.semGenerateInstance(c, sym, bindings, info)
  # since it's an instantiation, we unmark it as a compilerproc. Otherwise
  # codegen would fail:
  if sfCompilerProc in result.flags:
    result.flags.excl {sfCompilerProc, sfExportc, sfImportc}
    result.loc.r = ""

proc setMs(n: PNode, s: PSym): PNode =
  result = n
  n[0] = newSymNode(s)
  n[0].info = n.info

proc semSizeof(c: PContext, n: PNode): PNode =
  if n.len != 2:
    localError(c.config, n.info, errXExpectsTypeOrValue % "sizeof")
  else:
    n[1] = semExprWithType(c, n[1], {efDetermineType})
    #restoreOldStyleType(n[1])
  n.typ = getSysType(c.graph, n.info, tyInt)
  result = foldSizeOf(c.config, n, n)

proc semMagic(c: PContext, n: PNode, s: PSym, flags: TExprFlags; expectedType: PType = nil): PNode =
  # this is a hotspot in the compiler!
  result = n
  case s.magic # magics that need special treatment
  of mAddr:
    markUsed(c, n.info, s)
    checkSonsLen(n, 2, c.config)
    result[0] = newSymNode(s, n[0].info)
    result[1] = semAddrArg(c, n[1])
    result.typ = makePtrType(c, result[1].typ)
  of mTypeOf:
    markUsed(c, n.info, s)
    result = semTypeOf(c, n)
  of mDefined:
    markUsed(c, n.info, s)
    result = semDefined(c, setMs(n, s))
  of mDeclared:
    markUsed(c, n.info, s)
    result = semDeclared(c, setMs(n, s), false)
  of mDeclaredInScope:
    markUsed(c, n.info, s)
    result = semDeclared(c, setMs(n, s), true)
  of mCompiles:
    markUsed(c, n.info, s)
    result = semCompiles(c, setMs(n, s), flags)
  of mIs:
    markUsed(c, n.info, s)
    result = semIs(c, setMs(n, s), flags)
  of mShallowCopy:
    markUsed(c, n.info, s)
    result = semShallowCopy(c, n, flags)
  of mExpandToAst:
    markUsed(c, n.info, s)
    result = semExpandToAst(c, n, s, flags)
  of mQuoteAst:
    markUsed(c, n.info, s)
    result = semQuoteAst(c, n)
  of mAstToStr:
    markUsed(c, n.info, s)
    checkSonsLen(n, 2, c.config)
    result = newStrNodeT(renderTree(n[1], {renderNoComments}), n, c.graph)
    result.typ = getSysType(c.graph, n.info, tyString)
  of mParallel:
    markUsed(c, n.info, s)
    if parallel notin c.features:
      localError(c.config, n.info, "use the {.experimental.} pragma to enable 'parallel'")
    result = setMs(n, s)
    var x = n.lastSon
    if x.kind == nkDo: x = x[bodyPos]
    inc c.inParallelStmt
    result[1] = semStmt(c, x, {})
    dec c.inParallelStmt
  of mSpawn:
    markUsed(c, n.info, s)
    when defined(leanCompiler):
      result = localErrorNode(c, n, "compiler was built without 'spawn' support")
    else:
      result = setMs(n, s)
      for i in 1..<n.len:
        result[i] = semExpr(c, n[i])

      if n.len > 1 and n[1].kind notin nkCallKinds:
        return localErrorNode(c, n, n[1].info, "'spawn' takes a call expression; got: " & $n[1])

      let typ = result[^1].typ
      if not typ.isEmptyType:
        if spawnResult(typ, c.inParallelStmt > 0) == srFlowVar:
          result.typ = createFlowVar(c, typ, n.info)
        else:
          result.typ = typ
        result.add instantiateCreateFlowVarCall(c, typ, n.info).newSymNode
      else:
        result.add c.graph.emptyNode
  of mProcCall:
    markUsed(c, n.info, s)
    result = setMs(n, s)
    result[1] = semExpr(c, n[1])
    result.typ = n[1].typ
  of mPlugin:
    markUsed(c, n.info, s)
    # semDirectOp with conditional 'afterCallActions':
    let nOrig = n.copyTree
    #semLazyOpAux(c, n)
    result = semOverloadedCallAnalyseEffects(c, n, nOrig, flags)
    if result == nil:
      result = errorNode(c, n)
    else:
      let callee = result[0].sym
      if callee.magic == mNone:
        semFinishOperands(c, result)
      activate(c, result)
      fixAbstractType(c, result)
      analyseIfAddressTakenInCall(c, result)
      if callee.magic != mNone:
        result = magicsAfterOverloadResolution(c, result, flags)
  of mRunnableExamples:
    markUsed(c, n.info, s)
    if c.config.cmd in cmdDocLike and n.len >= 2 and n.lastSon.kind == nkStmtList:
      when false:
        # some of this dead code was moved to `prepareExamples`
        if sfMainModule in c.module.flags:
          let inp = toFullPath(c.config, c.module.info)
          if c.runnableExamples == nil:
            c.runnableExamples = newTree(nkStmtList,
              newTree(nkImportStmt, newStrNode(nkStrLit, expandFilename(inp))))
          let imports = newTree(nkStmtList)
          var savedLastSon = copyTree n.lastSon
          extractImports(savedLastSon, imports)
          for imp in imports: c.runnableExamples.add imp
          c.runnableExamples.add newTree(nkBlockStmt, c.graph.emptyNode, copyTree savedLastSon)
      result = setMs(n, s)
    else:
      result = c.graph.emptyNode
  of mSizeOf:
    markUsed(c, n.info, s)
    result = semSizeof(c, setMs(n, s))
  of mArrToSeq, mOpenArrayToSeq:
    if expectedType != nil and (
        let expected = expectedType.skipTypes(abstractRange-{tyDistinct});
        expected.kind in {tySequence, tyOpenArray}):
      # seq type inference
      var arrayType = newType(tyOpenArray, nextTypeId(c.idgen), expected.owner)
      arrayType.rawAddSon(expected[0])
      if n[0].kind == nkSym and sfFromGeneric in n[0].sym.flags:
        # may have been resolved to `@`[empty] at some point,
        # reset to `@` to deal with this
        n[0] = newSymNode(n[0].sym.owner, n[0].info)
      n[1] = semExpr(c, n[1], flags, arrayType)
    result = semDirectOp(c, n, flags, expectedType)
  else:
    result = semDirectOp(c, n, flags, expectedType)

proc semWhen(c: PContext, n: PNode, semCheck = true): PNode =
  # If semCheck is set to false, ``when`` will return the verbatim AST of
  # the correct branch. Otherwise the AST will be passed through semStmt.
  result = nil

  template setResult(e: untyped) =
    if semCheck: result = semExpr(c, e) # do not open a new scope!
    else: result = e

  # Check if the node is "when nimvm"
  # when nimvm:
  #   ...
  # else:
  #   ...
  var whenNimvm = false
  var typ = commonTypeBegin
  if n.len in 1..2 and n[0].kind == nkElifBranch and (
      n.len == 1 or n[1].kind == nkElse):
    let exprNode = n[0][0]
    if exprNode.kind == nkIdent:
      whenNimvm = lookUp(c, exprNode).magic == mNimvm
    elif exprNode.kind == nkSym:
      whenNimvm = exprNode.sym.magic == mNimvm
    if whenNimvm: n.flags.incl nfLL

  for i in 0..<n.len:
    var it = n[i]
    case it.kind
    of nkElifBranch, nkElifExpr:
      checkSonsLen(it, 2, c.config)
      if whenNimvm:
        if semCheck:
          it[1] = semExpr(c, it[1])
          typ = commonType(c, typ, it[1].typ)
        result = n # when nimvm is not elimited until codegen
      else:
        let e = forceBool(c, semConstExpr(c, it[0]))
        if e.kind != nkIntLit:
          # can happen for cascading errors, assume false
          # InternalError(n.info, "semWhen")
          discard
        elif e.intVal != 0 and result == nil:
          setResult(it[1])
          return # we're not in nimvm and we already have a result
    of nkElse, nkElseExpr:
      checkSonsLen(it, 1, c.config)
      if result == nil or whenNimvm:
        if semCheck:
          it[0] = semExpr(c, it[0])
          typ = commonType(c, typ, it[0].typ)
        if result == nil:
          result = it[0]
    else: illFormedAst(n, c.config)
  if result == nil:
    result = newNodeI(nkEmpty, n.info)
  if whenNimvm:
    result.typ = typ
    if n.len == 1:
      result.add(newTree(nkElse, newNode(nkStmtList)))

proc semSetConstr(c: PContext, n: PNode, expectedType: PType = nil): PNode =
  result = newNodeI(nkCurly, n.info)
  result.typ = newTypeS(tySet, c)
  result.typ.flags.incl tfIsConstructor
  var expectedElementType: PType = nil
  if expectedType != nil and (
      let expected = expectedType.skipTypes(abstractRange-{tyDistinct});
      expected.kind == tySet):
    expectedElementType = expected[0]
  if n.len == 0:
    rawAddSon(result.typ,
      if expectedElementType != nil and
          typeAllowed(expectedElementType, skLet, c) == nil:
        expectedElementType
      else:
        newTypeS(tyEmpty, c))
  else:
    # only semantic checking for all elements, later type checking:
    var typ: PType = nil
    for i in 0..<n.len:
      let doSetType = typ == nil
      if isRange(n[i]):
        checkSonsLen(n[i], 3, c.config)
        n[i][1] = semExprWithType(c, n[i][1], {efTypeAllowed}, expectedElementType)
        n[i][2] = semExprWithType(c, n[i][2], {efTypeAllowed}, expectedElementType)
        if doSetType:
          typ = skipTypes(n[i][1].typ,
                          {tyGenericInst, tyVar, tyLent, tyOrdinal, tyAlias, tySink})
        n[i].typ = n[i][2].typ # range node needs type too
      elif n[i].kind == nkRange:
        # already semchecked
        if doSetType:
          typ = skipTypes(n[i][0].typ,
                          {tyGenericInst, tyVar, tyLent, tyOrdinal, tyAlias, tySink})
      else:
        n[i] = semExprWithType(c, n[i], {efTypeAllowed}, expectedElementType)
        if doSetType:
          typ = skipTypes(n[i].typ, {tyGenericInst, tyVar, tyLent, tyOrdinal, tyAlias, tySink})
      if doSetType:
        if not isOrdinalType(typ, allowEnumWithHoles=true):
          localError(c.config, n.info, errOrdinalTypeExpected % typeToString(typ, preferDesc))
          typ = makeRangeType(c, 0, MaxSetElements-1, n.info)
        elif isIntLit(typ):
          # set of int literal, use a default range smaller than the max range
          typ = makeRangeType(c, 0, DefaultSetElements-1, n.info)
        elif lengthOrd(c.config, typ) > MaxSetElements:
          message(c.config, n.info, warnAboveMaxSizeSet, "type '" &
            typeToString(typ, preferDesc) & "' is too big to be a `set` element, " &
            "assuming a range of 0.." & $(MaxSetElements - 1) &
            ", explicitly write this range to get rid of warning")
          typ = makeRangeType(c, 0, MaxSetElements-1, n.info)
        if expectedElementType == nil:
          expectedElementType = typ
    addSonSkipIntLit(result.typ, typ, c.idgen)
    for i in 0..<n.len:
      var m: PNode
      let info = n[i].info
      if isRange(n[i]):
        m = newNodeI(nkRange, info)
        m.add fitNode(c, typ, n[i][1], info)
        m.add fitNode(c, typ, n[i][2], info)
      elif n[i].kind == nkRange: m = n[i] # already semchecked
      else:
        m = fitNode(c, typ, n[i], info)
      result.add m

proc semTableConstr(c: PContext, n: PNode; expectedType: PType = nil): PNode =
  # we simply transform ``{key: value, key2, key3: value}`` to
  # ``[(key, value), (key2, value2), (key3, value2)]``
  result = newNodeI(nkBracket, n.info)
  var lastKey = 0
  for i in 0..<n.len:
    var x = n[i]
    if x.kind == nkExprColonExpr and x.len == 2:
      for j in lastKey..<i:
        var pair = newNodeI(nkTupleConstr, x.info)
        pair.add(n[j])
        pair.add(x[1])
        result.add(pair)

      var pair = newNodeI(nkTupleConstr, x.info)
      pair.add(x[0])
      pair.add(x[1])
      result.add(pair)

      lastKey = i+1

  if lastKey != n.len: illFormedAst(n, c.config)
  result = semExpr(c, result, expectedType = expectedType)

type
  TParKind = enum
    paNone, paSingle, paTupleFields, paTuplePositions

proc checkPar(c: PContext; n: PNode): TParKind =
  if n.len == 0:
    result = paTuplePositions # ()
  elif n.len == 1:
    if n[0].kind == nkExprColonExpr: result = paTupleFields
    elif n.kind == nkTupleConstr: result = paTuplePositions
    else: result = paSingle         # (expr)
  else:
    if n[0].kind == nkExprColonExpr: result = paTupleFields
    else: result = paTuplePositions
    for i in 0..<n.len:
      if result == paTupleFields:
        if (n[i].kind != nkExprColonExpr) or
            n[i][0].kind notin {nkSym, nkIdent, nkAccQuoted}:
          localError(c.config, n[i].info, errNamedExprExpected)
          return paNone
      else:
        if n[i].kind == nkExprColonExpr:
          localError(c.config, n[i].info, errNamedExprNotAllowed)
          return paNone

proc semTupleFieldsConstr(c: PContext, n: PNode, flags: TExprFlags; expectedType: PType = nil): PNode =
  result = newNodeI(nkTupleConstr, n.info)
  var expected: PType = nil
  if expectedType != nil:
    expected = expectedType.skipTypes(abstractRange-{tyDistinct})
    if not (expected.kind == tyTuple and expected.len == n.len):
      expected = nil
  var typ = newTypeS(tyTuple, c)
  typ.n = newNodeI(nkRecList, n.info) # nkIdentDefs
  var ids = initIntSet()
  for i in 0..<n.len:
    if n[i].kind != nkExprColonExpr:
      illFormedAst(n[i], c.config)
    let id = considerQuotedIdent(c, n[i][0])
    if containsOrIncl(ids, id.id):
      localError(c.config, n[i].info, errFieldInitTwice % id.s)
    # can check if field name matches expected type here
    let expectedElemType = if expected != nil: expected[i] else: nil
    n[i][1] = semExprWithType(c, n[i][1], {}, expectedElemType)

    if n[i][1].typ.kind == tyTypeDesc:
      localError(c.config, n[i][1].info, "typedesc not allowed as tuple field.")
      n[i][1].typ = errorType(c)

    var f = newSymS(skField, n[i][0], c)
    f.typ = skipIntLit(n[i][1].typ, c.idgen)
    f.position = i
    rawAddSon(typ, f.typ)
    typ.n.add newSymNode(f)
    n[i][0] = newSymNode(f)
    result.add n[i]
  result.typ = typ

proc semTuplePositionsConstr(c: PContext, n: PNode, flags: TExprFlags; expectedType: PType = nil): PNode =
  result = n                  # we don't modify n, but compute the type:
  result.transitionSonsKind(nkTupleConstr)
  var expected: PType = nil
  if expectedType != nil:
    expected = expectedType.skipTypes(abstractRange-{tyDistinct})
    if not (expected.kind == tyTuple and expected.len == n.len):
      expected = nil
  var typ = newTypeS(tyTuple, c)  # leave typ.n nil!
  for i in 0..<n.len:
    let expectedElemType = if expected != nil: expected[i] else: nil
    n[i] = semExprWithType(c, n[i], {}, expectedElemType)
    addSonSkipIntLit(typ, n[i].typ, c.idgen)
  result.typ = typ

include semobjconstr

proc semBlock(c: PContext, n: PNode; flags: TExprFlags; expectedType: PType = nil): PNode =
  result = n
  inc(c.p.nestedBlockCounter)
  let oldBreakInLoop = c.p.breakInLoop
  c.p.breakInLoop = false
  checkSonsLen(n, 2, c.config)
  openScope(c) # BUGFIX: label is in the scope of block!
  if n[0].kind != nkEmpty:
    var labl = newSymG(skLabel, n[0], c)
    if sfGenSym notin labl.flags:
      addDecl(c, labl)
    elif labl.owner == nil:
      labl.owner = c.p.owner
    n[0] = newSymNode(labl, n[0].info)
    suggestSym(c.graph, n[0].info, labl, c.graph.usageSym)
    styleCheckDef(c, labl)
    onDef(n[0].info, labl)
  n[1] = semExpr(c, n[1], flags, expectedType)
  n.typ = n[1].typ
  if isEmptyType(n.typ): n.transitionSonsKind(nkBlockStmt)
  else: n.transitionSonsKind(nkBlockExpr)
  closeScope(c)
  c.p.breakInLoop = oldBreakInLoop
  dec(c.p.nestedBlockCounter)

proc semExportExcept(c: PContext, n: PNode): PNode =
  let moduleName = semExpr(c, n[0])
  if moduleName.kind != nkSym or moduleName.sym.kind != skModule:
    localError(c.config, n.info, "The export/except syntax expects a module name")
    return n
  let exceptSet = readExceptSet(c, n)
  let exported = moduleName.sym
  result = newNodeI(nkExportStmt, n.info)
  reexportSym(c, exported)
  for s in allSyms(c.graph, exported):
    if s.kind in ExportableSymKinds+{skModule} and
       s.name.id notin exceptSet and sfError notin s.flags:
      reexportSym(c, s)
      result.add newSymNode(s, n.info)
  markUsed(c, n.info, exported)

proc semExport(c: PContext, n: PNode): PNode =
  proc specialSyms(c: PContext; s: PSym) {.inline.} =
    if s.kind == skConverter: addConverter(c, LazySym(sym: s))
    elif s.kind == skType and s.typ != nil and s.typ.kind == tyEnum and sfPure in s.flags:
      addPureEnum(c, LazySym(sym: s))

  result = newNodeI(nkExportStmt, n.info)
  for i in 0..<n.len:
    let a = n[i]
    var o: TOverloadIter
    var s = initOverloadIter(o, c, a)
    if s == nil:
      localError(c.config, a.info, errGenerated, "cannot export: " & renderTree(a))
    elif s.kind == skModule:
      # forward everything from that module:
      reexportSym(c, s)
      for it in allSyms(c.graph, s):
        if it.kind in ExportableSymKinds+{skModule}:
          reexportSym(c, it)
          result.add newSymNode(it, a.info)
          specialSyms(c, it)
      markUsed(c, n.info, s)
    else:
      while s != nil:
        if s.kind == skEnumField:
          localError(c.config, a.info, errGenerated, "cannot export: " & renderTree(a) &
            "; enum field cannot be exported individually")
        if s.kind in ExportableSymKinds+{skModule} and sfError notin s.flags:
          result.add(newSymNode(s, a.info))
          reexportSym(c, s)
          markUsed(c, n.info, s)
          specialSyms(c, s)
          if s.kind == skType and sfPure notin s.flags:
            var etyp = s.typ
            if etyp.kind in {tyBool, tyEnum}:
              for j in 0..<etyp.n.len:
                var e = etyp.n[j].sym
                if e.kind != skEnumField:
                  internalError(c.config, s.info, "rawImportSymbol")
                reexportSym(c, e)

        s = nextOverloadIter(o, c, a)

proc semTupleConstr(c: PContext, n: PNode, flags: TExprFlags; expectedType: PType = nil): PNode =
  var tupexp = semTuplePositionsConstr(c, n, flags, expectedType)
  var isTupleType: bool
  if tupexp.len > 0: # don't interpret () as type
    isTupleType = tupexp[0].typ.kind == tyTypeDesc
    # check if either everything or nothing is tyTypeDesc
    for i in 1..<tupexp.len:
      if isTupleType != (tupexp[i].typ.kind == tyTypeDesc):
        return localErrorNode(c, n, tupexp[i].info, "Mixing types and values in tuples is not allowed.")
  if isTupleType: # expressions as ``(int, string)`` are reinterpret as type expressions
    result = n
    var typ = semTypeNode(c, n, nil).skipTypes({tyTypeDesc})
    result.typ = makeTypeDesc(c, typ)
  else:
    result = tupexp

proc shouldBeBracketExpr(n: PNode): bool =
  assert n.kind in nkCallKinds
  let a = n[0]
  if a.kind in nkCallKinds:
    let b = a[0]
    if b.kind in nkSymChoices:
      for i in 0..<b.len:
        if b[i].kind == nkSym and b[i].sym.magic == mArrGet:
          let be = newNodeI(nkBracketExpr, n.info)
          for i in 1..<a.len: be.add(a[i])
          n[0] = be
          return true

proc asBracketExpr(c: PContext; n: PNode): PNode =
  proc isGeneric(c: PContext; n: PNode): bool =
    if n.kind in {nkIdent, nkAccQuoted}:
      let s = qualifiedLookUp(c, n, {})
      result = s != nil and isGenericRoutineStrict(s)

  assert n.kind in nkCallKinds
  if n.len > 1 and isGeneric(c, n[1]):
    let b = n[0]
    if b.kind in nkSymChoices:
      for i in 0..<b.len:
        if b[i].kind == nkSym and b[i].sym.magic == mArrGet:
          result = newNodeI(nkBracketExpr, n.info)
          for i in 1..<n.len: result.add(n[i])
          return result
  return nil

proc hoistParamsUsedInDefault(c: PContext, call, letSection, defExpr: var PNode) =
  # This takes care of complicated signatures such as:
  # proc foo(a: int, b = a)
  # proc bar(a: int, b: int, c = a + b)
  #
  # The recursion may confuse you. It performs two duties:
  #
  # 1) extracting all referenced params from default expressions
  #    into a let section preceding the call
  #
  # 2) replacing the "references" within the default expression
  #    with these extracted skLet symbols.
  #
  # The first duty is carried out directly in the code here, while the second
  # duty is activated by returning a non-nil value. The caller is responsible
  # for replacing the input to the function with the returned non-nil value.
  # (which is the hoisted symbol)
  if defExpr.kind == nkSym and defExpr.sym.kind == skParam and defExpr.sym.owner == call[0].sym:
    let paramPos = defExpr.sym.position + 1

    if call[paramPos].kind != nkSym:
      let hoistedVarSym = newSym(skLet, getIdent(c.graph.cache, genPrefix), c.idgen,
                                 c.p.owner, letSection.info, c.p.owner.options)
      hoistedVarSym.typ = call[paramPos].typ

      letSection.add newTreeI(nkIdentDefs, letSection.info,
        newSymNode(hoistedVarSym),
        newNodeI(nkEmpty, letSection.info),
        call[paramPos])

      call[paramPos] = newSymNode(hoistedVarSym) # Refer the original arg to its hoisted sym

    # arg we refer to is a sym, wether introduced by hoisting or not doesn't matter, we simply reuse it
    defExpr = call[paramPos]
  else:
    for i in 0..<defExpr.safeLen:
      hoistParamsUsedInDefault(c, call, letSection, defExpr[i])

proc getNilType(c: PContext): PType =
  result = c.nilTypeCache
  if result == nil:
    result = newTypeS(tyNil, c)
    result.size = c.config.target.ptrSize
    result.align = c.config.target.ptrSize.int16
    c.nilTypeCache = result

proc enumFieldSymChoice(c: PContext, n: PNode, s: PSym): PNode =
  var o: TOverloadIter
  var i = 0
  var a = initOverloadIter(o, c, n)
  while a != nil:
    if a.kind == skEnumField:
      inc(i)
      if i > 1: break
    a = nextOverloadIter(o, c, n)
  let info = getCallLineInfo(n)
  if i <= 1:
    if sfGenSym notin s.flags:
      result = newSymNode(s, info)
      markUsed(c, info, s)
      onUse(info, s)
    else:
      result = n
  else:
    result = newNodeIT(nkClosedSymChoice, info, newTypeS(tyNone, c))
    a = initOverloadIter(o, c, n)
    while a != nil:
      if a.kind == skEnumField:
        incl(a.flags, sfUsed)
        markOwnerModuleAsUsed(c, a)
        result.add newSymNode(a, info)
        onUse(info, a)
      a = nextOverloadIter(o, c, n)

proc semPragmaStmt(c: PContext; n: PNode) =
  if c.p.owner.kind == skModule:
    pragma(c, c.p.owner, n, stmtPragmas+stmtPragmasTopLevel, true)
  else:
    pragma(c, c.p.owner, n, stmtPragmas, true)

proc semExpr(c: PContext, n: PNode, flags: TExprFlags = {}, expectedType: PType = nil): PNode =
  when defined(nimCompilerStacktraceHints):
    setFrameMsg c.config$n.info & " " & $n.kind
  when false: # see `tdebugutils`
    if isCompilerDebug():
      echo (">", c.config$n.info, n, flags, n.kind)
    defer:
      if isCompilerDebug():
        echo ("<", c.config$n.info, n, ?.result.typ)
  template directLiteral(typeKind: TTypeKind) =
    if result.typ == nil:
      if expectedType != nil and (
          let expected = expectedType.skipTypes(abstractRange-{tyDistinct});
          expected.kind == typeKind):
        result.typ = expected
        changeType(c, result, expectedType, check=true)
      else:
        result.typ = getSysType(c.graph, n.info, typeKind)

  result = n
  when defined(nimsuggest):
    var expandStarted = false
    if c.config.ideCmd == ideExpand and not c.config.expandProgress and
        ((n.kind in {nkFuncDef, nkProcDef, nkIteratorDef, nkTemplateDef, nkMethodDef, nkConverterDef} and
          n.info.exactEquals(c.config.expandPosition)) or
         (n.kind in {nkCall, nkCommand} and
          n[0].info.exactEquals(c.config.expandPosition))):
      expandStarted = true
      c.config.expandProgress = true
      if c.config.expandLevels == 0:
        c.config.expandNodeResult = $n
        suggestQuit()

  if c.config.cmd == cmdIdeTools: suggestExpr(c, n)
  if nfSem in n.flags: return
  case n.kind
  of nkIdent, nkAccQuoted:
    var s: PSym
    if expectedType != nil and (
        let expected = expectedType.skipTypes(abstractRange-{tyDistinct});
        expected.kind == tyEnum):
      let nameId = considerQuotedIdent(c, n).id
      for f in expected.n:
        if f.kind == nkSym and f.sym.name.id == nameId:
          s = f.sym
          break
    if s == nil:
      let checks = if efNoEvaluateGeneric in flags:
          {checkUndeclared, checkPureEnumFields}
        elif efInCall in flags:
          {checkUndeclared, checkModule, checkPureEnumFields}
        else:
          {checkUndeclared, checkModule, checkAmbiguity, checkPureEnumFields}
      s = qualifiedLookUp(c, n, checks)
      if s == nil:
        return
    if c.matchedConcept == nil: semCaptureSym(s, c.p.owner)
    case s.kind
    of skProc, skFunc, skMethod, skConverter, skIterator:
      #performProcvarCheck(c, n, s)
      result = symChoice(c, n, s, scClosed)
      if result.kind == nkSym:
        markIndirect(c, result.sym)
        # if isGenericRoutine(result.sym):
        #   localError(c.config, n.info, errInstantiateXExplicitly, s.name.s)
      # "procs literals" are 'owned'
      if optOwnedRefs in c.config.globalOptions:
        result.typ = makeVarType(c, result.typ, tyOwned)
    of skEnumField:
      result = enumFieldSymChoice(c, n, s)
    else:
      result = semSym(c, n, s, flags)
    if expectedType != nil and isSymChoice(result):
      result = fitNode(c, expectedType, result, n.info)
      if result.kind == nkSym:
        result = semSym(c, result, result.sym, flags)
  of nkSym:
    # because of the changed symbol binding, this does not mean that we
    # don't have to check the symbol for semantics here again!
    result = semSym(c, n, n.sym, flags)
  of nkEmpty, nkNone, nkCommentStmt, nkType:
    discard
  of nkNilLit:
    if result.typ == nil:
      result.typ = getNilType(c)
      if expectedType != nil:
        var m = newCandidate(c, result.typ)
        if typeRel(m, expectedType, result.typ) >= isSubtype:
          result.typ = expectedType
        # or: result = fitNode(c, expectedType, result, n.info)
  of nkIntLit:
    if result.typ == nil:
      if expectedType != nil and (
          let expected = expectedType.skipTypes(abstractRange-{tyDistinct});
          expected.kind in {tyInt..tyInt64,
            tyUInt..tyUInt64,
            tyFloat..tyFloat128}):
        result.typ = expected
        if expected.kind in {tyFloat..tyFloat128}:
          n.transitionIntToFloatKind(nkFloatLit)
        changeType(c, result, expectedType, check=true)
      else:
        setIntLitType(c, result)
  of nkInt8Lit: directLiteral(tyInt8)
  of nkInt16Lit: directLiteral(tyInt16)
  of nkInt32Lit: directLiteral(tyInt32)
  of nkInt64Lit: directLiteral(tyInt64)
  of nkUIntLit: directLiteral(tyUInt)
  of nkUInt8Lit: directLiteral(tyUInt8)
  of nkUInt16Lit: directLiteral(tyUInt16)
  of nkUInt32Lit: directLiteral(tyUInt32)
  of nkUInt64Lit: directLiteral(tyUInt64)
  of nkFloatLit:
    if result.typ == nil:
      if expectedType != nil and (
          let expected = expectedType.skipTypes(abstractRange-{tyDistinct});
          expected.kind in {tyFloat..tyFloat128}):
        result.typ = expected
        changeType(c, result, expectedType, check=true)
      else:
        result.typ = getSysType(c.graph, n.info, tyFloat64)
  of nkFloat32Lit: directLiteral(tyFloat32)
  of nkFloat64Lit: directLiteral(tyFloat64)
  of nkFloat128Lit: directLiteral(tyFloat128)
  of nkStrLit..nkTripleStrLit:
    if result.typ == nil:
      if expectedType != nil and (
          let expected = expectedType.skipTypes(abstractRange-{tyDistinct});
          expected.kind in {tyString, tyCstring}):
        result.typ = expectedType
      else:
        result.typ = getSysType(c.graph, n.info, tyString)
  of nkCharLit: directLiteral(tyChar)
  of nkDotExpr:
    result = semFieldAccess(c, n, flags)
    if result.kind == nkDotCall:
      result.transitionSonsKind(nkCall)
      result = semExpr(c, result, flags)
  of nkBind:
    message(c.config, n.info, warnDeprecated, "bind is deprecated")
    result = semExpr(c, n[0], flags, expectedType)
  of nkTypeOfExpr..nkTupleClassTy, nkStaticTy, nkRefTy..nkEnumTy:
    if c.matchedConcept != nil and n.len == 1:
      let modifier = n.modifierTypeKindOfNode
      if modifier != tyNone:
        var baseType = semExpr(c, n[0]).typ.skipTypes({tyTypeDesc})
        result.typ = c.makeTypeDesc(c.newTypeWithSons(modifier, @[baseType]))
        return
    var typ = semTypeNode(c, n, nil).skipTypes({tyTypeDesc})
    result.typ = makeTypeDesc(c, typ)
  of nkStmtListType:
    let typ = semTypeNode(c, n, nil)
    result.typ = makeTypeDesc(c, typ)
  of nkCall, nkInfix, nkPrefix, nkPostfix, nkCommand, nkCallStrLit:
    # check if it is an expression macro:
    checkMinSonsLen(n, 1, c.config)
    #when defined(nimsuggest):
    #  if gIdeCmd == ideCon and c.config.m.trackPos == n.info: suggestExprNoCheck(c, n)
    let mode = if nfDotField in n.flags: {} else: {checkUndeclared}
    c.isAmbiguous = false
    var s = qualifiedLookUp(c, n[0], mode)
    if s != nil:
      case s.kind
      of skMacro, skTemplate:
        result = semDirectOp(c, n, flags, expectedType)
      of skType:
        # XXX think about this more (``set`` procs)
        let ambig = c.isAmbiguous
        if not (n[0].kind in {nkClosedSymChoice, nkOpenSymChoice, nkIdent} and ambig) and n.len == 2:
          result = semConv(c, n, expectedType)
        elif ambig and n.len == 1:
          errorUseQualifier(c, n.info, s)
        elif n.len == 1:
          result = semObjConstr(c, n, flags, expectedType)
        elif s.magic == mNone: result = semDirectOp(c, n, flags, expectedType)
        else: result = semMagic(c, n, s, flags, expectedType)
      of skProc, skFunc, skMethod, skConverter, skIterator:
        if s.magic == mNone: result = semDirectOp(c, n, flags, expectedType)
        else: result = semMagic(c, n, s, flags, expectedType)
      else:
        #liMessage(n.info, warnUser, renderTree(n));
        result = semIndirectOp(c, n, flags, expectedType)
    elif (n[0].kind == nkBracketExpr or shouldBeBracketExpr(n)) and
        isSymChoice(n[0][0]):
      # indirectOp can deal with explicit instantiations; the fixes
      # the 'newSeq[T](x)' bug
      setGenericParams(c, n[0])
      result = semDirectOp(c, n, flags, expectedType)
    elif nfDotField in n.flags:
      result = semDirectOp(c, n, flags, expectedType)
    elif isSymChoice(n[0]):
      let b = asBracketExpr(c, n)
      if b != nil:
        result = semExpr(c, b, flags, expectedType)
      else:
        result = semDirectOp(c, n, flags, expectedType)
    else:
      result = semIndirectOp(c, n, flags, expectedType)

    if nfDefaultRefsParam in result.flags:
      result = result.copyTree #XXX: Figure out what causes default param nodes to be shared.. (sigmatch bug?)
      # We've found a default value that references another param.
      # See the notes in `hoistParamsUsedInDefault` for more details.
      var hoistedParams = newNodeI(nkLetSection, result.info)
      for i in 1..<result.len:
        hoistParamsUsedInDefault(c, result, hoistedParams, result[i])
      result = newTreeIT(nkStmtListExpr, result.info, result.typ, hoistedParams, result)
  of nkWhen:
    if efWantStmt in flags:
      result = semWhen(c, n, true)
    else:
      result = semWhen(c, n, false)
      if result == n:
        # This is a "when nimvm" stmt.
        result = semWhen(c, n, true)
      else:
        result = semExpr(c, result, flags, expectedType)
  of nkBracketExpr:
    checkMinSonsLen(n, 1, c.config)
    result = semArrayAccess(c, n, flags, expectedType)
  of nkCurlyExpr:
    result = semExpr(c, buildOverloadedSubscripts(n, getIdent(c.cache, "{}")), flags, expectedType)
  of nkPragmaExpr:
    var
      pragma = n[1]
      pragmaName = considerQuotedIdent(c, pragma[0])
      flags = flags
      finalNodeFlags: TNodeFlags = {}

    case whichKeyword(pragmaName)
    of wExplain:
      flags.incl efExplain
    of wExecuteOnReload:
      finalNodeFlags.incl nfExecuteOnReload
    else:
      # what other pragmas are allowed for expressions? `likely`, `unlikely`
      invalidPragma(c, n)

    result = semExpr(c, n[0], flags)
    result.flags.incl finalNodeFlags
  of nkPar, nkTupleConstr:
    case checkPar(c, n)
    of paNone: result = errorNode(c, n)
    of paTuplePositions: result = semTupleConstr(c, n, flags, expectedType)
    of paTupleFields: result = semTupleFieldsConstr(c, n, flags, expectedType)
    of paSingle: result = semExpr(c, n[0], flags, expectedType)
  of nkCurly: result = semSetConstr(c, n, expectedType)
  of nkBracket:
    result = semArrayConstr(c, n, flags, expectedType)
  of nkObjConstr: result = semObjConstr(c, n, flags, expectedType)
  of nkLambdaKinds: result = semProcAux(c, n, skProc, lambdaPragmas, flags)
  of nkDerefExpr: result = semDeref(c, n)
  of nkAddr:
    result = n
    checkSonsLen(n, 1, c.config)
    result[0] = semAddrArg(c, n[0])
    result.typ = makePtrType(c, result[0].typ)
  of nkHiddenAddr, nkHiddenDeref:
    checkSonsLen(n, 1, c.config)
    n[0] = semExpr(c, n[0], flags, expectedType)
  of nkCast: result = semCast(c, n)
  of nkIfExpr, nkIfStmt: result = semIf(c, n, flags, expectedType)
  of nkHiddenStdConv, nkHiddenSubConv, nkConv, nkHiddenCallConv:
    checkSonsLen(n, 2, c.config)
    considerGenSyms(c, n)
  of nkStringToCString, nkCStringToString, nkObjDownConv, nkObjUpConv:
    checkSonsLen(n, 1, c.config)
    considerGenSyms(c, n)
  of nkChckRangeF, nkChckRange64, nkChckRange:
    checkSonsLen(n, 3, c.config)
    considerGenSyms(c, n)
  of nkCheckedFieldExpr:
    checkMinSonsLen(n, 2, c.config)
    considerGenSyms(c, n)
  of nkTableConstr:
    result = semTableConstr(c, n, expectedType)
  of nkClosedSymChoice, nkOpenSymChoice:
    # handling of sym choices is context dependent
    # the node is left intact for now
    discard
  of nkStaticExpr: result = semStaticExpr(c, n[0], expectedType)
  of nkAsgn, nkFastAsgn: result = semAsgn(c, n)
  of nkBlockStmt, nkBlockExpr: result = semBlock(c, n, flags, expectedType)
  of nkStmtList, nkStmtListExpr: result = semStmtList(c, n, flags, expectedType)
  of nkRaiseStmt: result = semRaise(c, n)
  of nkVarSection: result = semVarOrLet(c, n, skVar)
  of nkLetSection: result = semVarOrLet(c, n, skLet)
  of nkConstSection: result = semConst(c, n)
  of nkTypeSection: result = semTypeSection(c, n)
  of nkDiscardStmt: result = semDiscard(c, n)
  of nkWhileStmt: result = semWhile(c, n, flags)
  of nkTryStmt, nkHiddenTryStmt: result = semTry(c, n, flags, expectedType)
  of nkBreakStmt, nkContinueStmt: result = semBreakOrContinue(c, n)
  of nkForStmt, nkParForStmt: result = semFor(c, n, flags)
  of nkCaseStmt: result = semCase(c, n, flags, expectedType)
  of nkReturnStmt: result = semReturn(c, n)
  of nkUsingStmt: result = semUsing(c, n)
  of nkAsmStmt: result = semAsm(c, n)
  of nkYieldStmt: result = semYield(c, n)
  of nkPragma: semPragmaStmt(c, n)
  of nkIteratorDef: result = semIterator(c, n)
  of nkProcDef: result = semProc(c, n)
  of nkFuncDef: result = semFunc(c, n)
  of nkMethodDef: result = semMethod(c, n)
  of nkConverterDef: result = semConverterDef(c, n)
  of nkMacroDef: result = semMacroDef(c, n)
  of nkTemplateDef: result = semTemplateDef(c, n)
  of nkImportStmt:
    # this particular way allows 'import' in a 'compiles' context so that
    # template canImport(x): bool =
    #   compiles:
    #     import x
    #
    # works:
    if c.currentScope.depthLevel > 2 + c.compilesContextId:
      localError(c.config, n.info, errXOnlyAtModuleScope % "import")
    result = evalImport(c, n)
  of nkImportExceptStmt:
    if not isTopLevel(c): localError(c.config, n.info, errXOnlyAtModuleScope % "import")
    result = evalImportExcept(c, n)
  of nkFromStmt:
    if not isTopLevel(c): localError(c.config, n.info, errXOnlyAtModuleScope % "from")
    result = evalFrom(c, n)
  of nkIncludeStmt:
    #if not isTopLevel(c): localError(c.config, n.info, errXOnlyAtModuleScope % "include")
    result = evalInclude(c, n)
  of nkExportStmt:
    if not isTopLevel(c): localError(c.config, n.info, errXOnlyAtModuleScope % "export")
    result = semExport(c, n)
  of nkExportExceptStmt:
    if not isTopLevel(c): localError(c.config, n.info, errXOnlyAtModuleScope % "export")
    result = semExportExcept(c, n)
  of nkPragmaBlock:
    result = semPragmaBlock(c, n, expectedType)
  of nkStaticStmt:
    result = semStaticStmt(c, n)
  of nkDefer:
    if c.currentScope == c.topLevelScope:
      localError(c.config, n.info, "defer statement not supported at top level")
    openScope(c)
    n[0] = semExpr(c, n[0])
    closeScope(c)
    if not n[0].typ.isEmptyType and not implicitlyDiscardable(n[0]):
      localError(c.config, n.info, "'defer' takes a 'void' expression")
    #localError(c.config, n.info, errGenerated, "'defer' not allowed in this context")
  of nkGotoState, nkState:
    if n.len != 1 and n.len != 2: illFormedAst(n, c.config)
    for i in 0..<n.len:
      n[i] = semExpr(c, n[i])
  of nkComesFrom: discard "ignore the comes from information for now"
  of nkMixinStmt: discard
  of nkBindStmt:
    if c.p != nil:
      if n.len > 0 and n[0].kind == nkSym:
        c.p.localBindStmts.add n
    else:
      localError(c.config, n.info, "invalid context for 'bind' statement: " &
                renderTree(n, {renderNoComments}))
  else:
    localError(c.config, n.info, "invalid expression: " &
               renderTree(n, {renderNoComments}))
  if result != nil: incl(result.flags, nfSem)

  when defined(nimsuggest):
    if expandStarted:
      c.config.expandNodeResult = $result
      suggestQuit()