1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
|
#
#
# The Nimrod Compiler
# (c) Copyright 2011 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# this module does the semantic checking for expressions
const
ConstAbstractTypes = {tyNil, tyChar, tyInt..tyInt64, tyFloat..tyFloat128,
tyArrayConstr, tyTuple, tySet}
proc semTemplateExpr(c: PContext, n: PNode, s: PSym, semCheck = true): PNode =
markUsed(n, s)
pushInfoContext(n.info)
result = evalTemplate(c, n, s)
if semCheck: result = semAfterMacroCall(c, result, s)
popInfoContext()
proc semFieldAccess(c: PContext, n: PNode, flags: TExprFlags = {}): PNode
proc semExprWithType(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
result = semExpr(c, n, flags)
if result.kind == nkEmpty:
# do not produce another redundant error message:
raiseRecoverableError()
if result.typ != nil:
if result.typ.kind == tyVar:
var d = newNodeIT(nkHiddenDeref, result.info, result.typ.sons[0])
addSon(d, result)
result = d
else:
GlobalError(n.info, errExprXHasNoType,
renderTree(result, {renderNoComments}))
proc semSymGenericInstantiation(c: PContext, n: PNode, s: PSym): PNode =
result = symChoice(c, n, s)
proc semSym(c: PContext, n: PNode, s: PSym, flags: TExprFlags): PNode =
case s.kind
of skProc, skMethod, skIterator, skConverter:
if not (sfProcVar in s.flags) and (s.typ.callConv == ccDefault) and
(getModule(s).id != c.module.id):
LocalError(n.info, errXCannotBePassedToProcVar, s.name.s)
result = symChoice(c, n, s)
of skConst:
#
# Consider::
# const x = []
# proc p(a: openarray[int])
# proc q(a: openarray[char])
# p(x)
# q(x)
#
# It is clear that ``[]`` means two totally different things. Thus, we
# copy `x`'s AST into each context, so that the type fixup phase can
# deal with two different ``[]``.
#
markUsed(n, s)
if s.typ.kind in ConstAbstractTypes:
result = copyTree(s.ast)
result.typ = s.typ
result.info = n.info
else:
result = newSymNode(s, n.info)
of skMacro: result = semMacroExpr(c, n, s)
of skTemplate: result = semTemplateExpr(c, n, s)
of skVar:
markUsed(n, s)
# if a proc accesses a global variable, it is not side effect free:
if sfGlobal in s.flags: incl(c.p.owner.flags, sfSideEffect)
result = newSymNode(s, n.info)
of skGenericParam:
if s.ast == nil: InternalError(n.info, "no default for")
result = semExpr(c, s.ast)
of skType:
if efAllowType notin flags: GlobalError(n.info, errATypeHasNoValue)
markUsed(n, s)
result = newSymNode(s, n.info)
else:
markUsed(n, s)
result = newSymNode(s, n.info)
proc checkConversionBetweenObjects(info: TLineInfo, castDest, src: PType) =
var diff = inheritanceDiff(castDest, src)
if diff == high(int):
GlobalError(info, errGenerated, MsgKindToString(errIllegalConvFromXtoY) % [
src.typeToString, castDest.typeToString])
proc checkConvertible(info: TLineInfo, castDest, src: PType) =
const
IntegralTypes = {tyBool, tyEnum, tyChar, tyInt..tyFloat128}
if sameType(castDest, src):
# don't annoy conversions that may be needed on another processor:
if not (castDest.kind in {tyInt..tyFloat128, tyNil}):
Message(info, hintConvFromXtoItselfNotNeeded, typeToString(castDest))
return
var d = skipTypes(castDest, abstractVar)
var s = skipTypes(src, abstractVar)
while (d != nil) and (d.Kind in {tyPtr, tyRef}) and (d.Kind == s.Kind):
d = base(d)
s = base(s)
if d == nil:
GlobalError(info, errGenerated, `%`(msgKindToString(errIllegalConvFromXtoY), [
typeToString(src), typeToString(castDest)]))
elif d.Kind == tyObject and s.Kind == tyObject:
checkConversionBetweenObjects(info, d, s)
elif (skipTypes(castDest, abstractVarRange).Kind in IntegralTypes) and
(skipTypes(src, abstractVarRange).Kind in IntegralTypes):
# accept conversion between integral types
else:
# we use d, s here to speed up that operation a bit:
case cmpTypes(d, s)
of isNone, isGeneric:
if not equalOrDistinctOf(castDest, src) and
not equalOrDistinctOf(src, castDest):
GlobalError(info, errGenerated, `%`(
MsgKindToString(errIllegalConvFromXtoY),
[typeToString(src), typeToString(castDest)]))
else:
nil
proc isCastable(dst, src: PType): bool =
#const
# castableTypeKinds = {tyInt, tyPtr, tyRef, tyCstring, tyString,
# tySequence, tyPointer, tyNil, tyOpenArray,
# tyProc, tySet, tyEnum, tyBool, tyChar}
var ds, ss: biggestInt
# this is very unrestrictive; cast is allowed if castDest.size >= src.size
ds = computeSize(dst)
ss = computeSize(src)
if ds < 0:
result = false
elif ss < 0:
result = false
else:
result = (ds >= ss) or
(skipTypes(dst, abstractInst).kind in {tyInt..tyFloat128}) or
(skipTypes(src, abstractInst).kind in {tyInt..tyFloat128})
proc semConv(c: PContext, n: PNode, s: PSym): PNode =
if sonsLen(n) != 2: GlobalError(n.info, errConvNeedsOneArg)
result = newNodeI(nkConv, n.info)
result.typ = semTypeNode(c, n.sons[0], nil)
addSon(result, copyTree(n.sons[0]))
addSon(result, semExprWithType(c, n.sons[1]))
var op = result.sons[1]
if op.kind != nkSymChoice:
checkConvertible(result.info, result.typ, op.typ)
else:
for i in countup(0, sonsLen(op) - 1):
if sameType(result.typ, op.sons[i].typ):
markUsed(n, op.sons[i].sym)
return op.sons[i]
localError(n.info, errUseQualifier, op.sons[0].sym.name.s)
proc semCast(c: PContext, n: PNode): PNode =
if optSafeCode in gGlobalOptions: localError(n.info, errCastNotInSafeMode)
incl(c.p.owner.flags, sfSideEffect)
checkSonsLen(n, 2)
result = newNodeI(nkCast, n.info)
result.typ = semTypeNode(c, n.sons[0], nil)
addSon(result, copyTree(n.sons[0]))
addSon(result, semExprWithType(c, n.sons[1]))
if not isCastable(result.typ, result.sons[1].Typ):
GlobalError(result.info, errExprCannotBeCastedToX, typeToString(result.Typ))
proc semLowHigh(c: PContext, n: PNode, m: TMagic): PNode =
const
opToStr: array[mLow..mHigh, string] = ["low", "high"]
if sonsLen(n) != 2:
GlobalError(n.info, errXExpectsTypeOrValue, opToStr[m])
else:
n.sons[1] = semExprWithType(c, n.sons[1], {efAllowType})
var typ = skipTypes(n.sons[1].typ, abstractVarRange)
case typ.Kind
of tySequence, tyString, tyOpenArray:
n.typ = getSysType(tyInt)
of tyArrayConstr, tyArray:
n.typ = n.sons[1].typ.sons[0] # indextype
of tyInt..tyInt64, tyChar, tyBool, tyEnum:
n.typ = n.sons[1].typ
else: GlobalError(n.info, errInvalidArgForX, opToStr[m])
result = n
proc semSizeof(c: PContext, n: PNode): PNode =
if sonsLen(n) != 2: GlobalError(n.info, errXExpectsTypeOrValue, "sizeof")
else: n.sons[1] = semExprWithType(c, n.sons[1], {efAllowType})
n.typ = getSysType(tyInt)
result = n
proc semIs(c: PContext, n: PNode): PNode =
if sonsLen(n) == 3:
n.sons[1] = semExprWithType(c, n.sons[1], {efAllowType})
n.sons[2] = semExprWithType(c, n.sons[2], {efAllowType})
var a = n.sons[1].typ
var b = n.sons[2].typ
# a and b can be nil in case of an error:
if a != nil and b != nil:
if (b.kind != tyObject) or (a.kind != tyObject):
GlobalError(n.info, errIsExpectsObjectTypes)
while (b != nil) and (b.id != a.id): b = b.sons[0]
if b == nil:
GlobalError(n.info, errXcanNeverBeOfThisSubtype, typeToString(a))
n.typ = getSysType(tyBool)
else:
GlobalError(n.info, errIsExpectsTwoArguments)
result = n
proc semOpAux(c: PContext, n: PNode) =
for i in countup(1, sonsLen(n) - 1):
var a = n.sons[i]
if a.kind == nkExprEqExpr and sonsLen(a) == 2:
var info = a.sons[0].info
a.sons[0] = newIdentNode(considerAcc(a.sons[0]), info)
a.sons[1] = semExprWithType(c, a.sons[1])
a.typ = a.sons[1].typ
else:
n.sons[i] = semExprWithType(c, a)
proc overloadedCallOpr(c: PContext, n: PNode): PNode =
# quick check if there is *any* () operator overloaded:
var par = getIdent("()")
if SymtabGet(c.Tab, par) == nil:
result = nil
else:
result = newNodeI(nkCall, n.info)
addSon(result, newIdentNode(par, n.info))
for i in countup(0, sonsLen(n) - 1): addSon(result, n.sons[i])
result = semExpr(c, result)
proc changeType(n: PNode, newType: PType) =
case n.kind
of nkCurly, nkBracket:
for i in countup(0, sonsLen(n) - 1):
changeType(n.sons[i], elemType(newType))
of nkPar:
if newType.kind != tyTuple:
InternalError(n.info, "changeType: no tuple type for constructor")
if newType.n == nil: InternalError(n.info, "changeType: no tuple fields")
if (sonsLen(n) > 0) and (n.sons[0].kind == nkExprColonExpr):
for i in countup(0, sonsLen(n) - 1):
var m = n.sons[i].sons[0]
if m.kind != nkSym:
internalError(m.info, "changeType(): invalid tuple constr")
var f = getSymFromList(newType.n, m.sym.name)
if f == nil: internalError(m.info, "changeType(): invalid identifier")
changeType(n.sons[i].sons[1], f.typ)
else:
for i in countup(0, sonsLen(n) - 1):
var m = n.sons[i]
var a = newNodeIT(nkExprColonExpr, m.info, newType.sons[i])
addSon(a, newSymNode(newType.n.sons[i].sym))
addSon(a, m)
changeType(m, newType.sons[i])
n.sons[i] = a
else: nil
n.typ = newType
proc semArrayConstr(c: PContext, n: PNode): PNode =
result = newNodeI(nkBracket, n.info)
result.typ = newTypeS(tyArrayConstr, c)
addSon(result.typ, nil) # index type
if sonsLen(n) == 0:
addSon(result.typ, newTypeS(tyEmpty, c)) # needs an empty basetype!
else:
var x = n.sons[0]
var lastIndex: biggestInt = 0
var indexType = getSysType(tyInt)
if x.kind == nkExprColonExpr and sonsLen(x) == 2:
var idx = semConstExpr(c, x.sons[0])
lastIndex = getOrdValue(idx)
indexType = idx.typ
x = x.sons[1]
addSon(result, semExprWithType(c, x))
var typ = skipTypes(result.sons[0].typ, {tyGenericInst, tyVar, tyOrdinal})
for i in countup(1, sonsLen(n) - 1):
x = n.sons[i]
if x.kind == nkExprColonExpr and sonsLen(x) == 2:
var idx = semConstExpr(c, x.sons[0])
idx = fitNode(c, indexType, idx)
if lastIndex+1 != getOrdValue(idx):
localError(x.info, errInvalidOrderInArrayConstructor)
x = x.sons[1]
n.sons[i] = semExprWithType(c, x)
addSon(result, fitNode(c, typ, n.sons[i]))
inc(lastIndex)
addSon(result.typ, typ)
result.typ.sons[0] = makeRangeType(c, 0, sonsLen(result) - 1, n.info)
proc fixAbstractType(c: PContext, n: PNode) =
for i in countup(1, sonsLen(n) - 1):
var it = n.sons[i]
case it.kind
of nkHiddenStdConv, nkHiddenSubConv:
if it.sons[1].kind == nkBracket:
it.sons[1] = semArrayConstr(c, it.sons[1])
if skipTypes(it.typ, abstractVar).kind == tyOpenArray:
var s = skipTypes(it.sons[1].typ, abstractVar)
if (s.kind == tyArrayConstr) and (s.sons[1].kind == tyEmpty):
s = copyType(s, getCurrOwner(), false)
skipTypes(s, abstractVar).sons[1] = elemType(
skipTypes(it.typ, abstractVar))
it.sons[1].typ = s
elif skipTypes(it.sons[1].typ, abstractVar).kind in
{tyNil, tyArrayConstr, tyTuple, tySet}:
var s = skipTypes(it.typ, abstractVar)
changeType(it.sons[1], s)
n.sons[i] = it.sons[1]
of nkBracket:
# an implicitely constructed array (passed to an open array):
n.sons[i] = semArrayConstr(c, it)
else:
if (it.typ == nil):
InternalError(it.info, "fixAbstractType: " & renderTree(it))
proc skipObjConv(n: PNode): PNode =
case n.kind
of nkHiddenStdConv, nkHiddenSubConv, nkConv:
if skipTypes(n.sons[1].typ, abstractPtrs).kind in {tyTuple, tyObject}:
result = n.sons[1]
else:
result = n
of nkObjUpConv, nkObjDownConv: result = n.sons[0]
else: result = n
type
TAssignableResult = enum
arNone, # no l-value and no discriminant
arLValue, # is an l-value
arDiscriminant # is a discriminant
proc isAssignable(n: PNode): TAssignableResult =
result = arNone
case n.kind
of nkSym:
if (n.sym.kind in {skVar, skTemp}): result = arLValue
of nkDotExpr:
if skipTypes(n.sons[0].typ, abstractInst).kind in {tyVar, tyPtr, tyRef}:
result = arLValue
else:
result = isAssignable(n.sons[0])
if (result == arLValue) and (sfDiscriminant in n.sons[1].sym.flags):
result = arDiscriminant
of nkBracketExpr:
if skipTypes(n.sons[0].typ, abstractInst).kind in {tyVar, tyPtr, tyRef}:
result = arLValue
else:
result = isAssignable(n.sons[0])
of nkHiddenStdConv, nkHiddenSubConv, nkConv:
# Object and tuple conversions are still addressable, so we skip them
if skipTypes(n.typ, abstractPtrs).kind in {tyOpenArray, tyTuple, tyObject}:
result = isAssignable(n.sons[1])
of nkHiddenDeref, nkDerefExpr:
result = arLValue
of nkObjUpConv, nkObjDownConv, nkCheckedFieldExpr:
result = isAssignable(n.sons[0])
else:
nil
proc newHiddenAddrTaken(c: PContext, n: PNode): PNode =
if n.kind == nkHiddenDeref:
checkSonsLen(n, 1)
result = n.sons[0]
else:
result = newNodeIT(nkHiddenAddr, n.info, makeVarType(c, n.typ))
addSon(result, n)
if isAssignable(n) != arLValue:
localError(n.info, errVarForOutParamNeeded)
proc analyseIfAddressTaken(c: PContext, n: PNode): PNode =
result = n
case n.kind
of nkSym:
if skipTypes(n.sym.typ, abstractInst).kind != tyVar:
incl(n.sym.flags, sfAddrTaken)
result = newHiddenAddrTaken(c, n)
of nkDotExpr:
checkSonsLen(n, 2)
if n.sons[1].kind != nkSym: internalError(n.info, "analyseIfAddressTaken")
if skipTypes(n.sons[1].sym.typ, abstractInst).kind != tyVar:
incl(n.sons[1].sym.flags, sfAddrTaken)
result = newHiddenAddrTaken(c, n)
of nkBracketExpr:
checkMinSonsLen(n, 1)
if skipTypes(n.sons[0].typ, abstractInst).kind != tyVar:
if n.sons[0].kind == nkSym: incl(n.sons[0].sym.flags, sfAddrTaken)
result = newHiddenAddrTaken(c, n)
else:
result = newHiddenAddrTaken(c, n) # BUGFIX!
proc analyseIfAddressTakenInCall(c: PContext, n: PNode) =
const
FakeVarParams = {mNew, mNewFinalize, mInc, ast.mDec, mIncl, mExcl,
mSetLengthStr, mSetLengthSeq, mAppendStrCh, mAppendStrStr, mSwap,
mAppendSeqElem, mNewSeq, mReset}
checkMinSonsLen(n, 1)
var t = n.sons[0].typ
if (n.sons[0].kind == nkSym) and (n.sons[0].sym.magic in FakeVarParams):
# BUGFIX: check for L-Value still needs to be done for the arguments!
for i in countup(1, sonsLen(n) - 1):
if i < sonsLen(t) and t.sons[i] != nil and
skipTypes(t.sons[i], abstractInst).kind == tyVar:
if isAssignable(n.sons[i]) != arLValue:
LocalError(n.sons[i].info, errVarForOutParamNeeded)
return
for i in countup(1, sonsLen(n) - 1):
if (i < sonsLen(t)) and
(skipTypes(t.sons[i], abstractInst).kind == tyVar):
n.sons[i] = analyseIfAddressTaken(c, n.sons[i])
proc semDirectCallAnalyseEffects(c: PContext, n: PNode,
flags: TExprFlags): PNode =
var symflags = {skProc, skMethod, skConverter}
if efWantIterator in flags:
# for ``type countup(1,3)``, see ``tests/ttoseq``.
symflags = {skIterator}
result = semDirectCall(c, n, symflags)
if result != nil:
if result.sons[0].kind != nkSym:
InternalError("semDirectCallAnalyseEffects")
var callee = result.sons[0].sym
if (callee.kind == skIterator) and (callee.id == c.p.owner.id):
GlobalError(n.info, errRecursiveDependencyX, callee.name.s)
if not (sfNoSideEffect in callee.flags):
if (sfForward in callee.flags) or
({sfImportc, sfSideEffect} * callee.flags != {}):
incl(c.p.owner.flags, sfSideEffect)
proc semIndirectOp(c: PContext, n: PNode, flags: TExprFlags): PNode =
result = nil
var prc = n.sons[0]
checkMinSonsLen(n, 1)
if n.sons[0].kind == nkDotExpr:
checkSonsLen(n.sons[0], 2)
n.sons[0] = semFieldAccess(c, n.sons[0])
if n.sons[0].kind == nkDotCall:
# it is a static call!
result = n.sons[0]
result.kind = nkCall
for i in countup(1, sonsLen(n) - 1): addSon(result, n.sons[i])
return semExpr(c, result, flags)
else:
n.sons[0] = semExpr(c, n.sons[0])
semOpAux(c, n)
var t: PType = nil
if (n.sons[0].typ != nil): t = skipTypes(n.sons[0].typ, abstractInst)
if (t != nil) and (t.kind == tyProc):
var m: TCandidate
initCandidate(m, t)
matches(c, n, m)
if m.state != csMatch:
var msg = msgKindToString(errTypeMismatch)
for i in countup(1, sonsLen(n) - 1):
if i > 1: add(msg, ", ")
add(msg, typeToString(n.sons[i].typ))
add(msg, ")\n" & msgKindToString(errButExpected) & "\n" &
typeToString(n.sons[0].typ))
GlobalError(n.Info, errGenerated, msg)
result = nil
else:
result = m.call
# we assume that a procedure that calls something indirectly
# has side-effects:
if not (tfNoSideEffect in t.flags): incl(c.p.owner.flags, sfSideEffect)
else:
result = overloadedCallOpr(c, n)
# Now that nkSym does not imply an iteration over the proc/iterator space,
# the old ``prc`` (which is likely an nkIdent) has to be restored:
if result == nil:
n.sons[0] = prc
result = semDirectCallAnalyseEffects(c, n, flags)
if result == nil:
GlobalError(n.info, errExprXCannotBeCalled,
renderTree(n, {renderNoComments}))
fixAbstractType(c, result)
analyseIfAddressTakenInCall(c, result)
proc semDirectOp(c: PContext, n: PNode, flags: TExprFlags): PNode =
# this seems to be a hotspot in the compiler!
semOpAux(c, n)
result = semDirectCallAnalyseEffects(c, n, flags)
if result == nil:
result = overloadedCallOpr(c, n)
if result == nil: GlobalError(n.Info, errGenerated, getNotFoundError(c, n))
fixAbstractType(c, result)
analyseIfAddressTakenInCall(c, result)
proc buildStringify(c: PContext, arg: PNode): PNode =
if arg.typ != nil and skipTypes(arg.typ, abstractInst).kind == tyString:
result = arg
else:
result = newNodeI(nkCall, arg.info)
addSon(result, newIdentNode(getIdent"$", arg.info))
addSon(result, arg)
proc semEcho(c: PContext, n: PNode): PNode =
# this really is a macro
checkMinSonsLen(n, 1)
for i in countup(1, sonsLen(n) - 1):
var arg = semExprWithType(c, n.sons[i])
n.sons[i] = semExpr(c, buildStringify(c, arg))
result = n
proc lookUpForDefined(c: PContext, i: PIdent, onlyCurrentScope: bool): PSym =
if onlyCurrentScope:
result = SymtabLocalGet(c.tab, i)
else:
result = SymtabGet(c.Tab, i) # no need for stub loading
proc LookUpForDefined(c: PContext, n: PNode, onlyCurrentScope: bool): PSym =
case n.kind
of nkIdent:
result = LookupForDefined(c, n.ident, onlyCurrentScope)
of nkDotExpr:
result = nil
if onlyCurrentScope: return
checkSonsLen(n, 2)
var m = LookupForDefined(c, n.sons[0], onlyCurrentScope)
if (m != nil) and (m.kind == skModule):
if (n.sons[1].kind == nkIdent):
var ident = n.sons[1].ident
if m == c.module:
result = StrTableGet(c.tab.stack[ModuleTablePos], ident)
else:
result = StrTableGet(m.tab, ident)
else:
GlobalError(n.sons[1].info, errIdentifierExpected, "")
of nkAccQuoted:
result = lookupForDefined(c, considerAcc(n), onlyCurrentScope)
of nkSym:
result = n.sym
else:
GlobalError(n.info, errIdentifierExpected, renderTree(n))
result = nil
proc semDefined(c: PContext, n: PNode, onlyCurrentScope: bool): PNode =
checkSonsLen(n, 2)
# we replace this node by a 'true' or 'false' node:
result = newIntNode(nkIntLit, 0)
if LookUpForDefined(c, n.sons[1], onlyCurrentScope) != nil:
result.intVal = 1
elif not onlyCurrentScope and (n.sons[1].kind == nkIdent) and
condsyms.isDefined(n.sons[1].ident):
result.intVal = 1
result.info = n.info
result.typ = getSysType(tyBool)
proc setMs(n: PNode, s: PSym): PNode =
result = n
n.sons[0] = newSymNode(s)
n.sons[0].info = n.info
proc semMagic(c: PContext, n: PNode, s: PSym, flags: TExprFlags): PNode =
# this is a hotspot in the compiler!
result = n
case s.magic # magics that need special treatment
of mDefined: result = semDefined(c, setMs(n, s), false)
of mDefinedInScope: result = semDefined(c, setMs(n, s), true)
of mLow: result = semLowHigh(c, setMs(n, s), mLow)
of mHigh: result = semLowHigh(c, setMs(n, s), mHigh)
of mSizeOf: result = semSizeof(c, setMs(n, s))
of mIs: result = semIs(c, setMs(n, s))
of mEcho: result = semEcho(c, setMs(n, s))
of mCreateThread:
result = semDirectOp(c, n, flags)
if semthreads.needsGlobalAnalysis():
c.threadEntries.add(result)
else: result = semDirectOp(c, n, flags)
proc isTypeExpr(n: PNode): bool =
case n.kind
of nkType, nkTypeOfExpr: result = true
of nkSym: result = n.sym.kind == skType
else: result = false
proc lookupInRecordAndBuildCheck(c: PContext, n, r: PNode, field: PIdent,
check: var PNode): PSym =
# transform in a node that contains the runtime check for the
# field, if it is in a case-part...
result = nil
case r.kind
of nkRecList:
for i in countup(0, sonsLen(r) - 1):
result = lookupInRecordAndBuildCheck(c, n, r.sons[i], field, check)
if result != nil: return
of nkRecCase:
checkMinSonsLen(r, 2)
if (r.sons[0].kind != nkSym): IllFormedAst(r)
result = lookupInRecordAndBuildCheck(c, n, r.sons[0], field, check)
if result != nil: return
var s = newNodeI(nkCurly, r.info)
for i in countup(1, sonsLen(r) - 1):
var it = r.sons[i]
case it.kind
of nkOfBranch:
result = lookupInRecordAndBuildCheck(c, n, lastSon(it), field, check)
if result == nil:
for j in 0..sonsLen(it)-2: addSon(s, copyTree(it.sons[j]))
else:
if check == nil:
check = newNodeI(nkCheckedFieldExpr, n.info)
addSon(check, ast.emptyNode) # make space for access node
s = newNodeI(nkCurly, n.info)
for j in countup(0, sonsLen(it) - 2): addSon(s, copyTree(it.sons[j]))
var inExpr = newNodeI(nkCall, n.info)
addSon(inExpr, newIdentNode(getIdent("in"), n.info))
addSon(inExpr, copyTree(r.sons[0]))
addSon(inExpr, s) #writeln(output, renderTree(inExpr));
addSon(check, semExpr(c, inExpr))
return
of nkElse:
result = lookupInRecordAndBuildCheck(c, n, lastSon(it), field, check)
if result != nil:
if check == nil:
check = newNodeI(nkCheckedFieldExpr, n.info)
addSon(check, ast.emptyNode) # make space for access node
var inExpr = newNodeI(nkCall, n.info)
addSon(inExpr, newIdentNode(getIdent("in"), n.info))
addSon(inExpr, copyTree(r.sons[0]))
addSon(inExpr, s)
var notExpr = newNodeI(nkCall, n.info)
addSon(notExpr, newIdentNode(getIdent("not"), n.info))
addSon(notExpr, inExpr)
addSon(check, semExpr(c, notExpr))
return
else: illFormedAst(it)
of nkSym:
if r.sym.name.id == field.id: result = r.sym
else: illFormedAst(n)
proc makeDeref(n: PNode): PNode =
var t = skipTypes(n.typ, {tyGenericInst})
result = n
if t.kind == tyVar:
result = newNodeIT(nkHiddenDeref, n.info, t.sons[0])
addSon(result, n)
t = skipTypes(t.sons[0], {tyGenericInst})
if t.kind in {tyPtr, tyRef}:
var a = result
result = newNodeIT(nkHiddenDeref, n.info, t.sons[0])
addSon(result, a)
proc builtinFieldAccess(c: PContext, n: PNode, flags: TExprFlags): PNode =
## returns nil if it's not a built-in field access
var s = qualifiedLookup(c, n, {checkAmbiguity, checkUndeclared})
if s != nil:
return semSym(c, n, s, flags)
checkSonsLen(n, 2)
n.sons[0] = semExprWithType(c, n.sons[0], {efAllowType} + flags)
var i = considerAcc(n.sons[1])
var ty = n.sons[0].Typ
var f: PSym = nil
result = nil
if isTypeExpr(n.sons[0]):
if ty.kind == tyEnum:
# look up if the identifier belongs to the enum:
while ty != nil:
f = getSymFromList(ty.n, i)
if f != nil: break
ty = ty.sons[0] # enum inheritance
if f != nil:
result = newSymNode(f)
result.info = n.info
result.typ = ty
markUsed(n, f)
return
elif efAllowType notin flags:
GlobalError(n.sons[0].info, errATypeHasNoValue)
return
ty = skipTypes(ty, {tyGenericInst, tyVar, tyPtr, tyRef})
var check: PNode = nil
if ty.kind == tyObject:
while true:
check = nil
f = lookupInRecordAndBuildCheck(c, n, ty.n, i, check)
if f != nil: break
if ty.sons[0] == nil: break
ty = skipTypes(ty.sons[0], {tyGenericInst})
if f != nil:
if {sfStar, sfMinus} * f.flags != {} or getModule(f).id == c.module.id:
# is the access to a public field or in the same module?
n.sons[0] = makeDeref(n.sons[0])
n.sons[1] = newSymNode(f) # we now have the correct field
n.typ = f.typ
markUsed(n, f)
if check == nil:
result = n
else:
check.sons[0] = n
check.typ = n.typ
result = check
elif ty.kind == tyTuple and ty.n != nil:
f = getSymFromList(ty.n, i)
if f != nil:
n.sons[0] = makeDeref(n.sons[0])
n.sons[1] = newSymNode(f)
n.typ = f.typ
result = n
markUsed(n, f)
proc semFieldAccess(c: PContext, n: PNode, flags: TExprFlags): PNode =
# this is difficult, because the '.' is used in many different contexts
# in Nimrod. We first allow types in the semantic checking.
result = builtinFieldAccess(c, n, flags)
if result == nil:
var i = considerAcc(n.sons[1])
var f = SymTabGet(c.tab, i)
# if f != nil and f.kind == skStub: loadStub(f)
# ``loadStub`` is not correct here as we don't care for ``f`` really
if f != nil:
# BUGFIX: do not check for (f.kind in [skProc, skMethod, skIterator]) here
# This special node kind is to merge with the call handler in `semExpr`.
result = newNodeI(nkDotCall, n.info)
addSon(result, newIdentNode(i, n.info))
addSon(result, copyTree(n[0]))
else:
GlobalError(n.Info, errUndeclaredFieldX, i.s)
proc buildOverloadedSubscripts(n: PNode, inAsgn: bool): PNode =
result = newNodeI(nkCall, n.info)
result.add(newIdentNode(
if inAsgn: getIdent"[]=" else: getIdent"[]", n.info))
for i in 0 .. n.len-1: result.add(n[i])
proc semDeref(c: PContext, n: PNode): PNode =
checkSonsLen(n, 1)
n.sons[0] = semExprWithType(c, n.sons[0])
result = n
var t = skipTypes(n.sons[0].typ, {tyGenericInst, tyVar})
case t.kind
of tyRef, tyPtr: n.typ = t.sons[0]
else: result = nil
#GlobalError(n.sons[0].info, errCircumNeedsPointer)
proc semSubscript(c: PContext, n: PNode, flags: TExprFlags): PNode =
## returns nil if not a built-in subscript operator; also called for the
## checking of assignments
if sonsLen(n) == 1:
var x = semDeref(c, n)
if x == nil: return nil
result = newNodeIT(nkDerefExpr, x.info, x.typ)
result.add(x[0])
return
checkMinSonsLen(n, 2)
n.sons[0] = semExprWithType(c, n.sons[0], flags - {efAllowType})
var arr = skipTypes(n.sons[0].typ, {tyGenericInst, tyVar, tyPtr, tyRef})
case arr.kind
of tyArray, tyOpenArray, tyArrayConstr, tySequence, tyString, tyCString:
checkSonsLen(n, 2)
n.sons[0] = makeDeref(n.sons[0])
for i in countup(1, sonsLen(n) - 1):
n.sons[i] = semExprWithType(c, n.sons[i], flags - {efAllowType})
var indexType = if arr.kind == tyArray: arr.sons[0] else: getSysType(tyInt)
var arg = IndexTypesMatch(c, indexType, n.sons[1].typ, n.sons[1])
if arg != nil:
n.sons[1] = arg
result = n
result.typ = elemType(arr)
#GlobalError(n.info, errIndexTypesDoNotMatch)
of tyTuple:
checkSonsLen(n, 2)
n.sons[0] = makeDeref(n.sons[0])
# [] operator for tuples requires constant expression:
n.sons[1] = semConstExpr(c, n.sons[1])
if skipTypes(n.sons[1].typ, {tyGenericInst, tyRange, tyOrdinal}).kind in
{tyInt..tyInt64}:
var idx = getOrdValue(n.sons[1])
if (idx >= 0) and (idx < sonsLen(arr)): n.typ = arr.sons[int(idx)]
else: GlobalError(n.info, errInvalidIndexValueForTuple)
else:
GlobalError(n.info, errIndexTypesDoNotMatch)
result = n
else: nil
proc semArrayAccess(c: PContext, n: PNode, flags: TExprFlags): PNode =
result = semSubscript(c, n, flags)
if result == nil:
# overloaded [] operator:
result = semExpr(c, buildOverloadedSubscripts(n, inAsgn=false))
proc semIfExpr(c: PContext, n: PNode): PNode =
result = n
checkMinSonsLen(n, 2)
var typ: PType = nil
for i in countup(0, sonsLen(n) - 1):
var it = n.sons[i]
case it.kind
of nkElifExpr:
checkSonsLen(it, 2)
it.sons[0] = forceBool(c, semExprWithType(c, it.sons[0]))
it.sons[1] = semExprWithType(c, it.sons[1])
if typ == nil: typ = it.sons[1].typ
else: it.sons[1] = fitNode(c, typ, it.sons[1])
of nkElseExpr:
checkSonsLen(it, 1)
it.sons[0] = semExprWithType(c, it.sons[0])
if typ == nil: InternalError(it.info, "semIfExpr")
it.sons[0] = fitNode(c, typ, it.sons[0])
else: illFormedAst(n)
result.typ = typ
proc semSetConstr(c: PContext, n: PNode): PNode =
result = newNodeI(nkCurly, n.info)
result.typ = newTypeS(tySet, c)
if sonsLen(n) == 0:
addSon(result.typ, newTypeS(tyEmpty, c))
else:
# only semantic checking for all elements, later type checking:
var typ: PType = nil
for i in countup(0, sonsLen(n) - 1):
if isRange(n.sons[i]):
checkSonsLen(n.sons[i], 3)
n.sons[i].sons[1] = semExprWithType(c, n.sons[i].sons[1])
n.sons[i].sons[2] = semExprWithType(c, n.sons[i].sons[2])
if typ == nil:
typ = skipTypes(n.sons[i].sons[1].typ,
{tyGenericInst, tyVar, tyOrdinal})
n.sons[i].typ = n.sons[i].sons[2].typ # range node needs type too
elif n.sons[i].kind == nkRange:
# already semchecked
if typ == nil:
typ = skipTypes(n.sons[i].sons[0].typ,
{tyGenericInst, tyVar, tyOrdinal})
else:
n.sons[i] = semExprWithType(c, n.sons[i])
if typ == nil:
typ = skipTypes(n.sons[i].typ, {tyGenericInst, tyVar, tyOrdinal})
if not isOrdinalType(typ):
GlobalError(n.info, errOrdinalTypeExpected)
return
if lengthOrd(typ) > MaxSetElements:
typ = makeRangeType(c, 0, MaxSetElements - 1, n.info)
addSon(result.typ, typ)
for i in countup(0, sonsLen(n) - 1):
var m: PNode
if isRange(n.sons[i]):
m = newNodeI(nkRange, n.sons[i].info)
addSon(m, fitNode(c, typ, n.sons[i].sons[1]))
addSon(m, fitNode(c, typ, n.sons[i].sons[2]))
elif n.sons[i].kind == nkRange: m = n.sons[i] # already semchecked
else:
m = fitNode(c, typ, n.sons[i])
addSon(result, m)
proc semTableConstr(c: PContext, n: PNode): PNode =
# we simply transform ``{key: value, key2: value}`` to
# ``[(key, value), (key2, value2)]``
result = newNodeI(nkBracket, n.info)
for i in 0..n.len-1:
var x = n.sons[i]
if x.kind == nkExprColonExpr and sonsLen(x) == 2:
var pair = newNodeI(nkPar, x.info)
pair.add(x[0])
pair.add(x[1])
result.add(pair)
else:
illFormedAst(x)
result = semExpr(c, result)
type
TParKind = enum
paNone, paSingle, paTupleFields, paTuplePositions
proc checkPar(n: PNode): TParKind =
var length = sonsLen(n)
if length == 0:
result = paTuplePositions # ()
elif length == 1:
result = paSingle # (expr)
else:
if n.sons[0].kind == nkExprColonExpr: result = paTupleFields
else: result = paTuplePositions
for i in countup(0, length - 1):
if result == paTupleFields:
if (n.sons[i].kind != nkExprColonExpr) or
not (n.sons[i].sons[0].kind in {nkSym, nkIdent}):
GlobalError(n.sons[i].info, errNamedExprExpected)
return paNone
else:
if n.sons[i].kind == nkExprColonExpr:
GlobalError(n.sons[i].info, errNamedExprNotAllowed)
return paNone
proc semTupleFieldsConstr(c: PContext, n: PNode): PNode =
result = newNodeI(nkPar, n.info)
var typ = newTypeS(tyTuple, c)
typ.n = newNodeI(nkRecList, n.info) # nkIdentDefs
var ids = initIntSet()
for i in countup(0, sonsLen(n) - 1):
if (n.sons[i].kind != nkExprColonExpr) or
not (n.sons[i].sons[0].kind in {nkSym, nkIdent}):
illFormedAst(n.sons[i])
var id: PIdent
if n.sons[i].sons[0].kind == nkIdent: id = n.sons[i].sons[0].ident
else: id = n.sons[i].sons[0].sym.name
if ContainsOrIncl(ids, id.id):
localError(n.sons[i].info, errFieldInitTwice, id.s)
n.sons[i].sons[1] = semExprWithType(c, n.sons[i].sons[1])
var f = newSymS(skField, n.sons[i].sons[0], c)
f.typ = n.sons[i].sons[1].typ
addSon(typ, f.typ)
addSon(typ.n, newSymNode(f))
n.sons[i].sons[0] = newSymNode(f)
addSon(result, n.sons[i])
result.typ = typ
proc semTuplePositionsConstr(c: PContext, n: PNode): PNode =
result = n # we don't modify n, but compute the type:
var typ = newTypeS(tyTuple, c) # leave typ.n nil!
for i in countup(0, sonsLen(n) - 1):
n.sons[i] = semExprWithType(c, n.sons[i])
addSon(typ, n.sons[i].typ)
result.typ = typ
proc semStmtListExpr(c: PContext, n: PNode): PNode =
result = n
checkMinSonsLen(n, 1)
var length = sonsLen(n)
for i in countup(0, length - 2):
n.sons[i] = semStmt(c, n.sons[i])
if length > 0:
n.sons[length - 1] = semExprWithType(c, n.sons[length - 1])
n.typ = n.sons[length - 1].typ
proc semBlockExpr(c: PContext, n: PNode): PNode =
result = n
Inc(c.p.nestedBlockCounter)
checkSonsLen(n, 2)
openScope(c.tab) # BUGFIX: label is in the scope of block!
if n.sons[0].kind != nkEmpty: addDecl(c, newSymS(skLabel, n.sons[0], c))
n.sons[1] = semStmtListExpr(c, n.sons[1])
n.typ = n.sons[1].typ
closeScope(c.tab)
Dec(c.p.nestedBlockCounter)
proc isCallExpr(n: PNode): bool =
result = n.kind in {nkCall, nkInfix, nkPrefix, nkPostfix, nkCommand,
nkCallStrLit}
proc semMacroStmt(c: PContext, n: PNode, semCheck = true): PNode =
checkMinSonsLen(n, 2)
var a: PNode
if isCallExpr(n.sons[0]): a = n.sons[0].sons[0]
else: a = n.sons[0]
var s = qualifiedLookup(c, a, {checkUndeclared})
if s != nil:
case s.kind
of skMacro:
result = semMacroExpr(c, n, s, semCheck)
of skTemplate:
# transform
# nkMacroStmt(nkCall(a...), stmt, b...)
# to
# nkCall(a..., stmt, b...)
result = newNodeI(nkCall, n.info)
addSon(result, a)
if isCallExpr(n.sons[0]):
for i in countup(1, sonsLen(n.sons[0]) - 1):
addSon(result, n.sons[0].sons[i])
for i in countup(1, sonsLen(n) - 1): addSon(result, n.sons[i])
result = semTemplateExpr(c, result, s, semCheck)
else: GlobalError(n.info, errXisNoMacroOrTemplate, s.name.s)
else:
GlobalError(n.info, errInvalidExpressionX,
renderTree(a, {renderNoComments}))
proc semExpr(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
result = n
if gCmd == cmdIdeTools: suggestExpr(c, n)
if nfSem in n.flags: return
case n.kind
of nkIdent, nkAccQuoted:
var s = lookUp(c, n)
result = semSym(c, n, s, flags)
of nkSym:
# because of the changed symbol binding, this does not mean that we
# don't have to check the symbol for semantics here again!
result = semSym(c, n, n.sym, flags)
of nkEmpty, nkNone:
nil
of nkNilLit:
result.typ = getSysType(tyNil)
of nkType:
if not (efAllowType in flags): GlobalError(n.info, errATypeHasNoValue)
n.typ = semTypeNode(c, n, nil)
of nkIntLit:
if result.typ == nil: result.typ = getSysType(tyInt)
of nkInt8Lit:
if result.typ == nil: result.typ = getSysType(tyInt8)
of nkInt16Lit:
if result.typ == nil: result.typ = getSysType(tyInt16)
of nkInt32Lit:
if result.typ == nil: result.typ = getSysType(tyInt32)
of nkInt64Lit:
if result.typ == nil: result.typ = getSysType(tyInt64)
of nkFloatLit:
if result.typ == nil: result.typ = getSysType(tyFloat)
of nkFloat32Lit:
if result.typ == nil: result.typ = getSysType(tyFloat32)
of nkFloat64Lit:
if result.typ == nil: result.typ = getSysType(tyFloat64)
of nkStrLit..nkTripleStrLit:
if result.typ == nil: result.typ = getSysType(tyString)
of nkCharLit:
if result.typ == nil: result.typ = getSysType(tyChar)
of nkDotExpr:
result = semFieldAccess(c, n, flags)
if result.kind == nkDotCall:
result.kind = nkCall
result = semExpr(c, result, flags)
of nkBind:
result = semExpr(c, n.sons[0], flags)
of nkCall, nkInfix, nkPrefix, nkPostfix, nkCommand, nkCallStrLit:
# check if it is an expression macro:
checkMinSonsLen(n, 1)
var s = qualifiedLookup(c, n.sons[0], {checkUndeclared})
if s != nil:
case s.kind
of skMacro: result = semMacroExpr(c, n, s)
of skTemplate: result = semTemplateExpr(c, n, s)
of skType:
if n.kind != nkCall: GlobalError(n.info, errXisNotCallable, s.name.s)
# XXX does this check make any sense?
result = semConv(c, n, s)
of skProc, skMethod, skConverter, skIterator:
if s.magic == mNone: result = semDirectOp(c, n, flags)
else: result = semMagic(c, n, s, flags)
else:
#liMessage(n.info, warnUser, renderTree(n));
result = semIndirectOp(c, n, flags)
elif n.sons[0].kind == nkSymChoice:
result = semDirectOp(c, n, flags)
else:
result = semIndirectOp(c, n, flags)
of nkMacroStmt:
result = semMacroStmt(c, n)
of nkBracketExpr:
checkMinSonsLen(n, 1)
var s = qualifiedLookup(c, n.sons[0], {checkUndeclared})
if s != nil and s.kind in {skProc, skMethod, skConverter, skIterator}:
# type parameters: partial generic specialization
n.sons[0] = semSymGenericInstantiation(c, n.sons[0], s)
result = explicitGenericInstantiation(c, n, s)
else:
result = semArrayAccess(c, n, flags)
of nkPragmaExpr:
# which pragmas are allowed for expressions? `likely`, `unlikely`
internalError(n.info, "semExpr() to implement") # XXX: to implement
of nkPar:
case checkPar(n)
of paNone: result = nil
of paTuplePositions: result = semTuplePositionsConstr(c, n)
of paTupleFields: result = semTupleFieldsConstr(c, n)
of paSingle: result = semExpr(c, n.sons[0], flags)
of nkCurly: result = semSetConstr(c, n)
of nkBracket: result = semArrayConstr(c, n)
of nkLambda: result = semLambda(c, n)
of nkDerefExpr:
Message(n.info, warnDerefDeprecated)
result = semDeref(c, n)
of nkAddr:
result = n
checkSonsLen(n, 1)
n.sons[0] = semExprWithType(c, n.sons[0])
if isAssignable(n.sons[0]) != arLValue:
GlobalError(n.info, errExprHasNoAddress)
n.typ = makePtrType(c, n.sons[0].typ)
of nkHiddenAddr, nkHiddenDeref:
checkSonsLen(n, 1)
n.sons[0] = semExpr(c, n.sons[0], flags)
of nkCast: result = semCast(c, n)
of nkIfExpr: result = semIfExpr(c, n)
of nkStmtListExpr: result = semStmtListExpr(c, n)
of nkBlockExpr: result = semBlockExpr(c, n)
of nkHiddenStdConv, nkHiddenSubConv, nkConv, nkHiddenCallConv:
checkSonsLen(n, 2)
of nkStringToCString, nkCStringToString, nkPassAsOpenArray, nkObjDownConv,
nkObjUpConv:
checkSonsLen(n, 1)
of nkChckRangeF, nkChckRange64, nkChckRange:
checkSonsLen(n, 3)
of nkCheckedFieldExpr:
checkMinSonsLen(n, 2)
of nkTableConstr:
result = semTableConstr(c, n)
of nkSymChoice:
GlobalError(n.info, errExprXAmbiguous, renderTree(n, {renderNoComments}))
else:
GlobalError(n.info, errInvalidExpressionX,
renderTree(n, {renderNoComments}))
incl(result.flags, nfSem)
|