summary refs log tree commit diff stats
path: root/compiler/semexprs.nim
blob: fdc050260b45b59dd8208fd8b3e4d8bbbab97ed0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
pre { line-height: 125%; }
td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
.highlight .hll { background-color: #ffffcc }
.highlight .c { color: #888888 } /* Comment */
.highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */
.highlight .k { color: #008800; font-weight: bold } /* Keyword */
.highlight .ch { color: #888888 } /* Comment.Hashbang */
.highlight .cm { color: #888888 } /* Comment.Multiline */
.highlight .cp { color: #cc0000; font-weight: bold } /* Comment.Preproc */
.highlight .cpf { color: #888888 } /* Comment.PreprocFile */
.highlight .c1 { color: #888888 } /* Comment.Single */
.highlight .cs { color: #cc0000; font-weight: bold; background-color: #fff0f0 } /* Comment.Special */
.highlight .gd { color: #000000; background-color: #ffdddd } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */
.highlight .gr { color: #aa0000 } /* Generic.Error */
.highlight .gh { color: #333333 } /* Generic.Heading */
.highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #555555 } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #666666 } /* Generic.Subheading */
.highlight .gt { color: #aa0000 } /* Generic.Traceback */
.highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008800 } /* Keyword.Pseudo */
.highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */
.highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */
.highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */
.highlight .na { color: #336699 } /* Name.Attribute */
.highlight .nb { color: #003388 } /* Name.Builtin */
.highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */
.highlight .no { color: #003366; font-weight: bold } /* Name.Constant */
.highlight .nd { color: #555555 } /* Name.Decorator */
.highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */
.highlight .nl { color: #336699; font-style: italic } /* Name.Label */
.highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */
.highlight .py { color: #336699; font-weight: bold } /* Name.Property */
.highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #336699 } /* Name.Variable */
.highlight .ow { color: #008800 } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */
.highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */
.highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */
.highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */
.highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */
.highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */
.highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */
.highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */
.highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */
.highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */
.highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */
.highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */
.highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */
.highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */
.highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */
.highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */
.highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */
.highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */
.highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */
.highlight .vc { color: #336699 } /* Name.Variable.Class */
.highlight .vg { color: #dd7700 } /* Name.Variable.Global */
.highlight .vi { color: #3333bb } /* Name.Variable.Instance */
.highlight .vm { color: #336699 } /* Name.Variable.Magic */
.highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */
-- text editor, particularly text drawing, horizontal wrap, vertical scrolling
Text = {}

-- draw a line starting from startpos to screen at y between State.left and State.right
-- return y for the next line, and position of start of final screen line drawn
function Text.draw(State, line_index, y, startpos)
--?   print('text.draw', line_index, y)
  local line = State.lines[line_index]
  local line_cache = State.line_cache[line_index]
  line_cache.starty = y
  line_cache.startpos = startpos
  -- wrap long lines
  local final_screen_line_starting_pos = startpos  -- track value to return
  Text.populate_screen_line_starting_pos(State, line_index)
  assert(#line_cache.screen_line_starting_pos >= 1)
  for i=1,#line_cache.screen_line_starting_pos do
    local pos = line_cache.screen_line_starting_pos[i]
    if pos < startpos then
      -- render nothing
    else
      final_screen_line_starting_pos = pos
      local screen_line = Text.screen_line(line, line_cache, i)
--?       print('text.draw:', screen_line, 'at', line_index,pos, 'after', x,y)
      local frag_len = utf8.len(screen_line)
      -- render fragment
      if State.selection1.line then
        local lo, hi = Text.clip_selection(State, line_index, pos, pos+frag_len)
        Text.draw_highlight(State, line, State.left,y, pos, lo,hi)
      end
      App.color(Text_color)
      App.screen.print(screen_line, State.left,y)
      -- render cursor if necessary
      if line_index == State.cursor1.line then
        if pos <= State.cursor1.pos and pos + frag_len >= State.cursor1.pos then
          if State.search_term then
            local data = State.lines[State.cursor1.line].data
            local cursor_offset = Text.offset(data, State.cursor1.pos)
            if data:sub(cursor_offset, cursor_offset+#State.search_term-1) == State.search_term then
              local lo_px = Text.draw_highlight(State, line, State.left,y, pos, State.cursor1.pos, State.cursor1.pos+utf8.len(State.search_term))
              App.color(Text_color)
              love.graphics.print(State.search_term, State.left+lo_px,y)
            end
          else
            Text.draw_cursor(State, State.left+Text.x(screen_line, State.cursor1.pos-pos+1), y)
          end
        end
      end
      y = y + State.line_height
      if y >= App.screen.height then
        break
      end
    end
  end
  return y, final_screen_line_starting_pos
end

function Text.screen_line(line, line_cache, i)
  local pos = line_cache.screen_line_starting_pos[i]
  local offset = Text.offset(line.data, pos)
  if i >= #line_cache.screen_line_starting_pos then
    return line.data:sub(offset)
  end
  local endpos = line_cache.screen_line_starting_pos[i+1]-1
  local end_offset = Text.offset(line.data, endpos)
  return line.data:sub(offset, end_offset)
end

function Text.draw_cursor(State, x, y)
  -- blink every 0.5s
  if math.floor(Cursor_time*2)%2 == 0 then
    App.color(Cursor_color)
    love.graphics.rectangle('fill', x,y, 3,State.line_height)
  end
  State.cursor_x = x
  State.cursor_y = y+State.line_height
end

function Text.populate_screen_line_starting_pos(State, line_index)
  local line = State.lines[line_index]
  if line.mode ~= 'text' then return end
  local line_cache = State.line_cache[line_index]
  if line_cache.screen_line_starting_pos then
    return
  end
  line_cache.screen_line_starting_pos = {1}
  local x = 0
  local pos = 1
  -- try to wrap at word boundaries
  for frag in line.data:gmatch('%S*%s*') do
    local frag_width = App.width(frag)
--?     print('-- frag:', frag, pos, x, frag_width, State.width)
    while x + frag_width > State.width do
--?       print('frag:', frag, pos, x, frag_width, State.width)
      if x < 0.8 * State.width then
        -- long word; chop it at some letter
        -- We're not going to reimplement TeX here.
        local bpos = Text.nearest_pos_less_than(frag, State.width - x)
        -- everything works if bpos == 0, but is a little inefficient
        pos = pos + bpos
        local boffset = Text.offset(frag, bpos+1)  -- byte _after_ bpos
        frag = string.sub(frag, boffset)
--?         if bpos > 0 then
--?           print('after chop:', frag)
--?         end
        frag_width = App.width(frag)
      end
--?       print('screen line:', pos)
      table.insert(line_cache.screen_line_starting_pos, pos)
      x = 0  -- new screen line
    end
    x = x + frag_width
    pos = pos + utf8.len(frag)
  end
end

function Text.text_input(State, t)
  if App.mouse_down(1) then return end
  if App.ctrl_down() or App.alt_down() or App.cmd_down() then return end
  local before = snapshot(State, State.cursor1.line)
--?   print(State.screen_top1.line, State.screen_top1.pos, State.cursor1.line, State.cursor1.pos, State.screen_bottom1.line, State.screen_bottom1.pos)
  Text.insert_at_cursor(State, t)
  if State.cursor_y > App.screen.height - State.line_height then
    Text.populate_screen_line_starting_pos(State, State.cursor1.line)
    Text.snap_cursor_to_bottom_of_screen(State, State.left, State.right)
  end
  record_undo_event(State, {before=before, after=snapshot(State, State.cursor1.line)})
end

function Text.insert_at_cursor(State, t)
  assert(State.lines[State.cursor1.line].mode == 'text')
  local byte_offset = Text.offset(State.lines[State.cursor1.line].data, State.cursor1.pos)
  State.lines[State.cursor1.line].data = string.sub(State.lines[State.cursor1.line].data, 1, byte_offset-1)..t..string.sub(State.lines[State.cursor1.line].data, byte_offset)
  Text.clear_screen_line_cache(State, State.cursor1.line)
  State.cursor1.pos = State.cursor1.pos+1
end

-- Don't handle any keys here that would trigger text_input above.
function Text.keychord_press(State, chord)
--?   print('chord', chord, State.selection1.line, State.selection1.pos)
  --== shortcuts that mutate text
  if chord == 'return' then
    local before_line = State.cursor1.line
    local before = snapshot(State, before_line)
    Text.insert_return(State)
    State.selection1 = {}
    if State.cursor_y > App.screen.height - State.line_height then
      Text.snap_cursor_to_bottom_of_screen(State, State.left, State.right)
    end
    schedule_save(State)
    record_undo_event(State, {before=before, after=snapshot(State, before_line, State.cursor1.line)})
  elseif chord == 'tab' then
    local before = snapshot(State, State.cursor1.line)
--?     print(State.screen_top1.line, State.screen_top1.pos, State.cursor1.line, State.cursor1.pos, State.screen_bottom1.line, State.screen_bottom1.pos)
    Textpre { line-height: 125%; }
td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
.highlight .hll { background-color: #ffffcc }
.highlight .c { color: #888888 } /* Comment */
.highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */
.highlight .k { color: #008800; font-weight: bold } /* Keyword */
.highlight .ch { color: #888888 } /* Comment.Hashbang */
.highlight .cm { color: #888888 } /* Comment.Multiline */
.highlight .cp { color: #cc0000; font-weight: bold } /* Comment.Preproc */
.highlight .cpf { color: #888888 } /* Comment.PreprocFile */
.highlight .c1 { color: #888888 } /* Comment.Single */
.highlight .cs { color: #cc0000; font-weight: bold; background-color: #fff0f0 } /* Comment.Special */
.highlight .gd { color: #000000; background-color: #ffdddd } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */
.highlight .gr { color: #aa0000 } /* Generic.Error */
.highlight .gh { color: #333333 } /* Generic.Heading */
.highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #555555 } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #666666 } /* Generic.Subheading */
.highlight .gt { color: #aa0000 } /* Generic.Traceback */
.highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008800 } /* Keyword.Pseudo */
.highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */
.highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */
.highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */
.highlight .na { color: #336699 } /* Name.Attribute */
.highlight .nb { color: #003388 } /* Name.Builtin */
.highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */
.highlight .no { color: #003366; font-weight: bold } /* Name.Constant */
.highlight .nd { color: #555555 } /* Name.Decorator */
.highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */
.highlight .nl { color: #336699; font-style: italic } /* Name.Label */
.highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */
.highlight .py { color: #336699; font-weight: bold } /* Name.Property */
.highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #336699 } /* Name.Variable */
.highlight .ow { color: #008800 } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */
.highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */
.highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */
.highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */
.highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */
.highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */
.highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */
.highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */
.highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */
.highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */
.highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */
.highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */
.highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */
.highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */
.highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */
.highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */
.highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */
.highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */
.highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */
.highlight .vc { color: #336699 } /* Name.Variable.Class */
.highlight .vg { color: #dd7700 } /* Name.Variable.Global */
.highlight .vi { color: #3333bb } /* Name.Variable.Instance */
.highlight .vm { color: #336699 } /* Name.Variable.Magic */
.highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */
#
#
#           The Nimrod Compiler
#        (c) Copyright 2013 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

# this module does the semantic checking for expressions
# included from sem.nim

proc semTemplateExpr(c: PContext, n: PNode, s: PSym, semCheck = true): PNode = 
  markUsed(n, s)
  pushInfoContext(n.info)
  result = evalTemplate(n, s, getCurrOwner())
  if semCheck: result = semAfterMacroCall(c, result, s)
  popInfoContext()

proc semFieldAccess(c: PContext, n: PNode, flags: TExprFlags = {}): PNode

proc semOperand(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
  # same as 'semExprWithType' but doesn't check for proc vars
  result = semExpr(c, n, flags)
  if result.kind == nkEmpty: 
    # do not produce another redundant error message:
    #raiseRecoverableError("")
    result = errorNode(c, n)
  if result.typ != nil:
    # XXX tyGenericInst here?
    if result.typ.kind == tyVar: result = newDeref(result)
  else:
    LocalError(n.info, errExprXHasNoType, 
               renderTree(result, {renderNoComments}))
    result.typ = errorType(c)

proc semExprWithType(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
  result = semExpr(c, n, flags)
  if result.isNil or result.kind == nkEmpty: 
    # do not produce another redundant error message:
    #raiseRecoverableError("")
    result = errorNode(c, n)
  if result.typ == nil or result.typ == EnforceVoidContext:
    # we cannot check for 'void' in macros ...
    LocalError(n.info, errExprXHasNoType, 
               renderTree(result, {renderNoComments}))
    result.typ = errorType(c)
  else:
    # XXX tyGenericInst here?
    semProcvarCheck(c, result)
    if result.typ.kind == tyVar: result = newDeref(result)
    semDestructorCheck(c, result, flags)

proc semExprNoDeref(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
  result = semExpr(c, n, flags)
  if result.kind == nkEmpty:
    # do not produce another redundant error message:
    result = errorNode(c, n)
  if result.typ == nil:
    LocalError(n.info, errExprXHasNoType, 
               renderTree(result, {renderNoComments}))
    result.typ = errorType(c)
  else:
    semProcvarCheck(c, result)
    semDestructorCheck(c, result, flags)

proc semSymGenericInstantiation(c: PContext, n: PNode, s: PSym): PNode =
  result = symChoice(c, n, s, scClosed)
  
proc inlineConst(n: PNode, s: PSym): PNode {.inline.} =
  result = copyTree(s.ast)
  result.typ = s.typ
  result.info = n.info
  
proc semSym(c: PContext, n: PNode, s: PSym, flags: TExprFlags): PNode = 
  case s.kind
  of skConst:
    markUsed(n, s)
    case skipTypes(s.typ, abstractInst-{tyTypeDesc}).kind
    of  tyNil, tyChar, tyInt..tyInt64, tyFloat..tyFloat128, 
        tyTuple, tySet, tyUInt..tyUInt64:
      result = inlineConst(n, s)
    of tyArrayConstr, tySequence:
      # Consider::
      #     const x = []
      #     proc p(a: openarray[int])
      #     proc q(a: openarray[char])
      #     p(x)
      #     q(x)
      #
      # It is clear that ``[]`` means two totally different things. Thus, we
      # copy `x`'s AST into each context, so that the type fixup phase can
      # deal with two different ``[]``.
      if s.ast.len == 0: result = inlineConst(n, s)
      else: result = newSymNode(s, n.info)
    else:
      result = newSymNode(s, n.info)
  of skMacro: result = semMacroExpr(c, n, n, s)
  of skTemplate: result = semTemplateExpr(c, n, s)
  of skVar, skLet, skResult, skParam, skForVar:
    markUsed(n, s)
    # if a proc accesses a global variable, it is not side effect free:
    if sfGlobal in s.flags:
      incl(c.p.owner.flags, sfSideEffect)
    elif s.kind == skParam and s.typ.kind == tyExpr and s.typ.n != nil:
      # XXX see the hack in sigmatch.nim ...
      return s.typ.n
    result = newSymNode(s, n.info)
    # We cannot check for access to outer vars for example because it's still
    # not sure the symbol really ends up being used:
    # var len = 0 # but won't be called
    # genericThatUsesLen(x) # marked as taking a closure?
  of skGenericParam:
    if s.typ.kind == tyExpr:
      result = newSymNode(s, n.info)
      result.typ = s.typ
    elif s.ast != nil:
      result = semExpr(c, s.ast)
    else:
      InternalError(n.info, "no default for")
      result = emptyNode
  of skType:
    markUsed(n, s)
    result = newSymNode(s, n.info)
    result.typ = makeTypeDesc(c, s.typ)
  else:
    markUsed(n, s)
    result = newSymNode(s, n.info)

type
  TConvStatus = enum
    convOK,
    convNotNeedeed,
    convNotLegal

proc checkConversionBetweenObjects(castDest, src: PType): TConvStatus =
  return if inheritanceDiff(castDest, src) == high(int):
      convNotLegal
    else:
      convOK

const 
  IntegralTypes = {tyBool, tyEnum, tyChar, tyInt..tyUInt64}

proc checkConvertible(castDest, src: PType): TConvStatus =
  result = convOK
  if sameType(castDest, src) and castDest.sym == src.sym:
    # don't annoy conversions that may be needed on another processor:
    if castDest.kind notin IntegralTypes+{tyRange}:
      result = convNotNeedeed
    return
  var d = skipTypes(castDest, abstractVar)
  var s = skipTypes(src, abstractVar-{tyTypeDesc})
  while (d != nil) and (d.Kind in {tyPtr, tyRef}) and (d.Kind == s.Kind):
    d = base(d)
    s = base(s)
  if d == nil:
    result = convNotLegal
  elif d.Kind == tyObject and s.Kind == tyObject:
    result = checkConversionBetweenObjects(d, s)
  elif (skipTypes(castDest, abstractVarRange).Kind in IntegralTypes) and
      (skipTypes(src, abstractVarRange-{tyTypeDesc}).Kind in IntegralTypes):
    # accept conversion between integral types
  else:
    # we use d, s here to speed up that operation a bit:
    case cmpTypes(d, s)
    of isNone, isGeneric:
      if not compareTypes(castDest, src, dcEqIgnoreDistinct):
        result = convNotLegal
    else:
      nil

proc isCastable(dst, src: PType): bool = 
  #const
  #  castableTypeKinds = {tyInt, tyPtr, tyRef, tyCstring, tyString, 
  #                       tySequence, tyPointer, tyNil, tyOpenArray,
  #                       tyProc, tySet, tyEnum, tyBool, tyChar}
  var ds, ss: biggestInt
  # this is very unrestrictive; cast is allowed if castDest.size >= src.size
  ds = computeSize(dst)
  ss = computeSize(src)
  if ds < 0: 
    result = false
  elif ss < 0: 
    result = false
  else: 
    result = (ds >= ss) or
        (skipTypes(dst, abstractInst).kind in IntegralTypes) or
        (skipTypes(src, abstractInst-{tyTypeDesc}).kind in IntegralTypes)
  
proc isSymChoice(n: PNode): bool {.inline.} =
  result = n.kind in nkSymChoices

proc semConv(c: PContext, n: PNode, s: PSym): PNode =
  if sonsLen(n) != 2:
    LocalError(n.info, errConvNeedsOneArg)
    return n
  result = newNodeI(nkConv, n.info)
  result.typ = semTypeNode(c, n.sons[0], nil).skipTypes({tyGenericInst})
  addSon(result, copyTree(n.sons[0]))
  addSon(result, semExprWithType(c, n.sons[1]))
  var op = result.sons[1]
  
  if not isSymChoice(op):
    let status = checkConvertible(result.typ, op.typ)
    case status
    of convOK: nil
    of convNotNeedeed:
      Message(n.info, hintConvFromXtoItselfNotNeeded, result.typ.typeToString)
    of convNotLegal:
      LocalError(n.info, errGenerated, MsgKindToString(errIllegalConvFromXtoY)%
        [op.typ.typeToString, result.typ.typeToString])
  else:
    for i in countup(0, sonsLen(op) - 1):
      let it = op.sons[i]
      let status = checkConvertible(result.typ, it.typ)
      if status == convOK:
        markUsed(n, it.sym)
        markIndirect(c, it.sym)
        return it
    localError(n.info, errUseQualifier, op.sons[0].sym.name.s)

proc semCast(c: PContext, n: PNode): PNode = 
  if optSafeCode in gGlobalOptions: localError(n.info, errCastNotInSafeMode)
  #incl(c.p.owner.flags, sfSideEffect)
  checkSonsLen(n, 2)
  result = newNodeI(nkCast, n.info)
  result.typ = semTypeNode(c, n.sons[0], nil)
  addSon(result, copyTree(n.sons[0]))
  addSon(result, semExprWithType(c, n.sons[1]))
  if not isCastable(result.typ, result.sons[1].Typ): 
    LocalError(result.info, errExprCannotBeCastedToX, 
               typeToString(result.Typ))
  
proc semLowHigh(c: PContext, n: PNode, m: TMagic): PNode = 
  const 
    opToStr: array[mLow..mHigh, string] = ["low", "high"]
  if sonsLen(n) != 2: 
    LocalError(n.info, errXExpectsTypeOrValue, opToStr[m])
  else: 
    n.sons[1] = semExprWithType(c, n.sons[1], {efDetermineType})
    var typ = skipTypes(n.sons[1].typ, abstractVarRange)
    case typ.Kind
    of tySequence, tyString, tyOpenArray, tyVarargs: 
      n.typ = getSysType(tyInt)
    of tyArrayConstr, tyArray: 
      n.typ = typ.sons[0] # indextype
    of tyInt..tyInt64, tyChar, tyBool, tyEnum, tyUInt8, tyUInt16, tyUInt32: 
      # do not skip the range!
      n.typ = n.sons[1].typ.skipTypes(abstractVar)
    of tyGenericParam:
      # leave it for now, it will be resolved in semtypinst
      n.typ = getSysType(tyInt)
    else:
      LocalError(n.info, errInvalidArgForX, opToStr[m])
  result = n

proc semSizeof(c: PContext, n: PNode): PNode =
  if sonsLen(n) != 2:
    LocalError(n.info, errXExpectsTypeOrValue, "sizeof")
  else:
    n.sons[1] = semExprWithType(c, n.sons[1], {efDetermineType})
    #restoreOldStyleType(n.sons[1])
  n.typ = getSysType(tyInt)
  result = n

proc semOf(c: PContext, n: PNode): PNode = 
  if sonsLen(n) == 3: 
    n.sons[1] = semExprWithType(c, n.sons[1])
    n.sons[2] = semExprWithType(c, n.sons[2], {efDetermineType})
    #restoreOldStyleType(n.sons[1])
    #restoreOldStyleType(n.sons[2])
    let a = skipTypes(n.sons[1].typ, abstractPtrs)
    let b = skipTypes(n.sons[2].typ, abstractPtrs)
    let x = skipTypes(n.sons[1].typ, abstractPtrs-{tyTypeDesc})
    let y = skipTypes(n.sons[2].typ, abstractPtrs-{tyTypeDesc})

    if x.kind == tyTypeDesc or y.kind != tyTypeDesc:
      LocalError(n.info, errXExpectsObjectTypes, "of")
    elif b.kind != tyObject or a.kind != tyObject:
      LocalError(n.info, errXExpectsObjectTypes, "of")
    else:
      let diff = inheritanceDiff(a, b)
      # | returns: 0 iff `a` == `b`
      # | returns: -x iff `a` is the x'th direct superclass of `b`
      # | returns: +x iff `a` is the x'th direct subclass of `b`
      # | returns: `maxint` iff `a` and `b` are not compatible at all
      if diff <= 0:
        # optimize to true:
        Message(n.info, hintConditionAlwaysTrue, renderTree(n))
        result = newIntNode(nkIntLit, 1)
        result.info = n.info
        result.typ = getSysType(tyBool)
        return result
      elif diff == high(int):
        LocalError(n.info, errXcanNeverBeOfThisSubtype, typeToString(a))
  else:
    LocalError(n.info, errXExpectsTwoArguments, "of")
  n.typ = getSysType(tyBool)
  result = n

proc isOpImpl(c: PContext, n: PNode): PNode =
  InternalAssert n.sonsLen == 3 and
    n[1].kind == nkSym and n[1].sym.kind == skType and
    n[2].kind in {nkStrLit..nkTripleStrLit, nkType}
  
  let t1 = n[1].sym.typ.skipTypes({tyTypeDesc})

  if n[2].kind in {nkStrLit..nkTripleStrLit}:
    case n[2].strVal.normalize
    of "closure":
      let t = skipTypes(t1, abstractRange)
      result = newIntNode(nkIntLit, ord(t.kind == tyProc and
                                        t.callConv == ccClosure and 
                                        tfIterator notin t.flags))
    of "iterator":
      let t = skipTypes(t1, abstractRange)
      result = newIntNode(nkIntLit, ord(t.kind == tyProc and
                                        t.callConv == ccClosure and 
                                        tfIterator in t.flags))
  else:
    var match: bool
    let t2 = n[2].typ
    if t2.kind == tyTypeClass:
      var m: TCandidate
      InitCandidate(m, t2)
      match = matchUserTypeClass(c, m, emptyNode, t2, t1) != nil
    else:
      match = sameType(t1, t2)
 
    result = newIntNode(nkIntLit, ord(match))

  result.typ = n.typ

proc semIs(c: PContext, n: PNode): PNode =
  if sonsLen(n) != 3:
    LocalError(n.info, errXExpectsTwoArguments, "is")

  result = n
  n.typ = getSysType(tyBool)
  
  n.sons[1] = semExprWithType(c, n[1], {efDetermineType})
  
  if n[2].kind notin {nkStrLit..nkTripleStrLit}:
    let t2 = semTypeNode(c, n[2], nil)
    n.sons[2] = newNodeIT(nkType, n[2].info, t2)

  if n[1].typ.kind != tyTypeDesc:
    n.sons[1] = makeTypeSymNode(c, n[1].typ, n[1].info)
  elif n[1].typ.sonsLen == 0:
    # this is a typedesc variable, leave for evals
    return

  let t1 = n[1].typ.sons[0]
  # BUGFIX: don't evaluate this too early: ``T is void``
  if not containsGenericType(t1): result = isOpImpl(c, n)

proc semOpAux(c: PContext, n: PNode) =
  const flags = {efDetermineType}
  for i in countup(1, n.sonsLen-1):
    var a = n.sons[i]
    if a.kind == nkExprEqExpr and sonsLen(a) == 2: 
      var info = a.sons[0].info
      a.sons[0] = newIdentNode(considerAcc(a.sons[0]), info)
      a.sons[1] = semExprWithType(c, a.sons[1], flags)
      a.typ = a.sons[1].typ
    else:
      n.sons[i] = semExprWithType(c, a, flags)

proc overloadedCallOpr(c: PContext, n: PNode): PNode = 
  # quick check if there is *any* () operator overloaded:
  var par = getIdent("()")
  if searchInScopes(c, par) == nil:
    result = nil
  else:
    result = newNodeI(nkCall, n.info)
    addSon(result, newIdentNode(par, n.info))
    for i in countup(0, sonsLen(n) - 1): addSon(result, n.sons[i])
    result = semExpr(c, result)

proc changeType(n: PNode, newType: PType, check: bool) = 
  case n.kind
  of nkCurly, nkBracket: 
    for i in countup(0, sonsLen(n) - 1): 
      changeType(n.sons[i], elemType(newType), check)
  of nkPar: 
    if newType.kind != tyTuple: 
      InternalError(n.info, "changeType: no tuple type for constructor")
    elif newType.n == nil: nil
    elif sonsLen(n) > 0 and n.sons[0].kind == nkExprColonExpr: 
      for i in countup(0, sonsLen(n) - 1): 
        var m = n.sons[i].sons[0]
        if m.kind != nkSym: 
          internalError(m.info, "changeType(): invalid tuple constr")
          return
        var f = getSymFromList(newType.n, m.sym.name)
        if f == nil: 
          internalError(m.info, "changeType(): invalid identifier")
          return
        changeType(n.sons[i].sons[1], f.typ, check)
    else:
      for i in countup(0, sonsLen(n) - 1):
        var m = n.sons[i]
        var a = newNodeIT(nkExprColonExpr, m.info, newType.sons[i])
        addSon(a, newSymNode(newType.n.sons[i].sym))
        addSon(a, m)
        changeType(m, newType.sons[i], check)
        n.sons[i] = a
  of nkCharLit..nkUInt64Lit:
    if check:
      let value = n.intVal
      if value < firstOrd(newType) or value > lastOrd(newType):
        LocalError(n.info, errGenerated, "cannot convert " & $value &
                                         " to " & typeToString(newType))
  else: nil
  n.typ = newType

proc arrayConstrType(c: PContext, n: PNode): PType = 
  var typ = newTypeS(tyArrayConstr, c)
  rawAddSon(typ, nil)     # index type
  if sonsLen(n) == 0: 
    rawAddSon(typ, newTypeS(tyEmpty, c)) # needs an empty basetype!
  else:
    var x = n.sons[0]
    var lastIndex: biggestInt = sonsLen(n) - 1
    var t = skipTypes(n.sons[0].typ, {tyGenericInst, tyVar, tyOrdinal})
    addSonSkipIntLit(typ, t)
  typ.sons[0] = makeRangeType(c, 0, sonsLen(n) - 1, n.info)
  result = typ

proc semArrayConstr(c: PContext, n: PNode, flags: TExprFlags): PNode = 
  result = newNodeI(nkBracket, n.info)
  result.typ = newTypeS(tyArrayConstr, c)
  rawAddSon(result.typ, nil)     # index type
  if sonsLen(n) == 0: 
    rawAddSon(result.typ, newTypeS(tyEmpty, c)) # needs an empty basetype!
  else:
    var x = n.sons[0]
    var lastIndex: biggestInt = 0
    var indexType = getSysType(tyInt)
    if x.kind == nkExprColonExpr and sonsLen(x) == 2: 
      var idx = semConstExpr(c, x.sons[0])
      lastIndex = getOrdValue(idx)
      indexType = idx.typ
      x = x.sons[1]
    
    let yy = semExprWithType(c, x)
    var typ = yy.typ
    addSon(result, yy)
    #var typ = skipTypes(result.sons[0].typ, {tyGenericInst, tyVar, tyOrdinal})
    for i in countup(1, sonsLen(n) - 1): 
      x = n.sons[i]
      if x.kind == nkExprColonExpr and sonsLen(x) == 2: 
        var idx = semConstExpr(c, x.sons[0])
        idx = fitNode(c, indexType, idx)
        if lastIndex+1 != getOrdValue(idx):
          localError(x.info, errInvalidOrderInArrayConstructor)
        x = x.sons[1]
      
      let xx = semExprWithType(c, x, flags*{efAllowDestructor})
      result.add xx
      typ = commonType(typ, xx.typ)
      #n.sons[i] = semExprWithType(c, x, flags*{efAllowDestructor})
      #addSon(result, fitNode(c, typ, n.sons[i]))
      inc(lastIndex)
    addSonSkipIntLit(result.typ, typ)
    for i in 0 .. <result.len:
      result.sons[i] = fitNode(c, typ, result.sons[i])
  result.typ.sons[0] = makeRangeType(c, 0, sonsLen(result) - 1, n.info)

proc fixAbstractType(c: PContext, n: PNode) = 
  # XXX finally rewrite that crap!
  for i in countup(1, sonsLen(n) - 1): 
    var it = n.sons[i]
    case it.kind
    of nkHiddenStdConv, nkHiddenSubConv:
      if it.sons[1].kind == nkBracket:
        it.sons[1].typ = arrayConstrType(c, it.sons[1])
        #it.sons[1] = semArrayConstr(c, it.sons[1])
      if skipTypes(it.typ, abstractVar).kind in {tyOpenArray, tyVarargs}: 
        #if n.sons[0].kind == nkSym and IdentEq(n.sons[0].sym.name, "[]="):
        #  debug(n)
        
        var s = skipTypes(it.sons[1].typ, abstractVar)
        if s.kind == tyArrayConstr and s.sons[1].kind == tyEmpty: 
          s = copyType(s, getCurrOwner(), false)
          skipTypes(s, abstractVar).sons[1] = elemType(
              skipTypes(it.typ, abstractVar))
          it.sons[1].typ = s
        elif s.kind == tySequence and s.sons[0].kind == tyEmpty:
          s = copyType(s, getCurrOwner(), false)
          skipTypes(s, abstractVar).sons[0] = elemType(
              skipTypes(it.typ, abstractVar))
          it.sons[1].typ = s
          
      elif skipTypes(it.sons[1].typ, abstractVar).kind in
          {tyNil, tyArrayConstr, tyTuple, tySet}: 
        var s = skipTypes(it.typ, abstractVar)
        changeType(it.sons[1], s, check=true)
        n.sons[i] = it.sons[1]
    of nkBracket: 
      # an implicitely constructed array (passed to an open array):
      n.sons[i] = semArrayConstr(c, it, {})
    else: 
      nil
      #if (it.typ == nil): 
      #  InternalError(it.info, "fixAbstractType: " & renderTree(it))  
  
proc skipObjConv(n: PNode): PNode = 
  case n.kind
  of nkHiddenStdConv, nkHiddenSubConv, nkConv: 
    if skipTypes(n.sons[1].typ, abstractPtrs).kind in {tyTuple, tyObject}: 
      result = n.sons[1]
    else: 
      result = n
  of nkObjUpConv, nkObjDownConv: result = n.sons[0]
  else: result = n

proc isAssignable(c: PContext, n: PNode): TAssignableResult = 
  result = parampatterns.isAssignable(c.p.owner, n)

proc newHiddenAddrTaken(c: PContext, n: PNode): PNode = 
  if n.kind == nkHiddenDeref: 
    checkSonsLen(n, 1)
    result = n.sons[0]
  else: 
    result = newNodeIT(nkHiddenAddr, n.info, makeVarType(c, n.typ))
    addSon(result, n)
    if isAssignable(c, n) notin {arLValue, arLocalLValue}:
      localError(n.info, errVarForOutParamNeeded)

proc analyseIfAddressTaken(c: PContext, n: PNode): PNode = 
  result = n
  case n.kind
  of nkSym:
    # n.sym.typ can be nil in 'check' mode ...
    if n.sym.typ != nil and
        skipTypes(n.sym.typ, abstractInst-{tyTypeDesc}).kind != tyVar: 
      incl(n.sym.flags, sfAddrTaken)
      result = newHiddenAddrTaken(c, n)
  of nkDotExpr: 
    checkSonsLen(n, 2)
    if n.sons[1].kind != nkSym: 
      internalError(n.info, "analyseIfAddressTaken")
      return
    if skipTypes(n.sons[1].sym.typ, abstractInst-{tyTypeDesc}).kind != tyVar: 
      incl(n.sons[1].sym.flags, sfAddrTaken)
      result = newHiddenAddrTaken(c, n)
  of nkBracketExpr: 
    checkMinSonsLen(n, 1)
    if skipTypes(n.sons[0].typ, abstractInst-{tyTypeDesc}).kind != tyVar: 
      if n.sons[0].kind == nkSym: incl(n.sons[0].sym.flags, sfAddrTaken)
      result = newHiddenAddrTaken(c, n)
  else: 
    result = newHiddenAddrTaken(c, n)
  
proc analyseIfAddressTakenInCall(c: PContext, n: PNode) = 
  checkMinSonsLen(n, 1)
  const 
    FakeVarParams = {mNew, mNewFinalize, mInc, ast.mDec, mIncl, mExcl, 
      mSetLengthStr, mSetLengthSeq, mAppendStrCh, mAppendStrStr, mSwap, 
      mAppendSeqElem, mNewSeq, mReset, mShallowCopy}
  
  # get the real type of the callee
  # it may be a proc var with a generic alias type, so we skip over them
  var t = n.sons[0].typ.skipTypes({tyGenericInst})

  if n.sons[0].kind == nkSym and n.sons[0].sym.magic in FakeVarParams: 
    # BUGFIX: check for L-Value still needs to be done for the arguments!
    # note sometimes this is eval'ed twice so we check for nkHiddenAddr here:
    for i in countup(1, sonsLen(n) - 1): 
      if i < sonsLen(t) and t.sons[i] != nil and
          skipTypes(t.sons[i], abstractInst-{tyTypeDesc}).kind == tyVar: 
        if isAssignable(c, n.sons[i]) notin {arLValue, arLocalLValue}: 
          if n.sons[i].kind != nkHiddenAddr:
            LocalError(n.sons[i].info, errVarForOutParamNeeded)
    return
  for i in countup(1, sonsLen(n) - 1):
    if n.sons[i].kind == nkHiddenCallConv:
      # we need to recurse explicitly here as converters can create nested
      # calls and then they wouldn't be analysed otherwise
      analyseIfAddressTakenInCall(c, n.sons[i])
    semProcvarCheck(c, n.sons[i])
    if i < sonsLen(t) and
        skipTypes(t.sons[i], abstractInst-{tyTypeDesc}).kind == tyVar:
      if n.sons[i].kind != nkHiddenAddr:
        n.sons[i] = analyseIfAddressTaken(c, n.sons[i])
  
include semmagic

proc evalAtCompileTime(c: PContext, n: PNode): PNode =
  result = n
  if n.kind notin nkCallKinds or n.sons[0].kind != nkSym: return
  var callee = n.sons[0].sym
  
  # constant folding that is necessary for correctness of semantic pass:
  if callee.magic != mNone and callee.magic in ctfeWhitelist and n.typ != nil:
    var call = newNodeIT(nkCall, n.info, n.typ)
    call.add(n.sons[0])
    var allConst = true
    for i in 1 .. < n.len:
      var a = getConstExpr(c.module, n.sons[i])
      if a == nil:
        allConst = false
        a = n.sons[i]
        if a.kind == nkHiddenStdConv: a = a.sons[1]
      call.add(a)
    if allConst:
      result = semfold.getConstExpr(c.module, call)
      if result.isNil: result = n
      else: return result
    result.typ = semfold.getIntervalType(callee.magic, call)
    
  # optimization pass: not necessary for correctness of the semantic pass
  if {sfNoSideEffect, sfCompileTime} * callee.flags != {} and
     {sfForward, sfImportc} * callee.flags == {}:
    if sfCompileTime notin callee.flags and 
        optImplicitStatic notin gOptions: return

    if callee.magic notin ctfeWhitelist: return
    if callee.kind notin {skProc, skConverter} or callee.isGenericRoutine:
      return
    
    if n.typ != nil and not typeAllowed(n.typ, skConst): return
    
    var call = newNodeIT(nkCall, n.info, n.typ)
    call.add(n.sons[0])
    for i in 1 .. < n.len:
      let a = getConstExpr(c.module, n.sons[i])
      if a == nil: return n
      call.add(a)
    #echo "NOW evaluating at compile time: ", call.renderTree
    if sfCompileTime in callee.flags:
      result = evalStaticExpr(c, c.module, call, c.p.owner)
      if result.isNil: 
        LocalError(n.info, errCannotInterpretNodeX, renderTree(call))
    else:
      result = evalConstExpr(c, c.module, call)
      if result.isNil: result = n
    #if result != n:
    #  echo "SUCCESS evaluated at compile time: ", call.renderTree

proc semStaticExpr(c: PContext, n: PNode): PNode =
  let a = semExpr(c, n.sons[0])
  result = evalStaticExpr(c, c.module, a, c.p.owner)
  if result.isNil:
    LocalError(n.info, errCannotInterpretNodeX, renderTree(n))
    result = emptyNode

proc semOverloadedCallAnalyseEffects(c: PContext, n: PNode, nOrig: PNode,
                                     flags: TExprFlags): PNode =
  if flags*{efInTypeOf, efWantIterator} != {}:
    # consider: 'for x in pReturningArray()' --> we don't want the restriction
    # to 'skIterator' anymore; skIterator is preferred in sigmatch already for
    # typeof support.
    # for ``type(countup(1,3))``, see ``tests/ttoseq``.
    result = semOverloadedCall(c, n, nOrig,
      {skProc, skMethod, skConverter, skMacro, skTemplate, skIterator})
  else:
    result = semOverloadedCall(c, n, nOrig, 
      {skProc, skMethod, skConverter, skMacro, skTemplate})
  if result != nil:
    if result.sons[0].kind != nkSym: 
      InternalError("semOverloadedCallAnalyseEffects")
      return
    let callee = result.sons[0].sym
    case callee.kind
    of skMacro, skTemplate: nil
    else:
      if (callee.kind == skIterator) and (callee.id == c.p.owner.id): 
        LocalError(n.info, errRecursiveDependencyX, callee.name.s)
      if sfNoSideEffect notin callee.flags: 
        if {sfImportc, sfSideEffect} * callee.flags != {}:
          incl(c.p.owner.flags, sfSideEffect)

proc semObjConstr(c: PContext, n: PNode, flags: TExprFlags): PNode
proc semIndirectOp(c: PContext, n: PNode, flags: TExprFlags): PNode = 
  result = nil
  checkMinSonsLen(n, 1)
  var prc = n.sons[0]
  if n.sons[0].kind == nkDotExpr: 
    checkSonsLen(n.sons[0], 2)
    n.sons[0] = semFieldAccess(c, n.sons[0])
    if n.sons[0].kind == nkDotCall: 
      # it is a static call!
      result = n.sons[0]
      result.kind = nkCall
      for i in countup(1, sonsLen(n) - 1): addSon(result, n.sons[i])
      return semExpr(c, result, flags)
  else: 
    n.sons[0] = semExpr(c, n.sons[0])
  let nOrig = n.copyTree
  semOpAux(c, n)
  var t: PType = nil
  if n.sons[0].typ != nil:
    t = skipTypes(n.sons[0].typ, abstractInst-{tyTypedesc})
  if t != nil and t.kind == tyProc:
    # This is a proc variable, apply normal overload resolution
    var m: TCandidate
    initCandidate(m, t)
    matches(c, n, nOrig, m)
    if m.state != csMatch:
      if c.inCompilesContext > 0:
        # speed up error generation:
        GlobalError(n.Info, errTypeMismatch, "")
        return emptyNode
      else:
        var hasErrorType = false
        var msg = msgKindToString(errTypeMismatch)
        for i in countup(1, sonsLen(n) - 1): 
          if i > 1: add(msg, ", ")
          let nt = n.sons[i].typ
          add(msg, typeToString(nt))
          if nt.kind == tyError: 
            hasErrorType = true
            break
        if not hasErrorType:
          add(msg, ")\n" & msgKindToString(errButExpected) & "\n" &
              typeToString(n.sons[0].typ))
          LocalError(n.Info, errGenerated, msg)
        return errorNode(c, n)
      result = nil
    else:
      result = m.call
      instGenericConvertersSons(c, result, m)
    # we assume that a procedure that calls something indirectly 
    # has side-effects:
    if tfNoSideEffect notin t.flags: incl(c.p.owner.flags, sfSideEffect)
  elif t != nil and t.kind == tyTypeDesc:
    if n.len == 1: return semObjConstr(c, n, flags)
    let destType = t.skipTypes({tyTypeDesc, tyGenericInst})
    result = semConv(c, n, symFromType(destType, n.info))
    return
  else:
    result = overloadedCallOpr(c, n)
    # Now that nkSym does not imply an iteration over the proc/iterator space,
    # the old ``prc`` (which is likely an nkIdent) has to be restored:
    if result == nil: 
      # XXX: hmm, what kind of symbols will end up here?
      # do we really need to try the overload resolution?
      n.sons[0] = prc
      nOrig.sons[0] = prc
      n.flags.incl nfExprCall
      result = semOverloadedCallAnalyseEffects(c, n, nOrig, flags)
      if result == nil: return errorNode(c, n)
  #result = afterCallActions(c, result, nOrig, flags)
  fixAbstractType(c, result)
  analyseIfAddressTakenInCall(c, result)
  if result.sons[0].kind == nkSym and result.sons[0].sym.magic != mNone:
    result = magicsAfterOverloadResolution(c, result, flags)
  result = evalAtCompileTime(c, result)

proc afterCallActions(c: PContext; n, orig: PNode, flags: TExprFlags): PNode =
  result = n
  let callee = result.sons[0].sym
  case callee.kind
  of skMacro: result = semMacroExpr(c, result, orig, callee)
  of skTemplate: result = semTemplateExpr(c, result, callee)
  else:
    semFinishOperands(c, result)
    activate(c, result)
    fixAbstractType(c, result)
    analyseIfAddressTakenInCall(c, result)
    if callee.magic != mNone:
      result = magicsAfterOverloadResolution(c, result, flags)
  result = evalAtCompileTime(c, result)

proc semDirectOp(c: PContext, n: PNode, flags: TExprFlags): PNode = 
  # this seems to be a hotspot in the compiler!
  let nOrig = n.copyTree
  #semLazyOpAux(c, n)
  result = semOverloadedCallAnalyseEffects(c, n, nOrig, flags)
  if result != nil: result = afterCallActions(c, result, nOrig, flags)

proc buildStringify(c: PContext, arg: PNode): PNode = 
  if arg.typ != nil and 
      skipTypes(arg.typ, abstractInst-{tyTypeDesc}).kind == tyString:
    result = arg
  else:
    result = newNodeI(nkCall, arg.info)
    addSon(result, newIdentNode(getIdent"$", arg.info))
    addSon(result, arg)

proc semEcho(c: PContext, n: PNode): PNode = 
  # this really is a macro
  checkMinSonsLen(n, 1)
  for i in countup(1, sonsLen(n) - 1): 
    var arg = semExprWithType(c, n.sons[i])
    arg = semExprWithType(c, buildStringify(c, arg))
    n.sons[i] = arg
    let t = arg.typ
    if (t == nil or t.skipTypes(abstractInst).kind != tyString) and 
        arg.kind != nkEmpty:
      LocalError(n.info, errGenerated,
                 "implicitly invoked '$' does not return string")
  let t = n.sons[0].typ
  if tfNoSideEffect notin t.flags: incl(c.p.owner.flags, sfSideEffect)
  result = n
  
proc buildEchoStmt(c: PContext, n: PNode): PNode = 
  # we MUST not check 'n' for semantics again here!
  result = newNodeI(nkCall, n.info)
  var e = StrTableGet(magicsys.systemModule.Tab, getIdent"echo")
  if e != nil:
    addSon(result, newSymNode(e))
  else:
    LocalError(n.info, errSystemNeeds, "echo")
    addSon(result, errorNode(c, n))
  var arg = buildStringify(c, n)
  # problem is: implicit '$' is not checked for semantics yet. So we give up
  # and check 'arg' for semantics again:
  arg = semExpr(c, arg)
  if arg != nil: addSon(result, arg)

proc semExprNoType(c: PContext, n: PNode): PNode =
  result = semExpr(c, n, {efWantStmt})
  discardCheck(result)
  
proc isTypeExpr(n: PNode): bool = 
  case n.kind
  of nkType, nkTypeOfExpr: result = true
  of nkSym: result = n.sym.kind == skType
  else: result = false
  
proc lookupInRecordAndBuildCheck(c: PContext, n, r: PNode, field: PIdent, 
                                 check: var PNode): PSym = 
  # transform in a node that contains the runtime check for the
  # field, if it is in a case-part...
  result = nil
  case r.kind
  of nkRecList: 
    for i in countup(0, sonsLen(r) - 1): 
      result = lookupInRecordAndBuildCheck(c, n, r.sons[i], field, check)
      if result != nil: return 
  of nkRecCase: 
    checkMinSonsLen(r, 2)
    if (r.sons[0].kind != nkSym): IllFormedAst(r)
    result = lookupInRecordAndBuildCheck(c, n, r.sons[0], field, check)
    if result != nil: return 
    var s = newNodeI(nkCurly, r.info)
    for i in countup(1, sonsLen(r) - 1): 
      var it = r.sons[i]
      case it.kind
      of nkOfBranch: 
        result = lookupInRecordAndBuildCheck(c, n, lastSon(it), field, check)
        if result == nil: 
          for j in 0..sonsLen(it)-2: addSon(s, copyTree(it.sons[j]))
        else: 
          if check == nil: 
            check = newNodeI(nkCheckedFieldExpr, n.info)
            addSon(check, ast.emptyNode) # make space for access node
          s = newNodeI(nkCurly, n.info)
          for j in countup(0, sonsLen(it) - 2): addSon(s, copyTree(it.sons[j]))
          var inExpr = newNodeI(nkCall, n.info)
          addSon(inExpr, newIdentNode(getIdent("in"), n.info))
          addSon(inExpr, copyTree(r.sons[0]))
          addSon(inExpr, s)   #writeln(output, renderTree(inExpr));
          addSon(check, semExpr(c, inExpr))
          return 
      of nkElse: 
        result = lookupInRecordAndBuildCheck(c, n, lastSon(it), field, check)
        if result != nil: 
          if check == nil: 
            check = newNodeI(nkCheckedFieldExpr, n.info)
            addSon(check, ast.emptyNode) # make space for access node
          var inExpr = newNodeI(nkCall, n.info)
          addSon(inExpr, newIdentNode(getIdent("in"), n.info))
          addSon(inExpr, copyTree(r.sons[0]))
          addSon(inExpr, s)
          var notExpr = newNodeI(nkCall, n.info)
          addSon(notExpr, newIdentNode(getIdent("not"), n.info))
          addSon(notExpr, inExpr)
          addSon(check, semExpr(c, notExpr))
          return 
      else: illFormedAst(it)
  of nkSym: 
    if r.sym.name.id == field.id: result = r.sym
  else: illFormedAst(n)
  
proc makeDeref(n: PNode): PNode = 
  var t = skipTypes(n.typ, {tyGenericInst})
  result = n
  if t.kind == tyVar: 
    result = newNodeIT(nkHiddenDeref, n.info, t.sons[0])
    addSon(result, n)
    t = skipTypes(t.sons[0], {tyGenericInst})
  while t.kind in {tyPtr, tyRef}:
    var a = result
    result = newNodeIT(nkHiddenDeref, n.info, t.sons[0])
    addSon(result, a)
    t = skipTypes(t.sons[0], {tyGenericInst})

proc builtinFieldAccess(c: PContext, n: PNode, flags: TExprFlags): PNode =
  ## returns nil if it's not a built-in field access
  checkSonsLen(n, 2)
  # early exit for this; see tests/compile/tbindoverload.nim:
  if isSymChoice(n.sons[1]): return

  var s = qualifiedLookup(c, n, {checkAmbiguity, checkUndeclared})
  if s != nil:
    return semSym(c, n, s, flags)

  n.sons[0] = semExprWithType(c, n.sons[0], flags+{efDetermineType})
  #restoreOldStyleType(n.sons[0])
  var i = considerAcc(n.sons[1])
  var ty = n.sons[0].typ
  var f: PSym = nil
  result = nil
  if isTypeExpr(n.sons[0]) or ty.kind == tyTypeDesc and ty.len == 1:
    if ty.kind == tyTypeDesc: ty = ty.sons[0]
    case ty.kind
    of tyEnum:
      # look up if the identifier belongs to the enum:
      while ty != nil:
        f = getSymFromList(ty.n, i)
        if f != nil: break 
        ty = ty.sons[0]         # enum inheritance
      if f != nil: 
        result = newSymNode(f)
        result.info = n.info
        result.typ = ty
        markUsed(n, f)
        return
    of tyGenericInst:
      assert ty.sons[0].kind == tyGenericBody
      let tbody = ty.sons[0]
      for s in countup(0, tbody.len-2):
        let tParam = tbody.sons[s]
        if tParam.sym.name == i:
          let rawTyp = ty.sons[s + 1]
          if rawTyp.kind == tyExpr:
            return rawTyp.n
          else:
            let foundTyp = makeTypeDesc(c, rawTyp)
            return newSymNode(copySym(tParam.sym).linkTo(foundTyp), n.info)
      return
    else:
      # echo "TYPE FIELD ACCESS"
      # debug ty
      return
    # XXX: This is probably not relevant any more
    # reset to prevent 'nil' bug: see "tests/reject/tenumitems.nim":
    ty = n.sons[0].Typ
    
  ty = skipTypes(ty, {tyGenericInst, tyVar, tyPtr, tyRef})
  var check: PNode = nil
  if ty.kind == tyObject: 
    while true: 
      check = nil
      f = lookupInRecordAndBuildCheck(c, n, ty.n, i, check)
      if f != nil: break 
      if ty.sons[0] == nil: break 
      ty = skipTypes(ty.sons[0], {tyGenericInst})
    if f != nil:
      if fieldVisible(c, f):
        # is the access to a public field or in the same module or in a friend?
        n.sons[0] = makeDeref(n.sons[0])
        n.sons[1] = newSymNode(f) # we now have the correct field
        n.typ = f.typ
        markUsed(n, f)
        if check == nil: 
          result = n
        else: 
          check.sons[0] = n
          check.typ = n.typ
          result = check
  elif ty.kind == tyTuple and ty.n != nil: 
    f = getSymFromList(ty.n, i)
    if f != nil:
      n.sons[0] = makeDeref(n.sons[0])
      n.sons[1] = newSymNode(f)
      n.typ = f.typ
      result = n
      markUsed(n, f)

proc dotTransformation(c: PContext, n: PNode): PNode =
  if isSymChoice(n.sons[1]):
    result = newNodeI(nkDotCall, n.info)
    addSon(result, n.sons[1])
    addSon(result, copyTree(n[0]))
  else:
    var i = considerAcc(n.sons[1])
    result = newNodeI(nkDotCall, n.info)
    result.flags.incl nfDelegate
    addSon(result, newIdentNode(i, n[1].info))
    addSon(result, copyTree(n[0]))
  
proc semFieldAccess(c: PContext, n: PNode, flags: TExprFlags): PNode = 
  # this is difficult, because the '.' is used in many different contexts
  # in Nimrod. We first allow types in the semantic checking.
  result = builtinFieldAccess(c, n, flags)
  if result == nil:
    result = dotTransformation(c, n)

proc buildOverloadedSubscripts(n: PNode, ident: PIdent): PNode =
  result = newNodeI(nkCall, n.info)
  result.add(newIdentNode(ident, n.info))
  for i in 0 .. n.len-1: result.add(n[i])
  
proc semDeref(c: PContext, n: PNode): PNode =
  checkSonsLen(n, 1)
  n.sons[0] = semExprWithType(c, n.sons[0])
  result = n
  var t = skipTypes(n.sons[0].typ, {tyGenericInst, tyVar})
  case t.kind
  of tyRef, tyPtr: n.typ = t.sons[0]
  else: result = nil
  #GlobalError(n.sons[0].info, errCircumNeedsPointer) 

proc semSubscript(c: PContext, n: PNode, flags: TExprFlags): PNode =
  ## returns nil if not a built-in subscript operator; also called for the
  ## checking of assignments
  if sonsLen(n) == 1: 
    var x = semDeref(c, n)
    if x == nil: return nil
    result = newNodeIT(nkDerefExpr, x.info, x.typ)
    result.add(x[0])
    return
  checkMinSonsLen(n, 2)
  n.sons[0] = semExprWithType(c, n.sons[0])
  var arr = skipTypes(n.sons[0].typ, {tyGenericInst, tyVar, tyPtr, tyRef})
  case arr.kind
  of tyArray, tyOpenArray, tyVarargs, tyArrayConstr, tySequence, tyString, 
     tyCString:
    if n.len != 2: return nil
    n.sons[0] = makeDeref(n.sons[0])
    for i in countup(1, sonsLen(n) - 1): 
      n.sons[i] = semExprWithType(c, n.sons[i], 
                                  flags*{efInTypeof, efDetermineType})
    var indexType = if arr.kind == tyArray: arr.sons[0] else: getSysType(tyInt)
    var arg = IndexTypesMatch(c, indexType, n.sons[1].typ, n.sons[1])
    if arg != nil:
      n.sons[1] = arg
      result = n
      result.typ = elemType(arr)
    #GlobalError(n.info, errIndexTypesDoNotMatch)
  of tyTypeDesc:
    # The result so far is a tyTypeDesc bound 
    # a tyGenericBody. The line below will substitute
    # it with the instantiated type.
    result = symNodeFromType(c, semTypeNode(c, n, nil), n.info)
  of tyTuple: 
    checkSonsLen(n, 2)
    n.sons[0] = makeDeref(n.sons[0])
    # [] operator for tuples requires constant expression:
    n.sons[1] = semConstExpr(c, n.sons[1])
    if skipTypes(n.sons[1].typ, {tyGenericInst, tyRange, tyOrdinal}).kind in
        {tyInt..tyInt64}: 
      var idx = getOrdValue(n.sons[1])
      if idx >= 0 and idx < sonsLen(arr): n.typ = arr.sons[int(idx)]
      else: LocalError(n.info, errInvalidIndexValueForTuple)
    else: 
      LocalError(n.info, errIndexTypesDoNotMatch)
    result = n
  else: nil
  
proc semArrayAccess(c: PContext, n: PNode, flags: TExprFlags): PNode = 
  result = semSubscript(c, n, flags)
  if result == nil:
    # overloaded [] operator:
    result = semExpr(c, buildOverloadedSubscripts(n, getIdent"[]"))

proc propertyWriteAccess(c: PContext, n, nOrig, a: PNode): PNode =
  var id = considerAcc(a[1])
  let setterId = newIdentNode(getIdent(id.s & '='), n.info)
  # a[0] is already checked for semantics, that does ``builtinFieldAccess``
  # this is ugly. XXX Semantic checking should use the ``nfSem`` flag for
  # nodes?
  let aOrig = nOrig[0]
  result = newNode(nkCall, n.info, sons = @[setterId, a[0], semExpr(c, n[1])])
  let orig = newNode(nkCall, n.info, sons = @[setterId, aOrig[0], nOrig[1]])
  result = semOverloadedCallAnalyseEffects(c, result, orig, {})
  
  if result != nil:
    result = afterCallActions(c, result, nOrig, {})
    #fixAbstractType(c, result)
    #analyseIfAddressTakenInCall(c, result)

proc takeImplicitAddr(c: PContext, n: PNode): PNode =
  case n.kind
  of nkHiddenAddr, nkAddr: return n
  of nkHiddenDeref, nkDerefExpr: return n.sons[0]
  of nkBracketExpr:
    if len(n) == 1: return n.sons[0]
  else: nil
  var valid = isAssignable(c, n)
  if valid != arLValue:
    if valid == arLocalLValue:
      LocalError(n.info, errXStackEscape, renderTree(n, {renderNoComments}))
    else:
      LocalError(n.info, errExprHasNoAddress)
  result = newNodeIT(nkHiddenAddr, n.info, makePtrType(c, n.typ))
  result.add(n)
  
proc asgnToResultVar(c: PContext, n, le, ri: PNode) {.inline.} =
  if le.kind == nkHiddenDeref:
    var x = le.sons[0]
    if x.typ.kind == tyVar and x.kind == nkSym and x.sym.kind == skResult:
      n.sons[0] = x # 'result[]' --> 'result'
      n.sons[1] = takeImplicitAddr(c, ri)

proc semAsgn(c: PContext, n: PNode): PNode =
  checkSonsLen(n, 2)
  var a = n.sons[0]
  case a.kind
  of nkDotExpr:
    # r.f = x
    # --> `f=` (r, x)
    let nOrig = n.copyTree
    a = builtinFieldAccess(c, a, {efLValue})
    if a == nil:
      a = propertyWriteAccess(c, n, nOrig, n[0])
      if a != nil: return a
      # we try without the '='; proc that return 'var' or macros are still
      # possible:
      a = dotTransformation(c, n[0])
      if a.kind == nkDotCall:
        a.kind = nkCall
        a = semExprWithType(c, a, {efLValue})
  of nkBracketExpr:
    # a[i] = x
    # --> `[]=`(a, i, x)
    a = semSubscript(c, a, {efLValue})
    if a == nil:
      result = buildOverloadedSubscripts(n.sons[0], getIdent"[]=")
      add(result, n[1])
      return semExprNoType(c, result)
  of nkCurlyExpr:
    # a{i} = x -->  `{}=`(a, i, x)
    result = buildOverloadedSubscripts(n.sons[0], getIdent"{}=")
    add(result, n[1])
    return semExprNoType(c, result)
  else:
    a = semExprWithType(c, a, {efLValue})
  n.sons[0] = a
  # a = b # both are vars, means: a[] = b[]
  # a = b # b no 'var T' means: a = addr(b)
  var le = a.typ
  if skipTypes(le, {tyGenericInst}).kind != tyVar and 
      IsAssignable(c, a) == arNone:
    # Direct assignment to a discriminant is allowed!
    localError(a.info, errXCannotBeAssignedTo,
               renderTree(a, {renderNoComments}))
  else:
    let
      lhs = n.sons[0]
      lhsIsResult = lhs.kind == nkSym and lhs.sym.kind == skResult
    var
      rhs = semExprWithType(c, n.sons[1], 
        if lhsIsResult: {efAllowDestructor} else: {})
    if lhsIsResult:
      n.typ = EnforceVoidContext
      if lhs.sym.typ.kind == tyGenericParam:
        if matchTypeClass(lhs.typ, rhs.typ):
          InternalAssert c.p.resultSym != nil
          lhs.typ = rhs.typ
          c.p.resultSym.typ = rhs.typ
          c.p.owner.typ.sons[0] = rhs.typ
        else:
          typeMismatch(n, lhs.typ, rhs.typ)

    n.sons[1] = fitNode(c, le, rhs)
    fixAbstractType(c, n)
    asgnToResultVar(c, n, n.sons[0], n.sons[1])
  result = n

proc SemReturn(c: PContext, n: PNode): PNode =
  result = n
  checkSonsLen(n, 1)
  if c.p.owner.kind in {skConverter, skMethod, skProc, skMacro} or
     (c.p.owner.kind == skIterator and c.p.owner.typ.callConv == ccClosure):
    if n.sons[0].kind != nkEmpty:
      # transform ``return expr`` to ``result = expr; return``
      if c.p.resultSym != nil: 
        var a = newNodeI(nkAsgn, n.sons[0].info)
        addSon(a, newSymNode(c.p.resultSym))
        addSon(a, n.sons[0])
        n.sons[0] = semAsgn(c, a)
        # optimize away ``result = result``:
        if n[0][1].kind == nkSym and n[0][1].sym == c.p.resultSym: 
          n.sons[0] = ast.emptyNode
      else:
        LocalError(n.info, errNoReturnTypeDeclared)
  else:
    LocalError(n.info, errXNotAllowedHere, "\'return\'")

proc semProcBody(c: PContext, n: PNode): PNode =
  openScope(c)
  result = semExpr(c, n)
  if c.p.resultSym != nil and not isEmptyType(result.typ):
    # transform ``expr`` to ``result = expr``, but not if the expr is already
    # ``result``:
    if result.kind == nkSym and result.sym == c.p.resultSym:
      nil
    elif result.kind == nkNilLit:
      # or ImplicitlyDiscardable(result):
      # new semantic: 'result = x' triggers the void context
      result.typ = nil
    elif result.kind == nkStmtListExpr and result.typ.kind == tyNil:
      # to keep backwards compatibility bodies like:
      #   nil
      #   # comment
      # are not expressions:
      fixNilType(result)
    else:
      var a = newNodeI(nkAsgn, n.info, 2)
      a.sons[0] = newSymNode(c.p.resultSym)
      a.sons[1] = result
      result = semAsgn(c, a)
  else:
    discardCheck(result)
  closeScope(c)

proc SemYieldVarResult(c: PContext, n: PNode, restype: PType) =
  var t = skipTypes(restype, {tyGenericInst})
  case t.kind
  of tyVar:
    n.sons[0] = takeImplicitAddr(c, n.sons[0])
  of tyTuple:
    for i in 0.. <t.sonsLen:
      var e = skipTypes(t.sons[i], {tyGenericInst})
      if e.kind == tyVar:
        if n.sons[0].kind == nkPar:
          n.sons[0].sons[i] = takeImplicitAddr(c, n.sons[0].sons[i])
        elif n.sons[0].kind in {nkHiddenStdConv, nkHiddenSubConv} and 
             n.sons[0].sons[1].kind == nkPar:
          var a = n.sons[0].sons[1]
          a.sons[i] = takeImplicitAddr(c, a.sons[i])
        else:
          localError(n.sons[0].info, errXExpected, "tuple constructor")
  else: nil
  
proc SemYield(c: PContext, n: PNode): PNode =
  result = n
  checkSonsLen(n, 1)
  if c.p.owner == nil or c.p.owner.kind != skIterator:
    LocalError(n.info, errYieldNotAllowedHere)
  elif c.p.inTryStmt > 0 and c.p.owner.typ.callConv != ccInline:
    LocalError(n.info, errYieldNotAllowedInTryStmt)
  elif n.sons[0].kind != nkEmpty:
    n.sons[0] = SemExprWithType(c, n.sons[0]) # check for type compatibility:
    var restype = c.p.owner.typ.sons[0]
    if restype != nil:
      n.sons[0] = fitNode(c, restype, n.sons[0])
      if n.sons[0].typ == nil: InternalError(n.info, "semYield")
      SemYieldVarResult(c, n, restype)
    else:
      localError(n.info, errCannotReturnExpr)
  elif c.p.owner.typ.sons[0] != nil:
    localError(n.info, errGenerated, "yield statement must yield a value")

proc lookUpForDefined(c: PContext, i: PIdent, onlyCurrentScope: bool): PSym =
  if onlyCurrentScope: 
    result = localSearchInScope(c, i)
  else: 
    result = searchInScopes(c, i) # no need for stub loading

proc LookUpForDefined(c: PContext, n: PNode, onlyCurrentScope: bool): PSym = 
  case n.kind
  of nkIdent: 
    result = LookupForDefined(c, n.ident, onlyCurrentScope)
  of nkDotExpr:
    result = nil
    if onlyCurrentScope: return 
    checkSonsLen(n, 2)
    var m = LookupForDefined(c, n.sons[0], onlyCurrentScope)
    if (m != nil) and (m.kind == skModule): 
      if (n.sons[1].kind == nkIdent): 
        var ident = n.sons[1].ident
        if m == c.module: 
          result = StrTableGet(c.topLevelScope.symbols, ident)
        else: 
          result = StrTableGet(m.tab, ident)
      else: 
        LocalError(n.sons[1].info, errIdentifierExpected, "")
  of nkAccQuoted:
    result = lookupForDefined(c, considerAcc(n), onlyCurrentScope)
  of nkSym:
    result = n.sym
  else: 
    LocalError(n.info, errIdentifierExpected, renderTree(n))
    result = nil

proc semDefined(c: PContext, n: PNode, onlyCurrentScope: bool): PNode = 
  checkSonsLen(n, 2)
  # we replace this node by a 'true' or 'false' node:
  result = newIntNode(nkIntLit, 0)
  if LookUpForDefined(c, n.sons[1], onlyCurrentScope) != nil: 
    result.intVal = 1
  elif not onlyCurrentScope and (n.sons[1].kind == nkIdent) and
      condsyms.isDefined(n.sons[1].ident): 
    result.intVal = 1
  result.info = n.info
  result.typ = getSysType(tyBool)

proc setMs(n: PNode, s: PSym): PNode = 
  result = n
  n.sons[0] = newSymNode(s)
  n.sons[0].info = n.info

proc expectMacroOrTemplateCall(c: PContext, n: PNode): PSym =
  ## The argument to the proc should be nkCall(...) or similar
  ## Returns the macro/template symbol
  if isCallExpr(n):
    var expandedSym = qualifiedLookup(c, n[0], {checkUndeclared})
    if expandedSym == nil:
      LocalError(n.info, errUndeclaredIdentifier, n[0].renderTree)
      return errorSym(c, n[0])

    if expandedSym.kind notin {skMacro, skTemplate}:
      LocalError(n.info, errXisNoMacroOrTemplate, expandedSym.name.s)
      return errorSym(c, n[0])

    result = expandedSym
  else:
    LocalError(n.info, errXisNoMacroOrTemplate, n.renderTree)
    result = errorSym(c, n)

proc expectString(c: PContext, n: PNode): string =
  var n = semConstExpr(c, n)
  if n.kind in nkStrKinds:
    return n.strVal
  else:
    LocalError(n.info, errStringLiteralExpected)

proc getMagicSym(magic: TMagic): PSym =
  result = newSym(skProc, getIdent($magic), GetCurrOwner(), gCodegenLineInfo)
  result.magic = magic

proc newAnonSym(kind: TSymKind, info: TLineInfo,
                owner = getCurrOwner()): PSym =
  result = newSym(kind, idAnon, owner, info)
  result.flags = {sfGenSym}

proc semUsing(c: PContext, n: PNode): PNode =
  result = newNodeI(nkEmpty, n.info)
  for e in n.sons:
    let usedSym = semExpr(c, e)
    if usedSym.kind == nkSym:
      case usedSym.sym.kind
      of skLocalVars + {skConst}:
        c.currentScope.usingSyms.safeAdd(usedSym)
        continue
      of skProcKinds:
        addDeclAt(c.currentScope, usedSym.sym)
        continue
      else: nil

    LocalError(e.info, errUsingNoSymbol, e.renderTree)

proc semExpandToAst(c: PContext, n: PNode): PNode =
  var macroCall = n[1]
  var expandedSym = expectMacroOrTemplateCall(c, macroCall)
  if expandedSym.kind == skError: return n

  macroCall.sons[0] = newSymNode(expandedSym, macroCall.info)
  markUsed(n, expandedSym)

  for i in countup(1, macroCall.len-1):
    macroCall.sons[i] = semExprWithType(c, macroCall[i], {})

  # Preserve the magic symbol in order to be handled in evals.nim
  InternalAssert n.sons[0].sym.magic == mExpandToAst
  n.typ = getSysSym("PNimrodNode").typ # expandedSym.getReturnType
  result = n

proc semExpandToAst(c: PContext, n: PNode, magicSym: PSym,
                    flags: TExprFlags = {}): PNode =
  if sonsLen(n) == 2:
    n.sons[0] = newSymNode(magicSym, n.info)
    result = semExpandToAst(c, n)
  else:
    result = semDirectOp(c, n, flags)

proc processQuotations(n: var PNode, op: string,
                       quotes: var seq[PNode],
                       ids: var seq[PNode]) =
  template returnQuote(q) =
    quotes.add q
    n = newIdentNode(getIdent($quotes.len), n.info)
    ids.add n
    return

  if n.kind == nkPrefix:
    checkSonsLen(n, 2)
    if n[0].kind == nkIdent:
      var examinedOp = n[0].ident.s
      if examinedOp == op:
        returnQuote n[1]
      elif examinedOp.startsWith(op):
        n.sons[0] = newIdentNode(getIdent(examinedOp.substr(op.len)), n.info)
  elif n.kind == nkAccQuoted and op == "``":
    returnQuote n[0]
 
  if not n.isAtom:
    for i in 0 .. <n.len:
      processQuotations(n.sons[i], op, quotes, ids)

proc semQuoteAst(c: PContext, n: PNode): PNode =
  InternalAssert n.len == 2 or n.len == 3
  # We transform the do block into a template with a param for
  # each interpolation. We'll pass this template to getAst.
  var
    doBlk = n{-1}
    op = if n.len == 3: expectString(c, n[1]) else: "``"
    quotes = newSeq[PNode](1)
      # the quotes will be added to a nkCall statement 
      # leave some room for the callee symbol
    ids = newSeq[PNode]()
      # this will store the generated param names

  if doBlk.kind != nkDo:
    LocalError(n.info, errXExpected, "block")

  processQuotations(doBlk.sons[bodyPos], op, quotes, ids)
  
  doBlk.sons[namePos] = newAnonSym(skTemplate, n.info).newSymNode
  if ids.len > 0:
    doBlk[paramsPos].sons.setLen(2)
    doBlk[paramsPos].sons[0] = getSysSym("stmt").newSymNode # return type
    ids.add getSysSym("expr").newSymNode # params type
    ids.add emptyNode # no default value
    doBlk[paramsPos].sons[1] = newNode(nkIdentDefs, n.info, ids)
  
  var tmpl = semTemplateDef(c, doBlk)
  quotes[0] = tmpl[namePos]
  result = newNode(nkCall, n.info, @[
    getMagicSym(mExpandToAst).newSymNode,
    newNode(nkCall, n.info, quotes)])
  result = semExpandToAst(c, result)

proc tryExpr(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
  # watch out, hacks ahead:
  let oldErrorCount = msgs.gErrorCounter
  let oldErrorMax = msgs.gErrorMax
  inc c.InCompilesContext
  inc msgs.gSilence
  # do not halt after first error:
  msgs.gErrorMax = high(int)
  
  # open a scope for temporary symbol inclusions:
  let oldScope = c.currentScope
  openScope(c)
  let oldOwnerLen = len(gOwners)
  let oldGenerics = c.generics
  let oldContextLen = msgs.getInfoContextLen()
  
  let oldInGenericContext = c.InGenericContext
  let oldInUnrolledContext = c.InUnrolledContext
  let oldInGenericInst = c.InGenericInst
  let oldProcCon = c.p
  c.generics = @[]
  try:
    result = semExpr(c, n, flags)
    if msgs.gErrorCounter != oldErrorCount: result = nil
  except ERecoverableError:
    nil
  # undo symbol table changes (as far as it's possible):
  c.generics = oldGenerics
  c.InGenericContext = oldInGenericContext
  c.InUnrolledContext = oldInUnrolledContext
  c.InGenericInst = oldInGenericInst
  c.p = oldProcCon
  msgs.setInfoContextLen(oldContextLen)
  setlen(gOwners, oldOwnerLen)
  c.currentScope = oldScope
  dec c.InCompilesContext
  dec msgs.gSilence
  msgs.gErrorCounter = oldErrorCount
  msgs.gErrorMax = oldErrorMax

proc semCompiles(c: PContext, n: PNode, flags: TExprFlags): PNode =
  # we replace this node by a 'true' or 'false' node:
  if sonsLen(n) != 2: return semDirectOp(c, n, flags)
  
  result = newIntNode(nkIntLit, ord(tryExpr(c, n[1], flags) != nil))
  result.info = n.info
  result.typ = getSysType(tyBool)

proc semShallowCopy(c: PContext, n: PNode, flags: TExprFlags): PNode =
  if sonsLen(n) == 3:
    # XXX ugh this is really a hack: shallowCopy() can be overloaded only
    # with procs that take not 2 parameters:
    result = newNodeI(nkFastAsgn, n.info)
    result.add(n[1])
    result.add(n[2])
    result = semAsgn(c, result)
  else:
    result = semDirectOp(c, n, flags)

proc semMagic(c: PContext, n: PNode, s: PSym, flags: TExprFlags): PNode = 
  # this is a hotspot in the compiler!
  # DON'T forget to update ast.SpecialSemMagics if you add a magic here!
  result = n
  case s.magic # magics that need special treatment
  of mDefined: result = semDefined(c, setMs(n, s), false)
  of mDefinedInScope: result = semDefined(c, setMs(n, s), true)
  of mCompiles: result = semCompiles(c, setMs(n, s), flags)
  of mLow: result = semLowHigh(c, setMs(n, s), mLow)
  of mHigh: result = semLowHigh(c, setMs(n, s), mHigh)
  of mSizeOf: result = semSizeof(c, setMs(n, s))
  of mIs: result = semIs(c, setMs(n, s))
  of mOf: result = semOf(c, setMs(n, s))
  of mEcho: result = semEcho(c, setMs(n, s))
  of mShallowCopy: result = semShallowCopy(c, n, flags)
  of mExpandToAst: result = semExpandToAst(c, n, s, flags)
  of mQuoteAst: result = semQuoteAst(c, n)
  of mAstToStr:
    checkSonsLen(n, 2)
    result = newStrNodeT(renderTree(n[1], {renderNoComments}), n)
    result.typ = getSysType(tyString)
  else: result = semDirectOp(c, n, flags)

proc semWhen(c: PContext, n: PNode, semCheck = true): PNode =
  # If semCheck is set to false, ``when`` will return the verbatim AST of
  # the correct branch. Otherwise the AST will be passed through semStmt.
  result = nil
  
  template setResult(e: expr) =
    if semCheck: result = semStmt(c, e) # do not open a new scope!
    else: result = e

  for i in countup(0, sonsLen(n) - 1): 
    var it = n.sons[i]
    case it.kind
    of nkElifBranch, nkElifExpr: 
      checkSonsLen(it, 2)
      var e = semConstExpr(c, it.sons[0])
      if e.kind != nkIntLit: 
        # can happen for cascading errors, assume false
        # InternalError(n.info, "semWhen")
        discard
      elif e.intVal != 0 and result == nil:
        setResult(it.sons[1]) 
    of nkElse, nkElseExpr:
      checkSonsLen(it, 1)
      if result == nil: 
        setResult(it.sons[0])
    else: illFormedAst(n)
  if result == nil:
    result = newNodeI(nkEmpty, n.info) 
  # The ``when`` statement implements the mechanism for platform dependent
  # code. Thus we try to ensure here consistent ID allocation after the
  # ``when`` statement.
  IDsynchronizationPoint(200)

proc semSetConstr(c: PContext, n: PNode): PNode = 
  result = newNodeI(nkCurly, n.info)
  result.typ = newTypeS(tySet, c)
  if sonsLen(n) == 0: 
    rawAddSon(result.typ, newTypeS(tyEmpty, c))
  else: 
    # only semantic checking for all elements, later type checking:
    var typ: PType = nil
    for i in countup(0, sonsLen(n) - 1): 
      if isRange(n.sons[i]): 
        checkSonsLen(n.sons[i], 3)
        n.sons[i].sons[1] = semExprWithType(c, n.sons[i].sons[1])
        n.sons[i].sons[2] = semExprWithType(c, n.sons[i].sons[2])
        if typ == nil: 
          typ = skipTypes(n.sons[i].sons[1].typ, 
                          {tyGenericInst, tyVar, tyOrdinal})
        n.sons[i].typ = n.sons[i].sons[2].typ # range node needs type too
      elif n.sons[i].kind == nkRange:
        # already semchecked
        if typ == nil:
          typ = skipTypes(n.sons[i].sons[0].typ, 
                          {tyGenericInst, tyVar, tyOrdinal})
      else:
        n.sons[i] = semExprWithType(c, n.sons[i])
        if typ == nil: 
          typ = skipTypes(n.sons[i].typ, {tyGenericInst, tyVar, tyOrdinal})
    if not isOrdinalType(typ):
      LocalError(n.info, errOrdinalTypeExpected)
      typ = makeRangeType(c, 0, MaxSetElements - 1, n.info)
    elif lengthOrd(typ) > MaxSetElements: 
      typ = makeRangeType(c, 0, MaxSetElements - 1, n.info)
    addSonSkipIntLit(result.typ, typ)
    for i in countup(0, sonsLen(n) - 1): 
      var m: PNode
      if isRange(n.sons[i]):
        m = newNodeI(nkRange, n.sons[i].info)
        addSon(m, fitNode(c, typ, n.sons[i].sons[1]))
        addSon(m, fitNode(c, typ, n.sons[i].sons[2]))
      elif n.sons[i].kind == nkRange: m = n.sons[i] # already semchecked
      else:
        m = fitNode(c, typ, n.sons[i])
      addSon(result, m)

proc semTableConstr(c: PContext, n: PNode): PNode =
  # we simply transform ``{key: value, key2, key3: value}`` to 
  # ``[(key, value), (key2, value2), (key3, value2)]``
  result = newNodeI(nkBracket, n.info)
  var lastKey = 0
  for i in 0..n.len-1:
    var x = n.sons[i]
    if x.kind == nkExprColonExpr and sonsLen(x) == 2:
      for j in countup(lastKey, i-1):
        var pair = newNodeI(nkPar, x.info)
        pair.add(n.sons[j])
        pair.add(x[1])
        result.add(pair)

      var pair = newNodeI(nkPar, x.info)
      pair.add(x[0])
      pair.add(x[1])
      result.add(pair)

      lastKey = i+1

  if lastKey != n.len: illFormedAst(n)
  result = semExpr(c, result)

type 
  TParKind = enum 
    paNone, paSingle, paTupleFields, paTuplePositions

proc checkPar(n: PNode): TParKind = 
  var length = sonsLen(n)
  if length == 0: 
    result = paTuplePositions # ()
  elif length == 1: 
    result = paSingle         # (expr)
  else: 
    if n.sons[0].kind == nkExprColonExpr: result = paTupleFields
    else: result = paTuplePositions
    for i in countup(0, length - 1): 
      if result == paTupleFields: 
        if (n.sons[i].kind != nkExprColonExpr) or
            not (n.sons[i].sons[0].kind in {nkSym, nkIdent}): 
          LocalError(n.sons[i].info, errNamedExprExpected)
          return paNone
      else: 
        if n.sons[i].kind == nkExprColonExpr: 
          LocalError(n.sons[i].info, errNamedExprNotAllowed)
          return paNone

proc semTupleFieldsConstr(c: PContext, n: PNode, flags: TExprFlags): PNode =
  result = newNodeI(nkPar, n.info)
  var typ = newTypeS(tyTuple, c)
  typ.n = newNodeI(nkRecList, n.info) # nkIdentDefs
  var ids = initIntSet()
  for i in countup(0, sonsLen(n) - 1):
    if (n.sons[i].kind != nkExprColonExpr) or
        not (n.sons[i].sons[0].kind in {nkSym, nkIdent}):
      illFormedAst(n.sons[i])
    var id: PIdent
    if n.sons[i].sons[0].kind == nkIdent: id = n.sons[i].sons[0].ident
    else: id = n.sons[i].sons[0].sym.name
    if ContainsOrIncl(ids, id.id): 
      localError(n.sons[i].info, errFieldInitTwice, id.s)
    n.sons[i].sons[1] = semExprWithType(c, n.sons[i].sons[1],
                                        flags*{efAllowDestructor})
    var f = newSymS(skField, n.sons[i].sons[0], c)
    f.typ = skipIntLit(n.sons[i].sons[1].typ)
    f.position = i
    rawAddSon(typ, f.typ)
    addSon(typ.n, newSymNode(f))
    n.sons[i].sons[0] = newSymNode(f)
    addSon(result, n.sons[i])
  result.typ = typ

proc semTuplePositionsConstr(c: PContext, n: PNode, flags: TExprFlags): PNode = 
  result = n                  # we don't modify n, but compute the type:
  var typ = newTypeS(tyTuple, c)  # leave typ.n nil!
  for i in countup(0, sonsLen(n) - 1): 
    n.sons[i] = semExprWithType(c, n.sons[i], flags*{efAllowDestructor})
    addSonSkipIntLit(typ, n.sons[i].typ)
  result.typ = typ

proc checkInitialized(n: PNode, ids: TIntSet, info: TLineInfo) =
  case n.kind
  of nkRecList:
    for i in countup(0, sonsLen(n) - 1):
      checkInitialized(n.sons[i], ids, info)
  of nkRecCase:
    if (n.sons[0].kind != nkSym): InternalError(info, "checkInitialized")
    checkInitialized(n.sons[0], ids, info)
    when false:
      # XXX we cannot check here, as we don't know the branch!
      for i in countup(1, sonsLen(n) - 1):
        case n.sons[i].kind
        of nkOfBranch, nkElse: checkInitialized(lastSon(n.sons[i]), ids, info)
        else: internalError(info, "checkInitialized")
  of nkSym:
    if tfNeedsInit in n.sym.typ.flags and n.sym.name.id notin ids:
      Message(info, errGenerated, "field not initialized: " & n.sym.name.s)
  else: internalError(info, "checkInitialized")

proc semObjConstr(c: PContext, n: PNode, flags: TExprFlags): PNode =
  var t = semTypeNode(c, n.sons[0], nil)
  result = n
  result.typ = t
  result.kind = nkObjConstr
  t = skipTypes(t, abstractInst)
  if t.kind == tyRef: t = skipTypes(t.sons[0], abstractInst)
  if t.kind != tyObject:
    localError(n.info, errGenerated, "object constructor needs an object type")
    return
  var objType = t
  var ids = initIntSet()
  for i in 1.. <n.len:
    let it = n.sons[i]
    if it.kind != nkExprColonExpr or it.sons[0].kind notin {nkSym, nkIdent}:
      localError(n.info, errNamedExprExpected)
      break
    var id: PIdent
    if it.sons[0].kind == nkIdent: id = it.sons[0].ident
    else: id = it.sons[0].sym.name
    if ContainsOrIncl(ids, id.id):
      localError(it.info, errFieldInitTwice, id.s)
    var e = semExprWithType(c, it.sons[1], flags*{efAllowDestructor})
    var
      check: PNode = nil
      f: PSym
    t = objType
    while true:
      check = nil
      f = lookupInRecordAndBuildCheck(c, it, t.n, id, check)
      if f != nil: break
      if t.sons[0] == nil: break
      t = skipTypes(t.sons[0], {tyGenericInst})
    if f != nil and fieldVisible(c, f):
      it.sons[0] = newSymNode(f)
      e = fitNode(c, f.typ, e)
      # small hack here in a nkObjConstr the ``nkExprColonExpr`` node can have
      # 3 childen the last being the field check
      if check != nil:
        check.sons[0] = it.sons[0]
        it.add(check)
    else:
      localError(it.info, errUndeclaredFieldX, id.s)
    it.sons[1] = e
    # XXX object field name check for 'case objects' if the kind is static?
  if tfNeedsInit in objType.flags:
    while true:
      checkInitialized(objType.n, ids, n.info)
      if objType.sons[0] == nil: break
      objType = skipTypes(objType.sons[0], {tyGenericInst})

proc semBlock(c: PContext, n: PNode): PNode =
  result = n
  Inc(c.p.nestedBlockCounter)
  checkSonsLen(n, 2)
  openScope(c) # BUGFIX: label is in the scope of block!
  if n.sons[0].kind != nkEmpty:
    var labl = newSymG(skLabel, n.sons[0], c)
    if sfGenSym notin labl.flags:
      addDecl(c, labl)
      n.sons[0] = newSymNode(labl, n.sons[0].info)
    suggestSym(n.sons[0], labl)
  n.sons[1] = semExpr(c, n.sons[1])
  n.typ = n.sons[1].typ
  if isEmptyType(n.typ): n.kind = nkBlockStmt
  else: n.kind = nkBlockExpr
  closeScope(c)
  Dec(c.p.nestedBlockCounter)

proc buildCall(n: PNode): PNode =
  if n.kind == nkDotExpr and n.len == 2:
    # x.y --> y(x)
    result = newNodeI(nkCall, n.info, 2)
    result.sons[0] = n.sons[1]
    result.sons[1] = n.sons[0]
  elif n.kind in nkCallKinds and n.sons[0].kind == nkDotExpr:
    # x.y(a) -> y(x, a)
    let a = n.sons[0]
    result = newNodeI(nkCall, n.info, n.len+1)
    result.sons[0] = a.sons[1]
    result.sons[1] = a.sons[0]
    for i in 1 .. <n.len: result.sons[i+1] = n.sons[i]
  else:
    result = n

proc doBlockIsStmtList(n: PNode): bool =
  result = n.kind == nkDo and
           n[paramsPos].sonsLen == 1 and
           n[paramsPos][0].kind == nkEmpty

proc fixImmediateParams(n: PNode): PNode =
  # XXX: Temporary work-around until we carry out
  # the planned overload resolution reforms
  for i in 1 .. <safeLen(n):
    if doBlockIsStmtList(n[i]):
      n.sons[i] = n[i][bodyPos]
  result = n

proc semExport(c: PContext, n: PNode): PNode =
  var x = newNodeI(n.kind, n.info)
  #let L = if n.kind == nkExportExceptStmt: L = 1 else: n.len
  for i in 0.. <n.len:
    let a = n.sons[i]
    var o: TOverloadIter
    var s = initOverloadIter(o, c, a)
    if s == nil:
      localError(a.info, errGenerated, "invalid expr for 'export': " &
          renderTree(a))
    while s != nil:
      if s.kind in ExportableSymKinds+{skModule}:
        x.add(newSymNode(s, a.info))
      s = nextOverloadIter(o, c, a)
  if c.module.ast.isNil:
    c.module.ast = newNodeI(nkStmtList, n.info)
  assert c.module.ast.kind == nkStmtList
  c.module.ast.add x
  result = n

proc semExpr(c: PContext, n: PNode, flags: TExprFlags = {}): PNode = 
  result = n
  if gCmd == cmdIdeTools: suggestExpr(c, n)
  if nfSem in n.flags: return 
  case n.kind
  of nkIdent, nkAccQuoted:
    var s = lookUp(c, n)
    semCaptureSym(s, c.p.owner)
    result = semSym(c, n, s, flags)
    if s.kind in {skProc, skMethod, skIterator, skConverter}:
      #performProcvarCheck(c, n, s)
      result = symChoice(c, n, s, scClosed)
      if result.kind == nkSym:
        markIndirect(c, result.sym)
        if isGenericRoutine(result.sym):
          LocalError(n.info, errInstantiateXExplicitely, s.name.s)
  of nkSym:
    # because of the changed symbol binding, this does not mean that we
    # don't have to check the symbol for semantics here again!
    result = semSym(c, n, n.sym, flags)
  of nkEmpty, nkNone, nkCommentStmt: 
    nil
  of nkNilLit: 
    result.typ = getSysType(tyNil)
  of nkIntLit:
    if result.typ == nil: setIntLitType(result)
  of nkInt8Lit:
    if result.typ == nil: result.typ = getSysType(tyInt8)
  of nkInt16Lit: 
    if result.typ == nil: result.typ = getSysType(tyInt16)
  of nkInt32Lit: 
    if result.typ == nil: result.typ = getSysType(tyInt32)
  of nkInt64Lit: 
    if result.typ == nil: result.typ = getSysType(tyInt64)
  of nkUIntLit:
    if result.typ == nil: result.typ = getSysType(tyUInt)
  of nkUInt8Lit: 
    if result.typ == nil: result.typ = getSysType(tyUInt8)
  of nkUInt16Lit: 
    if result.typ == nil: result.typ = getSysType(tyUInt16)
  of nkUInt32Lit: 
    if result.typ == nil: result.typ = getSysType(tyUInt32)
  of nkUInt64Lit: 
    if result.typ == nil: result.typ = getSysType(tyUInt64)
  of nkFloatLit: 
    if result.typ == nil: result.typ = getFloatLitType(result)
  of nkFloat32Lit: 
    if result.typ == nil: result.typ = getSysType(tyFloat32)
  of nkFloat64Lit: 
    if result.typ == nil: result.typ = getSysType(tyFloat64)
  of nkFloat128Lit: 
    if result.typ == nil: result.typ = getSysType(tyFloat128)
  of nkStrLit..nkTripleStrLit: 
    if result.typ == nil: result.typ = getSysType(tyString)
  of nkCharLit: 
    if result.typ == nil: result.typ = getSysType(tyChar)
  of nkDotExpr: 
    result = semFieldAccess(c, n, flags)
    if result.kind == nkDotCall:
      result.kind = nkCall
      result = semExpr(c, result, flags)
  of nkBind:
    Message(n.info, warnDeprecated, "bind")
    result = semExpr(c, n.sons[0], flags)
  of nkTypeOfExpr, nkTupleTy, nkRefTy..nkEnumTy:
    var typ = semTypeNode(c, n, nil).skipTypes({tyTypeDesc})
    result = symNodeFromType(c, typ, n.info)
  of nkCall, nkInfix, nkPrefix, nkPostfix, nkCommand, nkCallStrLit: 
    # check if it is an expression macro:
    checkMinSonsLen(n, 1)
    let mode = if nfDelegate in n.flags: {} else: {checkUndeclared}
    var s = qualifiedLookup(c, n.sons[0], mode)
    if s != nil: 
      case s.kind
      of skMacro:
        if sfImmediate notin s.flags:
          result = semDirectOp(c, n, flags)
        else:
          var p = fixImmediateParams(n)
          result = semMacroExpr(c, p, p, s)
      of skTemplate:
        if sfImmediate notin s.flags:
          result = semDirectOp(c, n, flags)
        else:
          var p = fixImmediateParams(n)
          result = semTemplateExpr(c, p, s)
      of skType:
        # XXX think about this more (``set`` procs)
        if n.len == 2:
          result = semConv(c, n, s)
        elif n.len == 1:
          result = semObjConstr(c, n, flags)
        elif Contains(c.AmbiguousSymbols, s.id): 
          LocalError(n.info, errUseQualifier, s.name.s)
        elif s.magic == mNone: result = semDirectOp(c, n, flags)
        else: result = semMagic(c, n, s, flags)
      of skProc, skMethod, skConverter, skIterator: 
        if s.magic == mNone: result = semDirectOp(c, n, flags)
        else: result = semMagic(c, n, s, flags)
      else:
        #liMessage(n.info, warnUser, renderTree(n));
        result = semIndirectOp(c, n, flags)
    elif isSymChoice(n.sons[0]) or n[0].kind == nkBracketExpr and 
        isSymChoice(n[0][0]):
      result = semDirectOp(c, n, flags)
    elif nfDelegate in n.flags:
      result = semDirectOp(c, n, flags)
    else:
      result = semIndirectOp(c, n, flags)
  of nkWhen:
    if efWantStmt in flags:
      result = semWhen(c, n, true)
    else:
      result = semWhen(c, n, false)
      result = semExpr(c, result, flags)
  of nkBracketExpr:
    checkMinSonsLen(n, 1)
    var s = qualifiedLookup(c, n.sons[0], {checkUndeclared})
    if s != nil and s.kind in {skProc, skMethod, skConverter, skIterator}: 
      # type parameters: partial generic specialization
      n.sons[0] = semSymGenericInstantiation(c, n.sons[0], s)
      result = explicitGenericInstantiation(c, n, s)
    else: 
      result = semArrayAccess(c, n, flags)
  of nkCurlyExpr:
    result = semExpr(c, buildOverloadedSubscripts(n, getIdent"{}"), flags)
  of nkPragmaExpr: 
    # which pragmas are allowed for expressions? `likely`, `unlikely`
    internalError(n.info, "semExpr() to implement") # XXX: to implement
  of nkPar: 
    case checkPar(n)
    of paNone: result = errorNode(c, n)
    of paTuplePositions: result = semTuplePositionsConstr(c, n, flags)
    of paTupleFields: result = semTupleFieldsConstr(c, n, flags)
    of paSingle: result = semExpr(c, n.sons[0], flags)
  of nkCurly: result = semSetConstr(c, n)
  of nkBracket: result = semArrayConstr(c, n, flags)
  of nkObjConstr: result = semObjConstr(c, n, flags)
  of nkLambdaKinds: result = semLambda(c, n, flags)
  of nkDerefExpr: result = semDeref(c, n)
  of nkAddr:
    result = n
    checkSonsLen(n, 1)
    n.sons[0] = semExprWithType(c, n.sons[0])
    if isAssignable(c, n.sons[0]) notin {arLValue, arLocalLValue}: 
      LocalError(n.info, errExprHasNoAddress)
    n.typ = makePtrType(c, n.sons[0].typ)
  of nkHiddenAddr, nkHiddenDeref:
    checkSonsLen(n, 1)
    n.sons[0] = semExpr(c, n.sons[0], flags)
  of nkCast: result = semCast(c, n)
  of nkIfExpr, nkIfStmt: result = semIf(c, n)
  of nkHiddenStdConv, nkHiddenSubConv, nkConv, nkHiddenCallConv: 
    checkSonsLen(n, 2)
  of nkStringToCString, nkCStringToString, nkObjDownConv, nkObjUpConv: 
    checkSonsLen(n, 1)
  of nkChckRangeF, nkChckRange64, nkChckRange: 
    checkSonsLen(n, 3)
  of nkCheckedFieldExpr: 
    checkMinSonsLen(n, 2)
  of nkTableConstr:
    result = semTableConstr(c, n)
  of nkClosedSymChoice, nkOpenSymChoice:
    # handling of sym choices is context dependent
    # the node is left intact for now
  of nkStaticExpr:
    result = semStaticExpr(c, n)
  of nkAsgn: result = semAsgn(c, n)
  of nkBlockStmt, nkBlockExpr: result = semBlock(c, n)
  of nkStmtList, nkStmtListExpr: result = semStmtList(c, n)
  of nkRaiseStmt: result = semRaise(c, n)
  of nkVarSection: result = semVarOrLet(c, n, skVar)
  of nkLetSection: result = semVarOrLet(c, n, skLet)
  of nkConstSection: result = semConst(c, n)
  of nkTypeSection: result = SemTypeSection(c, n)
  of nkDiscardStmt: result = semDiscard(c, n)
  of nkWhileStmt: result = semWhile(c, n)
  of nkTryStmt: result = semTry(c, n)
  of nkBreakStmt, nkContinueStmt: result = semBreakOrContinue(c, n)
  of nkForStmt, nkParForStmt: result = semFor(c, n)
  of nkCaseStmt: result = semCase(c, n)
  of nkReturnStmt: result = semReturn(c, n)
  of nkUsingStmt: result = semUsing(c, n)
  of nkAsmStmt: result = semAsm(c, n)
  of nkYieldStmt: result = semYield(c, n)
  of nkPragma: pragma(c, c.p.owner, n, stmtPragmas)
  of nkIteratorDef: result = semIterator(c, n)
  of nkProcDef: result = semProc(c, n)
  of nkMethodDef: result = semMethod(c, n)
  of nkConverterDef: result = semConverterDef(c, n)
  of nkMacroDef: result = semMacroDef(c, n)
  of nkTemplateDef: result = semTemplateDef(c, n)
  of nkImportStmt: 
    if not isTopLevel(c): LocalError(n.info, errXOnlyAtModuleScope, "import")
    result = evalImport(c, n)
  of nkImportExceptStmt:
    if not isTopLevel(c): LocalError(n.info, errXOnlyAtModuleScope, "import")
    result = evalImportExcept(c, n)
  of nkFromStmt: 
    if not isTopLevel(c): LocalError(n.info, errXOnlyAtModuleScope, "from")
    result = evalFrom(c, n)
  of nkIncludeStmt: 
    if not isTopLevel(c): LocalError(n.info, errXOnlyAtModuleScope, "include")
    result = evalInclude(c, n)
  of nkExportStmt, nkExportExceptStmt:
    if not isTopLevel(c): LocalError(n.info, errXOnlyAtModuleScope, "export")
    result = semExport(c, n)
  of nkPragmaBlock:
    result = semPragmaBlock(c, n)
  of nkStaticStmt:
    result = semStaticStmt(c, n)
  else:
    LocalError(n.info, errInvalidExpressionX,
               renderTree(n, {renderNoComments}))
  if result != nil: incl(result.flags, nfSem)