-- primitives for editing drawings
Drawing = {}
geom = require 'geom'
-- All drawings span 100% of some conceptual 'page width' and divide it up
-- into 256 parts.
function Drawing.draw(line)
local pmx,pmy = love.mouse.getX(), love.mouse.getY()
if pmx < 16+Line_width and pmy > line.y and pmy < line.y+Drawing.pixels(line.h) then
love.graphics.setColor(0.75,0.75,0.75)
love.graphics.rectangle('line', 16,line.y, Line_width,Drawing.pixels(line.h))
if icon[Current_drawing_mode] then
icon[Current_drawing_mode](16+Line_width-20, line.y+4)
else
icon[Previous_drawing_mode](16+Line_width-20, line.y+4)
end
if love.mouse.isDown('1') and love.keyboard.isDown('h') then
draw_help_with_mouse_pressed(line)
return
end
end
if line.show_help then
draw_help_without_mouse_pressed(line)
return
end
local mx,my = Drawing.coord(pmx-16), Drawing.coord(pmy-line.y)
for _,shape in ipairs(line.shapes) do
assert(shape)
if geom.on_shape(mx,my, line, shape) then
love.graphics.setColor(1,0,0)
else
love.graphics.setColor(0,0,0)
end
Drawing.draw_shape(16,line.y, line, shape)
end
for i,p in ipairs(line.points) do
if p.deleted == nil then
if Drawing.near(p, mx,my) then
love.graphics.setColor(1,0,0)
love.graphics.circle('line', Drawing.pixels(p.x)+16,Drawing.pixels(p.y)+line.y, 4)
else
love.graphics.setColor(0,0,0)
love.graphics.circle('fill', Drawing.pixels(p.x)+16,Drawing.pixels(p.y)+line.y, 2)
end
if p.name then
-- todo: clip
local x,y = Drawing.pixels(p.x)+16+5, Drawing.pixels(p.y)+line.y+5
love.graphics.print(p.name, x,y)
if Current_drawing_mode == 'name' and i == line.pending.target_point then
-- create a faint red box for the name
love.graphics.setColor(1,0,0,0.1)
local name_text
-- TODO: avoid computing name width on every repaint
if p.name == '' then
name_text = Em
else
name_text = App.newText(love.graphics.getFont(), p.name)
end
love.graphics.rectangle('fill', x,y, App.width(name_text), Line_height)
end
end
end
end
love.graphics.setColor(0.75,0.75,0.75)
Drawing.draw_pending_shape(16,line.y, line)
end
function Drawing.draw_shape(left,top, drawing, shape)
if shape.mode == 'freehand' then
local prev = nil
for _,point in ipairs(shape.points) do
if prev then
love.graphics.line(Drawing.pixels(prev.x)+left,Drawing.pixels(prev.y)+top, Drawing.pixels(point.x)+left,Drawing.pixels(point.y)+top)
end
prev = point
end
elseif shape.mode == 'line' or shape.mode == 'manhattan' then
local p1 = drawing.points[shape.p1]
local p2 = drawing.points[shape.p2]
love.graphics.line(Drawing.pixels(p1.x)+left,Drawing.pixels(p1.y)+top, Drawing.pixels(p2.x)+left,Drawing.pixels(p2.y)+top)
elseif shape.mode == 'polygon' or shape.mode == 'rectangle' or shape.mode == 'square' then
local prev = nil
for _,point in ipairs(shape.vertices) do
local curr = drawing.points[point]
if prev then
love.graphics.line(Drawing.pixels(prev.x)+left,Drawing.pixels(prev.y)+top, Drawing.pixels(curr.x)+left,Drawing.pixels(curr.y)+top)
end
prev = curr
end
-- close the loop
local curr = drawing.points[shape.vertices[1]]
love.graphics.line(Drawing.pixels(prev.x)+left,Drawing.pixels(prev.y)+top, Drawing.pixels(curr.x)+left,Drawing.pixels(curr.y)+top)
elseif shape.mode == 'circle' then
-- todo: clip
local center = drawing.points[shape.center]
love.graphics.circle('line', Drawing.pixels(center.x)+left,Drawing.pixels(center.y)+top, Drawing.pixels(shape.radius))
elseif shape.mode == 'arc' then
local center = drawing.points[shape.center]
love.graphics.arc('line', 'open', Drawing.pixels(center.x)+left,Drawing.pixels(center.y)+top, Drawing.pixels(shape.radius), shape.start_angle, shape.end_angle, 360)
elseif shape.mode == 'deleted' then
-- ignore
else
print(shape.mode)
assert(false)
end
end
function Drawing.draw_pending_shape(left,top, drawing)
local shape = drawing.pending
if shape.mode == nil then
-- nothing pending
elseif shape.mode == 'freehand' then
Drawing.draw_shape(left,top, drawing, shape)
elseif shape.mode == 'line' then
local mx,my = Drawing.coord(love.mouse.getX()-left), Drawing.coord(love.mouse.getY()-top)
if mx < 0 or mx >= 256 or my < 0 or my >= drawing.h then
return
end
local p1 = drawing.points[shape.p1]
love.graphics.line(Drawing.pixels(p1.x)+left,Drawing.pixels(p1.y)+top, Drawing.pixels(mx)+left,Drawing.pixels(my)+top)
elseif shape.mode == 'manhattan' then
local mx,my = Drawing.coord(love.mouse.getX()-left), Drawing.coord(love.mouse.getY()-top)
if mx < 0 or mx >= 256 or my < 0 or my >= drawing.h then
return
end
local p1 = drawing.points[shape.p1]
if math.abs(mx-p1.x) > math.abs(my-p1.y) then
love.graphics.line(Drawing.pixels(p1.x)+left,Drawing.pixels(p1.y)+top, Drawing.pixels(mx)+left,Drawing.pixels(p1.y)+top)
else
love.graphics.line(Drawing.pixels(p1.x)+left,Drawing.pixels(p1.y)+top, Drawing.pixels(p1.x)+left,Drawing.pixels(my)+top)
end
elseif shape.mode == 'polygon' then
-- don't close the loop on a pending polygon
local prev = nil
for _,point in ipairs(shape.vertices) do
local curr = drawing.points[point]
if prev then
love.graphics.line(Drawing.pixels(prev.x)+left,Drawing.pixels(prev.y)+top, Drawing.pixels(curr.x)+left,Drawing.pixels(curr.y)+top)
end
prev = curr
end
love.graphics.line(Drawing.pixels(prev.x)+left,Drawing.pixels(prev.y)+top, love.mouse.getX(),love.mouse.getY())
elseif shape.mode == 'rectangle' then
local pmx,pmy = love.mouse.getX(), love.mouse.getY()
local first = drawing.points[shape.vertices[1]]
if #shape.vertices == 1 then
love.graphics.line(Drawing.pixels(first.x)+left,Drawing.pixels(first.y)+top, pmx,pmy)
return
end
local second = drawing.points[shape.vertices[2]]
local mx,my = Drawing.coord(pmx-left), Drawing.coord(pmy-top)
local thirdx,thirdy, fourthx,fourthy = Drawing.complete_rectangle(first.x,first.y, second.x,second.y, mx,my)
love.graphics.line(Drawing.pixels(first.x)+left,Drawing.pixels(first.y)+top, Drawing.pixels(second.x)+left,Drawing.pixels(second.y)+top)
love.graphics.line(Drawing.pixels(second.x)+left,Drawing.pixels(second.y)+top, Drawing.pixels(thirdx)+left,Drawing.pixels(thirdy)+top)
love.graphics.line(Drawing.pixels(thirdx)+left,Drawing.pixels(thirdy)+top, Drawing.pixels(fourthx)+left,Drawing.pixels(fourthy)+top)
love.graphics.line(Drawing.pixels(fourthx)+left,Drawing.pixels(fourthy)+top, Drawing.pixels(first.x)+left,Drawing.pixels(first.y)+top)
elseif shape.mode == 'square' then
local pmx,pmy = love.mouse.getX(), love.mouse.getY()
local first = drawing.points[shape.vertices[1]]
if #shape.vertices == 1 then
love.graphics.line(Drawing.pixels(first.x)+left,Drawing.pixels(first.y)+top, pmx,pmy)
return
end
local second = drawing.points[shape.vertices[2]]
local mx,my = Drawing.coord(pmx-left), Drawing.coord(pmy-top)
local thirdx,thirdy, fourthx,fourthy = Drawing.complete_square(first.x,first.y, second.x,second.y, mx,my)
love.graphics.line(Drawing.pixels(first.x)+left,Drawing.pixels(first.y)+top, Drawing.pixels(second.x)+left,Drawing.pixels(second.y)+top)
love.graphics.line(Drawing.pixels(second.x)+left,Drawing.pixels(second.y)+top, Drawing.pixels(thirdx)+left,Drawing.pixels(thirdy)+top)
love.graphics.line(Drawing.pixels(thirdx)+left,Drawing.pixels(thirdy)+top, Drawing.pixels(fourthx)+left,Drawing.pixels(fourthy)+top)
love.graphics.line(Drawing.pixels(fourthx)+left,Drawing.pixels(fourthy)+top, Drawing.pixels(first.x)+left,Drawing.pixels(first.y)+top)
elseif shape.mode == 'circle' then
local center = drawing.points[shape.center]
local mx,my = Drawing.coord(love.mouse.getX()-left), Drawing.coord(love.mouse.getY()-top)
if mx < 0 or mx >= 256 or my < 0 or my >= drawing.h then
return
end
local cx,cy = Drawing.pixels(center.x)+left, Drawing.pixels(center.y)+top
love.graphics.circle('line', cx,cy, geom.dist(cx,cy, love.mouse.getX(),love.mouse.getY()))
elseif shape.mode == 'arc' then
local center = drawing.points[shape.center]
local mx,my = Drawing.coord(love.mouse.getX()-left), Drawing.coord(love.mouse.getY()-top)
if mx < 0 or mx >= 256 or my < 0 or my >= drawing.h then
return
end
shape.end_angle = geom.angle_with_hint(center.x,center.y, mx,my, shape.end_angle)
local cx,cy = Drawing.pixels(center.x)+left, Drawing.pixels(center.y)+top
love.graphics.arc('line', 'open', cx,cy, Drawing.pixels(shape.radius), shape.start_angle, shape.end_anglepre { line-height: 125%; }
td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
.highlight .hll { background-color: #ffffcc }
.highlight .c { color: #888888 } /* Comment */
.highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */
.highlight .k { color: #008800; font-weight: bold } /* Keyword */
.highlight .ch { color: #888888 } /* Comment.Hashbang */
.highlight .cm { color: #888888 } /* Comment.Multiline */
.highlight .cp { color: #cc0000; font-weight: bold } /* Comment.Preproc */
.highlight .cpf { color: #888888 } /* Comment.PreprocFile */
.highlight .c1 { color: #888888 } /* Comment.Single */
.highlight .cs { color: #cc0000; font-weight: bold; background-color: #fff0f0 } /* Comment.Special */
.highlight .gd { color: #000000; background-color: #ffdddd } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */
.highlight .gr { color: #aa0000 } /* Generic.Error */
.highlight .gh { color: #333333 } /* Generic.Heading */
.highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #555555 } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #666666 } /* Generic.Subheading */
.highlight .gt { color: #aa0000 } /* Generic.Traceback */
.highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008800 } /* Keyword.Pseudo */
.highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */
.highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */
.highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */
.highlight .na { color: #336699 } /* Name.Attribute */
.highlight .nb { color: #003388 } /* Name.Builtin */
.highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */
.highlight .no { color: #003366; font-weight: bold } /* Name.Constant */
.highlight .nd { color: #555555 } /* Name.Decorator */
.highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */
.highlight .nl { color: #336699; font-style: italic } /* Name.Label */
.highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */
.highlight .py { color: #336699; font-weight: bold } /* Name.Property */
.highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #336699 } /* Name.Variable */
.highlight .ow { color: #008800 } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */
.highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */
.highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */
.highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */
.highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */
.highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */
.highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */
.highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */
.highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */
.highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */
.highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */
.highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */
.highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */
.highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */
.highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */
.highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */
.highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */
.highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */
.highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */
.highlight .vc { color: #336699 } /* Name.Variable.Class */
.highlight .vg { color: #dd7700 } /* Name.Variable.Global */
.highlight .vi { color: #3333bb } /* Name.Variable.Instance */
.highlight .vm { color: #336699 } /* Name.Variable.Magic */
.highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */#
#
# The Nim Compiler
# (c) Copyright 2013 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# this module does the semantic checking for expressions
# included from sem.nim
const
errExprXHasNoType = "expression '$1' has no type (or is ambiguous)"
errXExpectsTypeOrValue = "'$1' expects a type or value"
errVarForOutParamNeededX = "for a 'var' type a variable needs to be passed; but '$1' is immutable"
errXStackEscape = "address of '$1' may not escape its stack frame"
errExprHasNoAddress = "expression has no address"
errCannotInterpretNodeX = "cannot evaluate '$1'"
errNamedExprExpected = "named expression expected"
errNamedExprNotAllowed = "named expression not allowed here"
errFieldInitTwice = "field initialized twice: '$1'"
errUndeclaredFieldX = "undeclared field: '$1'"
proc semTemplateExpr(c: PContext, n: PNode, s: PSym,
flags: TExprFlags = {}): PNode =
let info = getCallLineInfo(n)
markUsed(c.config, info, s, c.graph.usageSym)
onUse(info, s)
# Note: This is n.info on purpose. It prevents template from creating an info
# context when called from an another template
pushInfoContext(c.config, n.info, s.detailedInfo)
result = evalTemplate(n, s, getCurrOwner(c), c.config, efFromHlo in flags)
if efNoSemCheck notin flags: result = semAfterMacroCall(c, n, result, s, flags)
popInfoContext(c.config)
# XXX: A more elaborate line info rewrite might be needed
result.info = info
proc semFieldAccess(c: PContext, n: PNode, flags: TExprFlags = {}): PNode
template rejectEmptyNode(n: PNode) =
# No matter what a nkEmpty node is not what we want here
if n.kind == nkEmpty: illFormedAst(n, c.config)
proc semOperand(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
rejectEmptyNode(n)
# same as 'semExprWithType' but doesn't check for proc vars
result = semExpr(c, n, flags + {efOperand})
if result.typ != nil:
# XXX tyGenericInst here?
if result.typ.kind == tyProc and tfUnresolved in result.typ.flags:
localError(c.config, n.info, errProcHasNoConcreteType % n.renderTree)
if result.typ.kind in {tyVar, tyLent}: result = newDeref(result)
elif {efWantStmt, efAllowStmt} * flags != {}:
result.typ = newTypeS(tyVoid, c)
else:
localError(c.config, n.info, errExprXHasNoType %
renderTree(result, {renderNoComments}))
result.typ = errorType(c)
proc semExprWithType(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
rejectEmptyNode(n)
result = semExpr(c, n, flags+{efWantValue})
if result.kind == nkEmpty:
# do not produce another redundant error message:
result = errorNode(c, n)
if result.typ == nil or result.typ == c.enforceVoidContext:
localError(c.config, n.info, errExprXHasNoType %
renderTree(result, {renderNoComments}))
result.typ = errorType(c)
else:
if result.typ.kind in {tyVar, tyLent}: result = newDeref(result)
proc semExprNoDeref(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
rejectEmptyNode(n)
result = semExpr(c, n, flags+{efWantValue})
if result.kind == nkEmpty:
# do not produce another redundant error message:
result = errorNode(c, n)
if result.typ == nil:
localError(c.config, n.info, errExprXHasNoType %
renderTree(result, {renderNoComments}))
result.typ = errorType(c)
proc semSymGenericInstantiation(c: PContext, n: PNode, s: PSym): PNode =
result = symChoice(c, n, s, scClosed)
proc inlineConst(c: PContext, n: PNode, s: PSym): PNode {.inline.} =
result = copyTree(s.ast)
if result.isNil:
localError(c.config, n.info, "constant of type '" & typeToString(s.typ) & "' has no value")
result = newSymNode(s)
else:
result.typ = s.typ
result.info = n.info
type
TConvStatus = enum
convOK,
convNotNeedeed,
convNotLegal
proc checkConversionBetweenObjects(castDest, src: PType; pointers: int): TConvStatus =
let diff = inheritanceDiff(castDest, src)
return if diff == high(int) or (pointers > 1 and diff != 0):
convNotLegal
else:
convOK
const
IntegralTypes = {tyBool, tyEnum, tyChar, tyInt..tyUInt64}
proc checkConvertible(c: PContext, castDest, src: PType): TConvStatus =
result = convOK
# We're interested in the inner type and not in the static tag
var src = src.skipTypes({tyStatic})
if sameType(castDest, src) and castDest.sym == src.sym:
# don't annoy conversions that may be needed on another processor:
if castDest.kind notin IntegralTypes+{tyRange}:
result = convNotNeedeed
return
# Save for later
var d = skipTypes(castDest, abstractVar)
var s = src
if s.kind in tyUserTypeClasses and s.isResolvedUserTypeClass:
s = s.lastSon
s = skipTypes(s, abstractVar-{tyTypeDesc})
var pointers = 0
while (d != nil) and (d.kind in {tyPtr, tyRef, tyOwned}) and (d.kind == s.kind):
d = d.lastSon
s = s.lastSon
inc pointers
if d == nil:
result = convNotLegal
elif d.kind == tyObject and s.kind == tyObject:
result = checkConversionBetweenObjects(d, s, pointers)
elif (skipTypes(castDest, abstractVarRange).kind in IntegralTypes) and
(skipTypes(src, abstractVarRange-{tyTypeDesc}).kind in IntegralTypes):
# accept conversion between integral types
discard
else:
# we use d, s here to speed up that operation a bit:
case cmpTypes(c, d, s)
of isNone, isGeneric:
if not compareTypes(castDest.skipTypes(abstractVar), src, dcEqIgnoreDistinct):
result = convNotLegal
else:
discard
proc isCastable(conf: ConfigRef; dst, src: PType): bool =
## Checks whether the source type can be cast to the destination type.
## Casting is very unrestrictive; casts are allowed as long as
## castDest.size >= src.size, and typeAllowed(dst, skParam)
#const
# castableTypeKinds = {tyInt, tyPtr, tyRef, tyCstring, tyString,
# tySequence, tyPointer, tyNil, tyOpenArray,
# tyProc, tySet, tyEnum, tyBool, tyChar}
let src = src.skipTypes(tyUserTypeClasses)
if skipTypes(dst, abstractInst-{tyOpenArray}).kind == tyOpenArray:
return false
if skipTypes(src, abstractInst-{tyTypeDesc}).kind == tyTypeDesc:
return false
var dstSize, srcSize: BiggestInt
dstSize = computeSize(conf, dst)
srcSize = computeSize(conf, src)
if dstSize == -3 or srcSize == -3: # szUnknownSize
# The Nim compiler can't detect if it's legal or not.
# Just assume the programmer knows what he is doing.
return true
if dstSize < 0:
result = false
elif srcSize < 0:
result = false
elif typeAllowed(dst, skParam) != nil:
result = false
elif dst.kind == tyProc and dst.callConv == ccClosure:
result = src.kind == tyProc and src.callConv == ccClosure
else:
result = (dstSize >= srcSize) or
(skipTypes(dst, abstractInst).kind in IntegralTypes) or
(skipTypes(src, abstractInst-{tyTypeDesc}).kind in IntegralTypes)
if result and src.kind == tyNil:
result = dst.size <= conf.target.ptrSize
proc isSymChoice(n: PNode): bool {.inline.} =
result = n.kind in nkSymChoices
proc maybeLiftType(t: var PType, c: PContext, info: TLineInfo) =
# XXX: liftParamType started to perform addDecl
# we could do that instead in semTypeNode by snooping for added
# gnrc. params, then it won't be necessary to open a new scope here
openScope(c)
var lifted = liftParamType(c, skType, newNodeI(nkArgList, info),
t, ":anon", info)
closeScope(c)
if lifted != nil: t = lifted
proc semConv(c: PContext, n: PNode): PNode =
if sonsLen(n) != 2:
localError(c.config, n.info, "a type conversion takes exactly one argument")
return n
result = newNodeI(nkConv, n.info)
var targetType = semTypeNode(c, n.sons[0], nil)
if targetType.kind == tyTypeDesc:
internalAssert c.config, targetType.len > 0
if targetType.base.kind == tyNone:
return semTypeOf(c, n)
else:
targetType = targetType.base
elif targetType.kind == tyStatic:
var evaluated = semStaticExpr(c, n[1])
if evaluated.kind == nkType or evaluated.typ.kind == tyTypeDesc:
result = n
result.typ = c.makeTypeDesc semStaticType(c, evaluated, nil)
return
elif targetType.base.kind == tyNone:
return evaluated
else:
targetType = targetType.base
maybeLiftType(targetType, c, n[0].info)
if targetType.kind in {tySink, tyLent, tyOwned}:
let baseType = semTypeNode(c, n.sons[1], nil).skipTypes({tyTypeDesc})
let t = newTypeS(targetType.kind, c)
if targetType.kind == tyOwned:
t.flags.incl tfHasOwned
t.rawAddSonNoPropagationOfTypeFlags baseType
result = newNodeI(nkType, n.info)
result.typ = makeTypeDesc(c, t)
return
result.addSon copyTree(n.sons[0])
# special case to make MyObject(x = 3) produce a nicer error message:
if n[1].kind == nkExprEqExpr and
targetType.skipTypes(abstractPtrs).kind == tyObject:
localError(c.config, n.info, "object construction uses ':', not '='")
var op = semExprWithType(c, n.sons[1])
if targetType.isMetaType:
let final = inferWithMetatype(c, targetType, op, true)
result.addSon final
result.typ = final.typ
return
result.typ = targetType
# XXX op is overwritten later on, this is likely added too early
# here or needs to be overwritten too then.
addSon(result, op)
if not isSymChoice(op):
let status = checkConvertible(c, result.typ, op.typ)
case status
of convOK:
# handle SomeProcType(SomeGenericProc)
if op.kind == nkSym and op.sym.isGenericRoutine:
result.sons[1] = fitNode(c, result.typ, result.sons[1], result.info)
elif op.kind in {nkPar, nkTupleConstr} and targetType.kind == tyTuple:
op = fitNode(c, targetType, op, result.info)
of convNotNeedeed:
message(c.config, n.info, hintConvFromXtoItselfNotNeeded, result.typ.typeToString)
of convNotLegal:
result = fitNode(c, result.typ, result.sons[1], result.info)
if result == nil:
localError(c.config, n.info, "illegal conversion from '$1' to '$2'" %
[op.typ.typeToString, result.typ.typeToString])
else:
for i in countup(0, sonsLen(op) - 1):
let it = op.sons[i]
let status = checkConvertible(c, result.typ, it.typ)
if status in {convOK, convNotNeedeed}:
markUsed(c.config, n.info, it.sym, c.graph.usageSym)
onUse(n.info, it.sym)
markIndirect(c, it.sym)
return it
errorUseQualifier(c, n.info, op.sons[0].sym)
proc semCast(c: PContext, n: PNode): PNode =
## Semantically analyze a casting ("cast[type](param)")
checkSonsLen(n, 2, c.config)
let targetType = semTypeNode(c, n.sons[0], nil)
let castedExpr = semExprWithType(c, n.sons[1])
if tfHasMeta in targetType.flags:
localError(c.config, n.sons[0].info, "cannot cast to a non concrete type: '$1'" % $targetType)
if not isCastable(c.config, targetType, castedExpr.typ):
let tar = $targetType
let alt = typeToString(targetType, preferDesc)
let msg = if tar != alt: tar & "=" & alt else: tar
localError(c.config, n.info, "expression cannot be cast to " & msg)
result = newNodeI(nkCast, n.info)
result.typ = targetType
addSon(result, copyTree(n.sons[0]))
addSon(result, castedExpr)
proc semLowHigh(c: PContext, n: PNode, m: TMagic): PNode =
const
opToStr: array[mLow..mHigh, string] = ["low", "high"]
if sonsLen(n) != 2:
localError(c.config, n.info, errXExpectsTypeOrValue % opToStr[m])
else:
n.sons[1] = semExprWithType(c, n.sons[1], {efDetermineType})
var typ = skipTypes(n.sons[1].typ, abstractVarRange + {tyTypeDesc, tyUserTypeClassInst})
case typ.kind
of tySequence, tyString, tyCString, tyOpenArray, tyVarargs:
n.typ = getSysType(c.graph, n.info, tyInt)
of tyArray:
n.typ = typ.sons[0] # indextype
of tyInt..tyInt64, tyChar, tyBool, tyEnum, tyUInt8, tyUInt16, tyUInt32:
# do not skip the range!
n.typ = n.sons[1].typ.skipTypes(abstractVar)
of tyGenericParam:
# prepare this for resolving in semtypinst:
# we must use copyTree here in order to avoid creating a cycle
# that could easily turn into an infinite recursion in semtypinst
n.typ = makeTypeFromExpr(c, n.copyTree)
else:
localError(c.config, n.info, "invalid argument for: " & opToStr[m])
result = n
proc fixupStaticType(c: PContext, n: PNode) =
# This proc can be applied to evaluated expressions to assign
# them a static type.
#
# XXX: with implicit static, this should not be necessary,
# because the output type of operations such as `semConstExpr`
# should be a static type (as well as the type of any other
# expression that can be implicitly evaluated). For now, we
# apply this measure only in code that is enlightened to work
# with static types.
if n.typ.kind != tyStatic:
n.typ = newTypeWithSons(getCurrOwner(c), tyStatic, @[n.typ])
n.typ.n = n # XXX: cycles like the one here look dangerous.
# Consider using `n.copyTree`
proc isOpImpl(c: PContext, n: PNode, flags: TExprFlags): PNode =
internalAssert c.config,
n.sonsLen == 3 and
n[1].typ != nil and
n[2].kind in {nkStrLit..nkTripleStrLit, nkType}
var
res = false
t1 = n[1].typ
t2 = n[2].typ
if t1.kind == tyTypeDesc and t2.kind != tyTypeDesc:
t1 = t1.base
if n[2].kind in {nkStrLit..nkTripleStrLit}:
case n[2].strVal.normalize
of "closure":
let t = skipTypes(t1, abstractRange)
res = t.kind == tyProc and
t.callConv == ccClosure and
tfIterator notin t.flags
of "iterator":
let t = skipTypes(t1, abstractRange)
res = t.kind == tyProc and
t.callConv == ccClosure and
tfIterator in t.flags
else:
res = false
else:
maybeLiftType(t2, c, n.info)
var m: TCandidate
initCandidate(c, m, t2)
if efExplain in flags:
m.diagnostics = @[]
m.diagnosticsEnabled = true
res = typeRel(m, t2, t1) >= isSubtype # isNone
result = newIntNode(nkIntLit, ord(res))
result.typ = n.typ
proc semIs(c: PContext, n: PNode, flags: TExprFlags): PNode =
if sonsLen(n) != 3:
localError(c.config, n.info, "'is' operator takes 2 arguments")
let boolType = getSysType(c.graph, n.info, tyBool)
result = n
n.typ = boolType
var liftLhs = true
n.sons[1] = semExprWithType(c, n[1], {efDetermineType, efWantIterator})
if n[2].kind notin {nkStrLit..nkTripleStrLit}:
let t2 = semTypeNode(c, n[2], nil)
n.sons[2] = newNodeIT(nkType, n[2].info, t2)
if t2.kind == tyStatic:
let evaluated = tryConstExpr(c, n[1])
if evaluated != nil:
c.fixupStaticType(evaluated)
n[1] = evaluated
else:
result = newIntNode(nkIntLit, 0)
result.typ = boolType
return
elif t2.kind == tyTypeDesc and
(t2.base.kind == tyNone or tfExplicit in t2.flags):
# When the right-hand side is an explicit type, we must
# not allow regular values to be matched against the type:
liftLhs = false
else:
n.sons[2] = semExpr(c, n[2])
var lhsType = n[1].typ
if lhsType.kind != tyTypeDesc:
if liftLhs:
n[1] = makeTypeSymNode(c, lhsType, n[1].info)
lhsType = n[1].typ
else:
if lhsType.base.kind == tyNone or
(c.inGenericContext > 0 and lhsType.base.containsGenericType):
# BUGFIX: don't evaluate this too early: ``T is void``
return
result = isOpImpl(c, n, flags)
proc semOpAux(c: PContext, n: PNode) =
const flags = {efDetermineType}
for i in countup(1, n.sonsLen-1):
var a = n.sons[i]
if a.kind == nkExprEqExpr and sonsLen(a) == 2:
let info = a.sons[0].info
a.sons[0] = newIdentNode(considerQuotedIdent(c, a.sons[0], a), info)
a.sons[1] = semExprWithType(c, a.sons[1], flags)
a.typ = a.sons[1].typ
else:
n.sons[i] = semExprWithType(c, a, flags)
proc overloadedCallOpr(c: PContext, n: PNode): PNode =
# quick check if there is *any* () operator overloaded:
var par = getIdent(c.cache, "()")
if searchInScopes(c, par) == nil:
result = nil
else:
result = newNodeI(nkCall, n.info)
addSon(result, newIdentNode(par, n.info))
for i in countup(0, sonsLen(n) - 1): addSon(result, n.sons[i])
result = semExpr(c, result)
proc changeType(c: PContext; n: PNode, newType: PType, check: bool) =
case n.kind
of nkCurly, nkBracket:
for i in countup(0, sonsLen(n) - 1):
changeType(c, n.sons[i], elemType(newType), check)
of nkPar, nkTupleConstr:
let tup = newType.skipTypes({tyGenericInst, tyAlias, tySink, tyDistinct})
if tup.kind != tyTuple:
if tup.kind == tyObject: return
globalError(c.config, n.info, "no tuple type for constructor")
elif sonsLen(n) > 0 and n.sons[0].kind == nkExprColonExpr:
# named tuple?
for i in countup(0, sonsLen(n) - 1):
var m = n.sons[i].sons[0]
if m.kind != nkSym:
globalError(c.config, m.info, "invalid tuple constructor")
return
if tup.n != nil:
var f = getSymFromList(tup.n, m.sym.name)
if f == nil:
globalError(c.config, m.info, "unknown identifier: " & m.sym.name.s)
return
changeType(c, n.sons[i].sons[1], f.typ, check)
else:
changeType(c, n.sons[i].sons[1], tup.sons[i], check)
else:
for i in countup(0, sonsLen(n) - 1):
changeType(c, n.sons[i], tup.sons[i], check)
when false:
var m = n.sons[i]
var a = newNodeIT(nkExprColonExpr, m.info, newType.sons[i])
addSon(a, newSymNode(newType.n.sons[i].sym))
addSon(a, m)
changeType(m, tup.sons[i], check)
of nkCharLit..nkUInt64Lit:
if check and n.kind != nkUInt64Lit:
let value = n.intVal
if value < firstOrd(c.config, newType) or value > lastOrd(c.config, newType):
localError(c.config, n.info, "cannot convert " & $value &
" to " & typeToString(newType))
else: discard
n.typ = newType
proc arrayConstrType(c: PContext, n: PNode): PType =
var typ = newTypeS(tyArray, c)
rawAddSon(typ, nil) # index type
if sonsLen(n) == 0:
rawAddSon(typ, newTypeS(tyEmpty, c)) # needs an empty basetype!
else:
var t = skipTypes(n.sons[0].typ, {tyGenericInst, tyVar, tyLent, tyOrdinal, tyAlias, tySink})
addSonSkipIntLit(typ, t)
typ.sons[0] = makeRangeType(c, 0, sonsLen(n) - 1, n.info)
result = typ
proc semArrayConstr(c: PContext, n: PNode, flags: TExprFlags): PNode =
result = newNodeI(nkBracket, n.info)
result.typ = newTypeS(tyArray, c)
rawAddSon(result.typ, nil) # index type
if sonsLen(n) == 0:
rawAddSon(result.typ, newTypeS(tyEmpty, c)) # needs an empty basetype!
else:
var x = n.sons[0]
var lastIndex: BiggestInt = 0
var indexType = getSysType(c.graph, n.info, tyInt)
if x.kind == nkExprColonExpr and sonsLen(x) == 2:
var idx = semConstExpr(c, x.sons[0])
lastIndex = getOrdValue(idx)
indexType = idx.typ
x = x.sons[1]
let yy = semExprWithType(c, x)
var typ = yy.typ
addSon(result, yy)
#var typ = skipTypes(result.sons[0].typ, {tyGenericInst, tyVar, tyLent, tyOrdinal})
for i in countup(1, sonsLen(n) - 1):
x = n.sons[i]
if x.kind == nkExprColonExpr and sonsLen(x) == 2:
var idx = semConstExpr(c, x.sons[0])
idx = fitNode(c, indexType, idx, x.info)
if lastIndex+1 != getOrdValue(idx):
localError(c.config, x.info, "invalid order in array constructor")
x = x.sons[1]
let xx = semExprWithType(c, x, flags*{efAllowDestructor})
result.add xx
typ = commonType(typ, xx.typ)
#n.sons[i] = semExprWithType(c, x, flags*{efAllowDestructor})
#addSon(result, fitNode(c, typ, n.sons[i]))
inc(lastIndex)
addSonSkipIntLit(result.typ, typ)
for i in 0 ..< result.len:
result.sons[i] = fitNode(c, typ, result.sons[i], result.sons[i].info)
result.typ.sons[0] = makeRangeType(c, 0, sonsLen(result) - 1, n.info)
proc fixAbstractType(c: PContext, n: PNode) =
for i in 1 ..< n.len:
let it = n.sons[i]
# do not get rid of nkHiddenSubConv for OpenArrays, the codegen needs it:
if it.kind == nkHiddenSubConv and
skipTypes(it.typ, abstractVar).kind notin {tyOpenArray, tyVarargs}:
if skipTypes(it.sons[1].typ, abstractVar).kind in
{tyNil, tyTuple, tySet} or it[1].isArrayConstr:
var s = skipTypes(it.typ, abstractVar)
if s.kind != tyExpr:
changeType(c, it.sons[1], s, check=true)
n.sons[i] = it.sons[1]
proc isAssignable(c: PContext, n: PNode; isUnsafeAddr=false): TAssignableResult =
result = parampatterns.isAssignable(c.p.owner, n, isUnsafeAddr)
proc isUnresolvedSym(s: PSym): bool =
return s.kind == skGenericParam or
tfInferrableStatic in s.typ.flags or
(s.kind == skParam and s.typ.isMetaType) or
(s.kind == skType and
s.typ.flags * {tfGenericTypeParam, tfImplicitTypeParam} != {})
proc hasUnresolvedArgs(c: PContext, n: PNode): bool =
# Checks whether an expression depends on generic parameters that
# don't have bound values yet. E.g. this could happen in situations
# such as:
# type Slot[T] = array[T.size, byte]
# proc foo[T](x: default(T))
#
# Both static parameter and type parameters can be unresolved.
case n.kind
of nkSym:
return isUnresolvedSym(n.sym)
of nkIdent, nkAccQuoted:
let ident = considerQuotedIdent(c, n)
let sym = searchInScopes(c, ident)
if sym != nil:
return isUnresolvedSym(sym)
else:
return false
else:
for i in 0..<n.safeLen:
if hasUnresolvedArgs(c, n.sons[i]): return true
return false
proc newHiddenAddrTaken(c: PContext, n: PNode): PNode =
if n.kind == nkHiddenDeref and not (c.config.cmd == cmdCompileToCpp or
sfCompileToCpp in c.module.flags):
checkSonsLen(n, 1, c.config)
result = n.sons[0]
else:
result = newNodeIT(nkHiddenAddr, n.info, makeVarType(c, n.typ))
addSon(result, n)
if isAssignable(c, n) notin {arLValue, arLocalLValue}:
localError(c.config, n.info, errVarForOutParamNeededX % renderNotLValue(n))
proc analyseIfAddressTaken(c: PContext, n: PNode): PNode =
result = n
case n.kind
of nkSym:
# n.sym.typ can be nil in 'check' mode ...
if n.sym.typ != nil and
skipTypes(n.sym.typ, abstractInst-{tyTypeDesc}).kind notin {tyVar, tyLent}:
incl(n.sym.flags, sfAddrTaken)
result = newHiddenAddrTaken(c, n)
of nkDotExpr:
checkSonsLen(n, 2, c.config)
if n.sons[1].kind != nkSym:
internalError(c.config, n.info, "analyseIfAddressTaken")
return
if skipTypes(n.sons[1].sym.typ, abstractInst-{tyTypeDesc}).kind notin {tyVar, tyLent}:
incl(n.sons[1].sym.flags, sfAddrTaken)
result = newHiddenAddrTaken(c, n)
of nkBracketExpr:
checkMinSonsLen(n, 1, c.config)
if skipTypes(n.sons[0].typ, abstractInst-{tyTypeDesc}).kind notin {tyVar, tyLent}:
if n.sons[0].kind == nkSym: incl(n.sons[0].sym.flags, sfAddrTaken)
result = newHiddenAddrTaken(c, n)
else:
result = newHiddenAddrTaken(c, n)
proc analyseIfAddressTakenInCall(c: PContext, n: PNode) =
checkMinSonsLen(n, 1, c.config)
const
FakeVarParams = {mNew, mNewFinalize, mInc, ast.mDec, mIncl, mExcl,
mSetLengthStr, mSetLengthSeq, mAppendStrCh, mAppendStrStr, mSwap,
mAppendSeqElem, mNewSeq, mReset, mShallowCopy, mDeepCopy, mMove,
mWasMoved}
# get the real type of the callee
# it may be a proc var with a generic alias type, so we skip over them
var t = n.sons[0].typ.skipTypes({tyGenericInst, tyAlias, tySink})
if n.sons[0].kind == nkSym and n.sons[0].sym.magic in FakeVarParams:
# BUGFIX: check for L-Value still needs to be done for the arguments!
# note sometimes this is eval'ed twice so we check for nkHiddenAddr here:
for i in countup(1, sonsLen(n) - 1):
if i < sonsLen(t) and t.sons[i] != nil and
skipTypes(t.sons[i], abstractInst-{tyTypeDesc}).kind == tyVar:
let it = n[i]
if isAssignable(c, it) notin {arLValue, arLocalLValue}:
if it.kind != nkHiddenAddr:
localError(c.config, it.info, errVarForOutParamNeededX % $it)
# bug #5113: disallow newSeq(result) where result is a 'var T':
if n[0].sym.magic in {mNew, mNewFinalize, mNewSeq}:
var arg = n[1] #.skipAddr
if arg.kind == nkHiddenDeref: arg = arg[0]
if arg.kind == nkSym and arg.sym.kind == skResult and
arg.typ.skipTypes(abstractInst).kind in {tyVar, tyLent}:
localError(c.config, n.info, errXStackEscape % renderTree(n[1], {renderNoComments}))
return
for i in countup(1, sonsLen(n) - 1):
let n = if n.kind == nkHiddenDeref: n[0] else: n
if n.sons[i].kind == nkHiddenCallConv:
# we need to recurse explicitly here as converters can create nested
# calls and then they wouldn't be analysed otherwise
analyseIfAddressTakenInCall(c, n.sons[i])
if i < sonsLen(t) and
skipTypes(t.sons[i], abstractInst-{tyTypeDesc}).kind == tyVar:
if n.sons[i].kind != nkHiddenAddr:
n.sons[i] = analyseIfAddressTaken(c, n.sons[i])
include semmagic
proc evalAtCompileTime(c: PContext, n: PNode): PNode =
result = n
if n.kind notin nkCallKinds or n.sons[0].kind != nkSym: return
var callee = n.sons[0].sym
# workaround for bug #537 (overly aggressive inlining leading to
# wrong NimNode semantics):
if n.typ != nil and tfTriggersCompileTime in n.typ.flags: return
# constant folding that is necessary for correctness of semantic pass:
if callee.magic != mNone and callee.magic in ctfeWhitelist and n.typ != nil:
var call = newNodeIT(nkCall, n.info, n.typ)
call.add(n.sons[0])
var allConst = true
for i in 1 ..< n.len:
var a = getConstExpr(c.module, n.sons[i], c.graph)
if a == nil:
allConst = false
a = n.sons[i]
if a.kind == nkHiddenStdConv: a = a.sons[1]
call.add(a)
if allConst:
result = semfold.getConstExpr(c.module, call, c.graph)
if result.isNil: result = n
else: return result
block maybeLabelAsStatic:
# XXX: temporary work-around needed for tlateboundstatic.
# This is certainly not correct, but it will get the job
# done until we have a more robust infrastructure for
# implicit statics.
if n.len > 1:
for i in 1 ..< n.len:
# see bug #2113, it's possible that n[i].typ for errornous code:
if n[i].typ.isNil or n[i].typ.kind != tyStatic or
tfUnresolved notin n[i].typ.flags:
break maybeLabelAsStatic
n.typ = newTypeWithSons(c, tyStatic, @[n.typ])
n.typ.flags.incl tfUnresolved
# optimization pass: not necessary for correctness of the semantic pass
if {sfNoSideEffect, sfCompileTime} * callee.flags != {} and
{sfForward, sfImportc} * callee.flags == {} and n.typ != nil:
if sfCompileTime notin callee.flags and
optImplicitStatic notin c.config.options: return
if callee.magic notin ctfeWhitelist: return
if callee.kind notin {skProc, skFunc, skConverter} or callee.isGenericRoutine:
return
if n.typ != nil and typeAllowed(n.typ, skConst) != nil: return
var call = newNodeIT(nkCall, n.info, n.typ)
call.add(n.sons[0])
for i in 1 ..< n.len:
let a = getConstExpr(c.module, n.sons[i], c.graph)
if a == nil: return n
call.add(a)
#echo "NOW evaluating at compile time: ", call.renderTree
if c.inStaticContext == 0 or sfNoSideEffect in callee.flags:
if sfCompileTime in callee.flags:
result = evalStaticExpr(c.module, c.graph, call, c.p.owner)
if result.isNil:
localError(c.config, n.info, errCannotInterpretNodeX % renderTree(call))
else: result = fixupTypeAfterEval(c, result, n)
else:
result = evalConstExpr(c.module, c.graph, call)
if result.isNil: result = n
else: result = fixupTypeAfterEval(c, result, n)
else:
result = n
#if result != n:
# echo "SUCCESS evaluated at compile time: ", call.renderTree
proc semStaticExpr(c: PContext, n: PNode): PNode =
inc c.inStaticContext
openScope(c)
let a = semExprWithType(c, n)
closeScope(c)
dec c.inStaticContext
if a.findUnresolvedStatic != nil: return a
result = evalStaticExpr(c.module, c.graph, a, c.p.owner)
if result.isNil:
localError(c.config, n.info, errCannotInterpretNodeX % renderTree(n))
result = c.graph.emptyNode
else:
result = fixupTypeAfterEval(c, result, a)
proc semOverloadedCallAnalyseEffects(c: PContext, n: PNode, nOrig: PNode,
flags: TExprFlags): PNode =
if flags*{efInTypeof, efWantIterator} != {}:
# consider: 'for x in pReturningArray()' --> we don't want the restriction
# to 'skIterator' anymore; skIterator is preferred in sigmatch already
# for typeof support.
# for ``type(countup(1,3))``, see ``tests/ttoseq``.
result = semOverloadedCall(c, n, nOrig,
{skProc, skFunc, skMethod, skConverter, skMacro, skTemplate, skIterator}, flags)
else:
result = semOverloadedCall(c, n, nOrig,
{skProc, skFunc, skMethod, skConverter, skMacro, skTemplate}, flags)
if result != nil:
if result.sons[0].kind != nkSym:
internalError(c.config, "semOverloadedCallAnalyseEffects")
return
let callee = result.sons[0].sym
case callee.kind
of skMacro, skTemplate: discard
else:
if callee.kind == skIterator and callee.id == c.p.owner.id:
localError(c.config, n.info, errRecursiveDependencyX % callee.name.s)
# error correction, prevents endless for loop elimination in transf.
# See bug #2051:
result.sons[0] = newSymNode(errorSym(c, n))
proc semObjConstr(c: PContext, n: PNode, flags: TExprFlags): PNode
proc resolveIndirectCall(c: PContext; n, nOrig: PNode;
t: PType): TCandidate =
initCandidate(c, result, t)
matches(c, n, nOrig, result)
if result.state != csMatch:
# try to deref the first argument:
if implicitDeref in c.features and canDeref(n):
n.sons[1] = n.sons[1].tryDeref
initCandidate(c, result, t)
matches(c, n, nOrig, result)
proc bracketedMacro(n: PNode): PSym =
if n.len >= 1 and n[0].kind == nkSym:
result = n[0].sym
if result.kind notin {skMacro, skTemplate}:
result = nil
proc setGenericParams(c: PContext, n: PNode) =
for i in 1 ..< n.len:
n[i].typ = semTypeNode(c, n[i], nil)
proc afterCallActions(c: PContext; n, orig: PNode, flags: TExprFlags): PNode =
result = n
let callee = result.sons[0].sym
case callee.kind
of skMacro: result = semMacroExpr(c, result, orig, callee, flags)
of skTemplate: result = semTemplateExpr(c, result, callee, flags)
else:
semFinishOperands(c, result)
activate(c, result)
fixAbstractType(c, result)
analyseIfAddressTakenInCall(c, result)
if callee.magic != mNone:
result = magicsAfterOverloadResolution(c, result, flags)
if result.typ != nil and
not (result.typ.kind == tySequence and result.typ.sons[0].kind == tyEmpty):
liftTypeBoundOps(c.graph, result.typ, n.info)
#result = patchResolvedTypeBoundOp(c, result)
if c.matchedConcept == nil:
result = evalAtCompileTime(c, result)
proc semIndirectOp(c: PContext, n: PNode, flags: TExprFlags): PNode =
result = nil
checkMinSonsLen(n, 1, c.config)
var prc = n.sons[0]
if n.sons[0].kind == nkDotExpr:
checkSonsLen(n.sons[0], 2, c.config)
let n0 = semFieldAccess(c, n.sons[0])
if n0.kind == nkDotCall:
# it is a static call!
result = n0
result.kind = nkCall
result.flags.incl nfExplicitCall
for i in countup(1, sonsLen(n) - 1): addSon(result, n.sons[i])
return semExpr(c, result, flags)
else:
n.sons[0] = n0
else:
n.sons[0] = semExpr(c, n.sons[0], {efInCall})
let t = n.sons[0].typ
if t != nil and t.kind in {tyVar, tyLent}:
n.sons[0] = newDeref(n.sons[0])
elif n.sons[0].kind == nkBracketExpr:
let s = bracketedMacro(n.sons[0])
if s != nil:
setGenericParams(c, n[0])
return semDirectOp(c, n, flags)
let nOrig = n.copyTree
semOpAux(c, n)
var t: PType = nil
if n.sons[0].typ != nil:
t = skipTypes(n.sons[0].typ, abstractInst-{tyTypeDesc})
if t != nil and t.kind == tyProc:
# This is a proc variable, apply normal overload resolution
let m = resolveIndirectCall(c, n, nOrig, t)
if m.state != csMatch:
if c.config.m.errorOutputs == {}:
# speed up error generation:
globalError(c.config, n.info, "type mismatch")
return c.graph.emptyNode
else:
var hasErrorType = false
var msg = "type mismatch: got <"
for i in countup(1, sonsLen(n) - 1):
if i > 1: add(msg, ", ")
let nt = n.sons[i].typ
add(msg, typeToString(nt))
if nt.kind == tyError:
hasErrorType = true
break
if not hasErrorType:
add(msg, ">\nbut expected one of: \n" &
typeToString(n.sons[0].typ))
localError(c.config, n.info, msg)
return errorNode(c, n)
result = nil
else:
result = m.call
instGenericConvertersSons(c, result, m)
elif t != nil and t.kind == tyTypeDesc:
if n.len == 1: return semObjConstr(c, n, flags)
return semConv(c, n)
else:
result = overloadedCallOpr(c, n)
# Now that nkSym does not imply an iteration over the proc/iterator space,
# the old ``prc`` (which is likely an nkIdent) has to be restored:
if result == nil:
# XXX: hmm, what kind of symbols will end up here?
# do we really need to try the overload resolution?
n.sons[0] = prc
nOrig.sons[0] = prc
n.flags.incl nfExprCall
result = semOverloadedCallAnalyseEffects(c, n, nOrig, flags)
if result == nil: return errorNode(c, n)
elif result.kind notin nkCallKinds:
# the semExpr() in overloadedCallOpr can even break this condition!
# See bug #904 of how to trigger it:
return result
#result = afterCallActions(c, result, nOrig, flags)
if result.sons[0].kind == nkSym:
result = afterCallActions(c, result, nOrig, flags)
else:
fixAbstractType(c, result)
analyseIfAddressTakenInCall(c, result)
proc semDirectOp(c: PContext, n: PNode, flags: TExprFlags): PNode =
# this seems to be a hotspot in the compiler!
let nOrig = n.copyTree
#semLazyOpAux(c, n)
result = semOverloadedCallAnalyseEffects(c, n, nOrig, flags)
if result != nil: result = afterCallActions(c, result, nOrig, flags)
else: result = errorNode(c, n)
proc buildEchoStmt(c: PContext, n: PNode): PNode =
# we MUST not check 'n' for semantics again here! But for now we give up:
result = newNodeI(nkCall, n.info)
var e = strTableGet(c.graph.systemModule.tab, getIdent(c.cache, "echo"))
if e != nil:
add(result, newSymNode(e))
else:
localError(c.config, n.info, "system needs: echo")
add(result, errorNode(c, n))
add(result, n)
result = semExpr(c, result)
proc semExprNoType(c: PContext, n: PNode): PNode =
let isPush = hintExtendedContext in c.config.notes
if isPush: pushInfoContext(c.config, n.info)
result = semExpr(c, n, {efWantStmt})
result = discardCheck(c, result, {})
if isPush: popInfoContext(c.config)
proc isTypeExpr(n: PNode): bool =
case n.kind
of nkType, nkTypeOfExpr: result = true
of nkSym: result = n.sym.kind == skType
else: result = false
proc createSetType(c: PContext; baseType: PType): PType =
assert baseType != nil
result = newTypeS(tySet, c)
rawAddSon(result, baseType)
proc lookupInRecordAndBuildCheck(c: PContext, n, r: PNode, field: PIdent,
check: var PNode): PSym =
# transform in a node that contains the runtime check for the
# field, if it is in a case-part...
result = nil
case r.kind
of nkRecList:
for i in countup(0, sonsLen(r) - 1):
result = lookupInRecordAndBuildCheck(c, n, r.sons[i], field, check)
if result != nil: return
of nkRecCase:
checkMinSonsLen(r, 2, c.config)
if (r.sons[0].kind != nkSym): illFormedAst(r, c.config)
result = lookupInRecordAndBuildCheck(c, n, r.sons[0], field, check)
if result != nil: return
let setType = createSetType(c, r.sons[0].typ)
var s = newNodeIT(nkCurly, r.info, setType)
for i in countup(1, sonsLen(r) - 1):
var it = r.sons[i]
case it.kind
of nkOfBranch:
result = lookupInRecordAndBuildCheck(c, n, lastSon(it), field, check)
if result == nil:
for j in 0..sonsLen(it)-2: addSon(s, copyTree(it.sons[j]))
else:
if check == nil:
check = newNodeI(nkCheckedFieldExpr, n.info)
addSon(check, c.graph.emptyNode) # make space for access node
s = newNodeIT(nkCurly, n.info, setType)
for j in countup(0, sonsLen(it) - 2): addSon(s, copyTree(it.sons[j]))
var inExpr = newNodeIT(nkCall, n.info, getSysType(c.graph, n.info, tyBool))
addSon(inExpr, newSymNode(c.graph.opContains, n.info))
addSon(inExpr, s)
addSon(inExpr, copyTree(r.sons[0]))
addSon(check, inExpr)
#addSon(check, semExpr(c, inExpr))
return
of nkElse:
result = lookupInRecordAndBuildCheck(c, n, lastSon(it), field, check)
if result != nil:
if check == nil:
check = newNodeI(nkCheckedFieldExpr, n.info)
addSon(check, c.graph.emptyNode) # make space for access node
var inExpr = newNodeIT(nkCall, n.info, getSysType(c.graph, n.info, tyBool))
addSon(inExpr, newSymNode(c.graph.opContains, n.info))
addSon(inExpr, s)
addSon(inExpr, copyTree(r.sons[0]))
var notExpr = newNodeIT(nkCall, n.info, getSysType(c.graph, n.info, tyBool))
addSon(notExpr, newSymNode(c.graph.opNot, n.info))
addSon(notExpr, inExpr)
addSon(check, notExpr)
return
else: illFormedAst(it, c.config)
of nkSym:
if r.sym.name.id == field.id: result = r.sym
else: illFormedAst(n, c.config)
const
tyTypeParamsHolders = {tyGenericInst, tyCompositeTypeClass}
tyDotOpTransparent = {tyVar, tyLent, tyPtr, tyRef, tyOwned, tyAlias, tySink}
proc readTypeParameter(c: PContext, typ: PType,
paramName: PIdent, info: TLineInfo): PNode =
# Note: This function will return emptyNode when attempting to read
# a static type parameter that is not yet resolved (e.g. this may
# happen in proc signatures such as `proc(x: T): array[T.sizeParam, U]`
if typ.kind in {tyUserTypeClass, tyUserTypeClassInst}:
for statement in typ.n:
case statement.kind
of nkTypeSection:
for def in statement:
if def[0].sym.name.id == paramName.id:
# XXX: Instead of lifting the section type to a typedesc
# here, we could try doing it earlier in semTypeSection.
# This seems semantically correct and then we'll be able
# to return the section symbol directly here
let foundType = makeTypeDesc(c, def[2].typ)
return newSymNode(copySym(def[0].sym).linkTo(foundType), info)
of nkConstSection:
for def in statement:
if def[0].sym.name.id == paramName.id:
return def[2]
else:
discard
if typ.kind != tyUserTypeClass:
let ty = if typ.kind == tyCompositeTypeClass: typ.sons[1].skipGenericAlias
else: typ.skipGenericAlias
let tbody = ty.sons[0]
for s in countup(0, tbody.len-2):
let tParam = tbody.sons[s]
if tParam.sym.name.id == paramName.id:
let rawTyp = ty.sons[s + 1]
if rawTyp.kind == tyStatic:
if rawTyp.n != nil:
return rawTyp.n
else:
return c.graph.emptyNode
else:
let foundTyp = makeTypeDesc(c, rawTyp)
return newSymNode(copySym(tParam.sym).linkTo(foundTyp), info)
return nil
proc semSym(c: PContext, n: PNode, sym: PSym, flags: TExprFlags): PNode =
let s = getGenSym(c, sym)
case s.kind
of skConst:
markUsed(c.config, n.info, s, c.graph.usageSym)
onUse(n.info, s)
let typ = skipTypes(s.typ, abstractInst-{tyTypeDesc})
case typ.kind
of tyNil, tyChar, tyInt..tyInt64, tyFloat..tyFloat128,
tyTuple, tySet, tyUInt..tyUInt64:
if s.magic == mNone: result = inlineConst(c, n, s)
else: result = newSymNode(s, n.info)
of tyArray, tySequence:
# Consider::
# const x = []
# proc p(a: openarray[int])
# proc q(a: openarray[char])
# p(x)
# q(x)
#
# It is clear that ``[]`` means two totally different things. Thus, we
# copy `x`'s AST into each context, so that the type fixup phase can
# deal with two different ``[]``.
if s.ast.len == 0: result = inlineConst(c, n, s)
else: result = newSymNode(s, n.info)
of tyStatic:
if typ.n != nil:
result = typ.n
result.typ = typ.base
else:
result = newSymNode(s, n.info)
else:
result = newSymNode(s, n.info)
of skMacro:
if efNoEvaluateGeneric in flags and s.ast[genericParamsPos].len > 0 or
(n.kind notin nkCallKinds and s.requiredParams > 0):
markUsed(c.config, n.info, s, c.graph.usageSym)
onUse(n.info, s)
result = symChoice(c, n, s, scClosed)
else:
result = semMacroExpr(c, n, n, s, flags)
of skTemplate:
if efNoEvaluateGeneric in flags and s.ast[genericParamsPos].len > 0 or
(n.kind notin nkCallKinds and s.requiredParams > 0) or
sfCustomPragma in sym.flags:
let info = getCallLineInfo(n)
markUsed(c.config, info, s, c.graph.usageSym)
onUse(info, s)
result = symChoice(c, n, s, scClosed)
else:
result = semTemplateExpr(c, n, s, flags)
of skParam:
markUsed(c.config, n.info, s, c.graph.usageSym)
onUse(n.info, s)
if s.typ != nil and s.typ.kind == tyStatic and s.typ.n != nil:
# XXX see the hack in sigmatch.nim ...
return s.typ.n
elif sfGenSym in s.flags:
# the owner should have been set by now by addParamOrResult
internalAssert c.config, s.owner != nil
if c.p.wasForwarded:
# gensym'ed parameters that nevertheless have been forward declared
# need a special fixup:
let realParam = c.p.owner.typ.n[s.position+1]
internalAssert c.config, realParam.kind == nkSym and realParam.sym.kind == skParam
return newSymNode(c.p.owner.typ.n[s.position+1].sym, n.info)
elif c.p.owner.kind == skMacro:
# gensym'ed macro parameters need a similar hack (see bug #1944):
var u = searchInScopes(c, s.name)
internalAssert c.config, u != nil and u.kind == skParam and u.owner == s.owner
return newSymNode(u, n.info)
result = newSymNode(s, n.info)
of skVar, skLet, skResult, skForVar:
if s.magic == mNimvm:
localError(c.config, n.info, "illegal context for 'nimvm' magic")
markUsed(c.config, n.info, s, c.graph.usageSym)
onUse(n.info, s)
result = newSymNode(s, n.info)
# We cannot check for access to outer vars for example because it's still
# not sure the symbol really ends up being used:
# var len = 0 # but won't be called
# genericThatUsesLen(x) # marked as taking a closure?
of skGenericParam:
onUse(n.info, s)
if s.typ.kind == tyStatic:
result = newSymNode(s, n.info)
result.typ = s.typ
elif s.ast != nil:
result = semExpr(c, s.ast)
else:
n.typ = s.typ
return n
of skType:
markUsed(c.config, n.info, s, c.graph.usageSym)
onUse(n.info, s)
if s.typ.kind == tyStatic and s.typ.base.kind != tyNone and s.typ.n != nil:
return s.typ.n
result = newSymNode(s, n.info)
result.typ = makeTypeDesc(c, s.typ)
of skField:
var p = c.p
while p != nil and p.selfSym == nil:
p = p.next
if p != nil and p.selfSym != nil:
var ty = skipTypes(p.selfSym.typ, {tyGenericInst, tyVar, tyLent, tyPtr, tyRef,
tyAlias, tySink, tyOwned})
while tfBorrowDot in ty.flags: ty = ty.skipTypes({tyDistinct})
var check: PNode = nil
if ty.kind == tyObject:
while true:
check = nil
let f = lookupInRecordAndBuildCheck(c, n, ty.n, s.name, check)
if f != nil and fieldVisible(c, f):
# is the access to a public field or in the same module or in a friend?
doAssert f == s
markUsed(c.config, n.info, f, c.graph.usageSym)
onUse(n.info, f)
result = newNodeIT(nkDotExpr, n.info, f.typ)
result.add makeDeref(newSymNode(p.selfSym))
result.add newSymNode(f) # we now have the correct field
if check != nil:
check.sons[0] = result
check.typ = result.typ
result = check
return result
if ty.sons[0] == nil: break
ty = skipTypes(ty.sons[0], skipPtrs)
# old code, not sure if it's live code:
markUsed(c.config, n.info, s, c.graph.usageSym)
onUse(n.info, s)
result = newSymNode(s, n.info)
else:
let info = getCallLineInfo(n)
markUsed(c.config, info, s, c.graph.usageSym)
onUse(info, s)
result = newSymNode(s, info)
proc builtinFieldAccess(c: PContext, n: PNode, flags: TExprFlags): PNode =
## returns nil if it's not a built-in field access
checkSonsLen(n, 2, c.config)
# tests/bind/tbindoverload.nim wants an early exit here, but seems to
# work without now. template/tsymchoicefield doesn't like an early exit
# here at all!
#if isSymChoice(n.sons[1]): return
when defined(nimsuggest):
if c.config.cmd == cmdIdeTools:
suggestExpr(c, n)
if exactEquals(c.config.m.trackPos, n[1].info): suggestExprNoCheck(c, n)
var s = qualifiedLookUp(c, n, {checkAmbiguity, checkUndeclared, checkModule})
if s != nil:
if s.kind in OverloadableSyms:
result = symChoice(c, n, s, scClosed)
if result.kind == nkSym: result = semSym(c, n, s, flags)
else:
markUsed(c.config, n.sons[1].info, s, c.graph.usageSym)
result = semSym(c, n, s, flags)
onUse(n.sons[1].info, s)
return
n.sons[0] = semExprWithType(c, n.sons[0], flags+{efDetermineType})
#restoreOldStyleType(n.sons[0])
var i = considerQuotedIdent(c, n.sons[1], n)
var ty = n.sons[0].typ
var f: PSym = nil
result = nil
template tryReadingGenericParam(t: PType) =
case t.kind
of tyTypeParamsHolders:
result = readTypeParameter(c, t, i, n.info)
if result == c.graph.emptyNode:
result = n
n.typ = makeTypeFromExpr(c, n.copyTree)
return
of tyUserTypeClasses:
if t.isResolvedUserTypeClass:
return readTypeParameter(c, t, i, n.info)
else:
n.typ = makeTypeFromExpr(c, copyTree(n))
return n
of tyGenericParam, tyAnything:
n.typ = makeTypeFromExpr(c, copyTree(n))
return n
else:
discard
var argIsType = false
if ty.kind == tyTypeDesc:
if ty.base.kind == tyNone:
# This is a still unresolved typedesc parameter.
# If this is a regular proc, then all bets are off and we must return
# tyFromExpr, but when this happen in a macro this is not a built-in
# field access and we leave the compiler to compile a normal call:
if getCurrOwner(c).kind != skMacro:
n.typ = makeTypeFromExpr(c, n.copyTree)
return n
else:
return nil
else:
ty = ty.base
argIsType = true
else:
argIsType = isTypeExpr(n.sons[0])
if argIsType:
ty = ty.skipTypes(tyDotOpTransparent)
case ty.kind
of tyEnum:
# look up if the identifier belongs to the enum:
while ty != nil:
f = getSymFromList(ty.n, i)
if f != nil: break
ty = ty.sons[0] # enum inheritance
if f != nil:
result = newSymNode(f)
result.info = n.info
result.typ = ty
markUsed(c.config, n.info, f, c.graph.usageSym)
onUse(n.info, f)
return
of tyObject, tyTuple:
if ty.n != nil and ty.n.kind == nkRecList:
let field = lookupInRecord(ty.n, i)
if field != nil:
n.typ = makeTypeDesc(c, field.typ)
return n
else:
tryReadingGenericParam(ty)
return
# XXX: This is probably not relevant any more
# reset to prevent 'nil' bug: see "tests/reject/tenumitems.nim":
ty = n.sons[0].typ
return nil
if ty.kind in tyUserTypeClasses and ty.isResolvedUserTypeClass:
ty = ty.lastSon
ty = skipTypes(ty, {tyGenericInst, tyVar, tyLent, tyPtr, tyRef, tyOwned, tyAlias, tySink})
while tfBorrowDot in ty.flags: ty = ty.skipTypes({tyDistinct})
var check: PNode = nil
if ty.kind == tyObject:
while true:
check = nil
f = lookupInRecordAndBuildCheck(c, n, ty.n, i, check)
if f != nil: break
if ty.sons[0] == nil: break
ty = skipTypes(ty.sons[0], skipPtrs)
if f != nil:
let visibilityCheckNeeded =
if n[1].kind == nkSym and n[1].sym == f:
false # field lookup was done already, likely by hygienic template or bindSym
else: true
if not visibilityCheckNeeded or fieldVisible(c, f):
# is the access to a public field or in the same module or in a friend?
markUsed(c.config, n.sons[1].info, f, c.graph.usageSym)
onUse(n.sons[1].info, f)
n.sons[0] = makeDeref(n.sons[0])
n.sons[1] = newSymNode(f) # we now have the correct field
n.typ = f.typ
if check == nil:
result = n
else:
check.sons[0] = n
check.typ = n.typ
result = check
elif ty.kind == tyTuple and ty.n != nil:
f = getSymFromList(ty.n, i)
if f != nil:
markUsed(c.config, n.sons[1].info, f, c.graph.usageSym)
onUse(n.sons[1].info, f)
n.sons[0] = makeDeref(n.sons[0])
n.sons[1] = newSymNode(f)
n.typ = f.typ
result = n
# we didn't find any field, let's look for a generic param
if result == nil:
let t = n.sons[0].typ.skipTypes(tyDotOpTransparent)
tryReadingGenericParam(t)
proc dotTransformation(c: PContext, n: PNode): PNode =
if isSymChoice(n.sons[1]):
result = newNodeI(nkDotCall, n.info)
addSon(result, n.sons[1])
addSon(result, copyTree(n[0]))
else:
var i = considerQuotedIdent(c, n.sons[1], n)
result = newNodeI(nkDotCall, n.info)
result.flags.incl nfDotField
addSon(result, newIdentNode(i, n[1].info))
addSon(result, copyTree(n[0]))
proc semFieldAccess(c: PContext, n: PNode, flags: TExprFlags): PNode =
# this is difficult, because the '.' is used in many different contexts
# in Nim. We first allow types in the semantic checking.
result = builtinFieldAccess(c, n, flags)
if result == nil:
result = dotTransformation(c, n)
proc buildOverloadedSubscripts(n: PNode, ident: PIdent): PNode =
result = newNodeI(nkCall, n.info)
result.add(newIdentNode(ident, n.info))
for i in 0 .. n.len-1: result.add(n[i])
proc semDeref(c: PContext, n: PNode): PNode =
checkSonsLen(n, 1, c.config)
n.sons[0] = semExprWithType(c, n.sons[0])
result = n
var t = skipTypes(n.sons[0].typ, {tyGenericInst, tyVar, tyLent, tyAlias, tySink, tyOwned})
case t.kind
of tyRef, tyPtr: n.typ = t.lastSon
else: result = nil
#GlobalError(n.sons[0].info, errCircumNeedsPointer)
proc semSubscript(c: PContext, n: PNode, flags: TExprFlags): PNode =
## returns nil if not a built-in subscript operator; also called for the
## checking of assignments
if sonsLen(n) == 1:
let x = semDeref(c, n)
if x == nil: return nil
result = newNodeIT(nkDerefExpr, x.info, x.typ)
result.add(x[0])
return
checkMinSonsLen(n, 2, c.config)
# make sure we don't evaluate generic macros/templates
n.sons[0] = semExprWithType(c, n.sons[0],
{efNoEvaluateGeneric})
var arr = skipTypes(n.sons[0].typ, {tyGenericInst, tyUserTypeClassInst, tyOwned,
tyVar, tyLent, tyPtr, tyRef, tyAlias, tySink})
if arr.kind == tyStatic:
if arr.base.kind == tyNone:
result = n
result.typ = semStaticType(c, n[1], nil)
return
elif arr.n != nil:
return semSubscript(c, arr.n, flags)
else:
arr = arr.base
case arr.kind
of tyArray, tyOpenArray, tyVarargs, tySequence, tyString, tyCString,
tyUncheckedArray:
if n.len != 2: return nil
n.sons[0] = makeDeref(n.sons[0])
for i in countup(1, sonsLen(n) - 1):
n.sons[i] = semExprWithType(c, n.sons[i],
flags*{efInTypeof, efDetermineType})
# Arrays index type is dictated by the range's type
if arr.kind == tyArray:
var indexType = arr.sons[0]
var arg = indexTypesMatch(c, indexType, n.sons[1].typ, n.sons[1])
if arg != nil:
n.sons[1] = arg
result = n
result.typ = elemType(arr)
# Other types have a bit more of leeway
elif n.sons[1].typ.skipTypes(abstractRange-{tyDistinct}).kind in
{tyInt..tyInt64, tyUInt..tyUInt64}:
result = n
result.typ = elemType(arr)
of tyTypeDesc:
# The result so far is a tyTypeDesc bound
# a tyGenericBody. The line below will substitute
# it with the instantiated type.
result = n
result.typ = makeTypeDesc(c, semTypeNode(c, n, nil))
#result = symNodeFromType(c, semTypeNode(c, n, nil), n.info)
of tyTuple:
if n.len != 2: return nil
n.sons[0] = makeDeref(n.sons[0])
# [] operator for tuples requires constant expression:
n.sons[1] = semConstExpr(c, n.sons[1])
if skipTypes(n.sons[1].typ, {tyGenericInst, tyRange, tyOrdinal, tyAlias, tySink}).kind in
{tyInt..tyInt64}:
let idx = getOrdValue(n.sons[1])
if idx >= 0 and idx < len(arr): n.typ = arr.sons[int(idx)]
else: localError(c.config, n.info, "invalid index value for tuple subscript")
result = n
else:
result = nil
else:
let s = if n.sons[0].kind == nkSym: n.sons[0].sym
elif n[0].kind in nkSymChoices: n.sons[0][0].sym
else: nil
if s != nil:
case s.kind
of skProc, skFunc, skMethod, skConverter, skIterator:
# type parameters: partial generic specialization
n.sons[0] = semSymGenericInstantiation(c, n.sons[0], s)
result = explicitGenericInstantiation(c, n, s)
of skMacro, skTemplate:
if efInCall in flags:
# We are processing macroOrTmpl[] in macroOrTmpl[](...) call.
# Return as is, so it can be transformed into complete macro or
# template call in semIndirectOp caller.
result = n
else:
# We are processing macroOrTmpl[] not in call. Transform it to the
# macro or template call with generic arguments here.
n.kind = nkCall
case s.kind
of skMacro: result = semMacroExpr(c, n, n, s, flags)
of skTemplate: result = semTemplateExpr(c, n, s, flags)
else: discard
of skType:
result = symNodeFromType(c, semTypeNode(c, n, nil), n.info)
else:
discard
proc semArrayAccess(c: PContext, n: PNode, flags: TExprFlags): PNode =
result = semSubscript(c, n, flags)
if result == nil:
# overloaded [] operator:
result = semExpr(c, buildOverloadedSubscripts(n, getIdent(c.cache, "[]")))
proc propertyWriteAccess(c: PContext, n, nOrig, a: PNode): PNode =
var id = considerQuotedIdent(c, a[1], a)
var setterId = newIdentNode(getIdent(c.cache, id.s & '='), n.info)
# a[0] is already checked for semantics, that does ``builtinFieldAccess``
# this is ugly. XXX Semantic checking should use the ``nfSem`` flag for
# nodes?
let aOrig = nOrig[0]
result = newNode(nkCall, n.info, sons = @[setterId, a[0],
semExprWithType(c, n[1])])
result.flags.incl nfDotSetter
let orig = newNode(nkCall, n.info, sons = @[setterId, aOrig[0], nOrig[1]])
result = semOverloadedCallAnalyseEffects(c, result, orig, {})
if result != nil:
result = afterCallActions(c, result, nOrig, {})
#fixAbstractType(c, result)
#analyseIfAddressTakenInCall(c, result)
proc takeImplicitAddr(c: PContext, n: PNode; isLent: bool): PNode =
# See RFC #7373, calls returning 'var T' are assumed to
# return a view into the first argument (if there is one):
let root = exprRoot(n)
if root != nil and root.owner == c.p.owner:
if root.kind in {skLet, skVar, skTemp} and sfGlobal notin root.flags:
localError(c.config, n.info, "'$1' escapes its stack frame; context: '$2'; see $3/var_t_return.html" % [
root.name.s, renderTree(n, {renderNoComments}), explanationsBaseUrl])
elif root.kind == skParam and root.position != 0:
localError(c.config, n.info, "'$1' is not the first parameter; context: '$2'; see $3/var_t_return.html" % [
root.name.s, renderTree(n, {renderNoComments}), explanationsBaseUrl])
case n.kind
of nkHiddenAddr, nkAddr: return n
of nkHiddenDeref, nkDerefExpr: return n.sons[0]
of nkBracketExpr:
if len(n) == 1: return n.sons[0]
else: discard
let valid = isAssignable(c, n)
if valid != arLValue:
if valid == arLocalLValue:
localError(c.config, n.info, errXStackEscape % renderTree(n, {renderNoComments}))
elif not isLent:
localError(c.config, n.info, errExprHasNoAddress)
result = newNodeIT(nkHiddenAddr, n.info, makePtrType(c, n.typ))
result.add(n)
proc asgnToResultVar(c: PContext, n, le, ri: PNode) {.inline.} =
if le.kind == nkHiddenDeref:
var x = le.sons[0]
if x.typ.kind in {tyVar, tyLent} and x.kind == nkSym and x.sym.kind == skResult:
n.sons[0] = x # 'result[]' --> 'result'
n.sons[1] = takeImplicitAddr(c, ri, x.typ.kind == tyLent)
x.typ.flags.incl tfVarIsPtr
#echo x.info, " setting it for this type ", typeToString(x.typ), " ", n.info
# Special typing rule: do not allow to pass 'owned T' to 'T' in 'result = x':
if ri.typ != nil and ri.typ.skipTypes(abstractInst).kind == tyOwned and
le.typ != nil and le.typ.skipTypes(abstractInst).kind != tyOwned:
localError(c.config, n.info, "cannot return an owned pointer as an unowned pointer; " &
"use 'owned(" & typeToString(le.typ) & ")' as the return type")
template resultTypeIsInferrable(typ: PType): untyped =
typ.isMetaType and typ.kind != tyTypeDesc
proc goodLineInfo(arg: PNode): TLineinfo =
if arg.kind == nkStmtListExpr and arg.len > 0:
goodLineInfo(arg[^1])
else:
arg.info
proc semAsgn(c: PContext, n: PNode; mode=asgnNormal): PNode =
checkSonsLen(n, 2, c.config)
var a = n.sons[0]
case a.kind
of nkDotExpr:
# r.f = x
# --> `f=` (r, x)
let nOrig = n.copyTree
a = builtinFieldAccess(c, a, {efLValue})
if a == nil:
a = propertyWriteAccess(c, n, nOrig, n[0])
if a != nil: return a
# we try without the '='; proc that return 'var' or macros are still
# possible:
a = dotTransformation(c, n[0])
if a.kind == nkDotCall:
a.kind = nkCall
a = semExprWithType(c, a, {efLValue})
of nkBracketExpr:
# a[i] = x
# --> `[]=`(a, i, x)
a = semSubscript(c, a, {efLValue})
if a == nil:
result = buildOverloadedSubscripts(n.sons[0], getIdent(c.cache, "[]="))
add(result, n[1])
if mode == noOverloadedSubscript:
bracketNotFoundError(c, result)
return n
else:
result = semExprNoType(c, result)
return result
of nkCurlyExpr:
# a{i} = x --> `{}=`(a, i, x)
result = buildOverloadedSubscripts(n.sons[0], getIdent(c.cache, "{}="))
add(result, n[1])
return semExprNoType(c, result)
of nkPar, nkTupleConstr:
if a.len >= 2:
# unfortunately we need to rewrite ``(x, y) = foo()`` already here so
# that overloading of the assignment operator still works. Usually we
# prefer to do these rewritings in transf.nim:
return semStmt(c, lowerTupleUnpackingForAsgn(c.graph, n, c.p.owner), {})
else:
a = semExprWithType(c, a, {efLValue})
else:
a = semExprWithType(c, a, {efLValue})
n.sons[0] = a
# a = b # both are vars, means: a[] = b[]
# a = b # b no 'var T' means: a = addr(b)
var le = a.typ
if le == nil:
localError(c.config, a.info, "expression has no type")
elif (skipTypes(le, {tyGenericInst, tyAlias, tySink}).kind != tyVar and
isAssignable(c, a) == arNone) or
skipTypes(le, abstractVar).kind in {tyOpenArray, tyVarargs}:
# Direct assignment to a discriminant is allowed!
localError(c.config, a.info, errXCannotBeAssignedTo %
renderTree(a, {renderNoComments}))
else:
let
lhs = n.sons[0]
lhsIsResult = lhs.kind == nkSym and lhs.sym.kind == skResult
var
rhs = semExprWithType(c, n.sons[1],
if lhsIsResult: {efAllowDestructor} else: {})
if lhsIsResult:
n.typ = c.enforceVoidContext
if c.p.owner.kind != skMacro and resultTypeIsInferrable(lhs.sym.typ):
var rhsTyp = rhs.typ
if rhsTyp.kind in tyUserTypeClasses and rhsTyp.isResolvedUserTypeClass:
rhsTyp = rhsTyp.lastSon
if cmpTypes(c, lhs.typ, rhsTyp) in {isGeneric, isEqual}:
internalAssert c.config, c.p.resultSym != nil
# Make sure the type is valid for the result variable
typeAllowedCheck(c.config, n.info, rhsTyp, skResult)
lhs.typ = rhsTyp
c.p.resultSym.typ = rhsTyp
c.p.owner.typ.sons[0] = rhsTyp
else:
typeMismatch(c.config, n.info, lhs.typ, rhsTyp)
n.sons[1] = fitNode(c, le, rhs, goodLineInfo(n[1]))
liftTypeBoundOps(c.graph, lhs.typ, lhs.info)
#liftTypeBoundOps(c, n.sons[0].typ, n.sons[0].info)
fixAbstractType(c, n)
asgnToResultVar(c, n, n.sons[0], n.sons[1])
result = n
proc semReturn(c: PContext, n: PNode): PNode =
result = n
checkSonsLen(n, 1, c.config)
if c.p.owner.kind in {skConverter, skMethod, skProc, skFunc, skMacro} or (
c.p.owner.kind == skIterator and c.p.owner.typ.callConv == ccClosure):
if n.sons[0].kind != nkEmpty:
# transform ``return expr`` to ``result = expr; return``
if c.p.resultSym != nil:
var a = newNodeI(nkAsgn, n.sons[0].info)
addSon(a, newSymNode(c.p.resultSym))
addSon(a, n.sons[0])
n.sons[0] = semAsgn(c, a)
# optimize away ``result = result``:
if n[0][1].kind == nkSym and n[0][1].sym == c.p.resultSym:
n.sons[0] = c.graph.emptyNode
else:
localError(c.config, n.info, errNoReturnTypeDeclared)
else:
localError(c.config, n.info, "'return' not allowed here")
proc semProcBody(c: PContext, n: PNode): PNode =
openScope(c)
result = semExpr(c, n)
if c.p.resultSym != nil and not isEmptyType(result.typ):
if result.kind == nkNilLit:
# or ImplicitlyDiscardable(result):
# new semantic: 'result = x' triggers the void context
result.typ = nil
elif result.kind == nkStmtListExpr and result.typ.kind == tyNil:
# to keep backwards compatibility bodies like:
# nil
# # comment
# are not expressions:
fixNilType(c, result)
else:
var a = newNodeI(nkAsgn, n.info, 2)
a.sons[0] = newSymNode(c.p.resultSym)
a.sons[1] = result
result = semAsgn(c, a)
else:
result = discardCheck(c, result, {})
if c.p.owner.kind notin {skMacro, skTemplate} and
c.p.resultSym != nil and c.p.resultSym.typ.isMetaType:
if isEmptyType(result.typ):
# we inferred a 'void' return type:
c.p.resultSym.typ = errorType(c)
c.p.owner.typ.sons[0] = nil
else:
localError(c.config, c.p.resultSym.info, errCannotInferReturnType)
closeScope(c)
proc semYieldVarResult(c: PContext, n: PNode, restype: PType) =
var t = skipTypes(restype, {tyGenericInst, tyAlias, tySink})
case t.kind
of tyVar, tyLent:
if t.kind == tyVar: t.flags.incl tfVarIsPtr # bugfix for #4048, #4910, #6892
if n.sons[0].kind in {nkHiddenStdConv, nkHiddenSubConv}:
n.sons[0] = n.sons[0].sons[1]
n.sons[0] = takeImplicitAddr(c, n.sons[0], t.kind == tyLent)
of tyTuple:
for i in 0..<t.sonsLen:
var e = skipTypes(t.sons[i], {tyGenericInst, tyAlias, tySink})
if e.kind in {tyVar, tyLent}:
if e.kind == tyVar: e.flags.incl tfVarIsPtr # bugfix for #4048, #4910, #6892
if n.sons[0].kind in {nkPar, nkTupleConstr}:
n.sons[0].sons[i] = takeImplicitAddr(c, n.sons[0].sons[i], e.kind == tyLent)
elif n.sons[0].kind in {nkHiddenStdConv, nkHiddenSubConv} and
n.sons[0].sons[1].kind in {nkPar, nkTupleConstr}:
var a = n.sons[0].sons[1]
a.sons[i] = takeImplicitAddr(c, a.sons[i], false)
else:
localError(c.config, n.sons[0].info, errXExpected, "tuple constructor")
else: discard
proc semYield(c: PContext, n: PNode): PNode =
result = n
checkSonsLen(n, 1, c.config)
if c.p.owner == nil or c.p.owner.kind != skIterator:
localError(c.config, n.info, errYieldNotAllowedHere)
elif n.sons[0].kind != nkEmpty:
n.sons[0] = semExprWithType(c, n.sons[0]) # check for type compatibility:
var iterType = c.p.owner.typ
let restype = iterType.sons[0]
if restype != nil:
if restype.kind != tyExpr:
n.sons[0] = fitNode(c, restype, n.sons[0], n.info)
if n.sons[0].typ == nil: internalError(c.config, n.info, "semYield")
if resultTypeIsInferrable(restype):
let inferred = n.sons[0].typ
iterType.sons[0] = inferred
semYieldVarResult(c, n, restype)
else:
localError(c.config, n.info, errCannotReturnExpr)
elif c.p.owner.typ.sons[0] != nil:
localError(c.config, n.info, errGenerated, "yield statement must yield a value")
proc lookUpForDefined(c: PContext, i: PIdent, onlyCurrentScope: bool): PSym =
if onlyCurrentScope:
result = localSearchInScope(c, i)
else:
result = searchInScopes(c, i) # no need for stub loading
proc lookUpForDefined(c: PContext, n: PNode, onlyCurrentScope: bool): PSym =
case n.kind
of nkIdent:
result = lookUpForDefined(c, n.ident, onlyCurrentScope)
of nkDotExpr:
result = nil
if onlyCurrentScope: return
checkSonsLen(n, 2, c.config)
var m = lookUpForDefined(c, n.sons[0], onlyCurrentScope)
if m != nil and m.kind == skModule:
let ident = considerQuotedIdent(c, n[1], n)
if m == c.module:
result = strTableGet(c.topLevelScope.symbols, ident)
else:
result = strTableGet(m.tab, ident)
of nkAccQuoted:
result = lookUpForDefined(c, considerQuotedIdent(c, n), onlyCurrentScope)
of nkSym:
result = n.sym
of nkOpenSymChoice, nkClosedSymChoice:
result = n.sons[0].sym
else:
localError(c.config, n.info, "identifier expected, but got: " & renderTree(n))
result = nil
proc semDefined(c: PContext, n: PNode, onlyCurrentScope: bool): PNode =
checkSonsLen(n, 2, c.config)
# we replace this node by a 'true' or 'false' node:
result = newIntNode(nkIntLit, 0)
if not onlyCurrentScope and considerQuotedIdent(c, n[0], n).s == "defined":
let d = considerQuotedIdent(c, n[1], n)
result.intVal = ord isDefined(c.config, d.s)
elif lookUpForDefined(c, n.sons[1], onlyCurrentScope) != nil:
result.intVal = 1
result.info = n.info
result.typ = getSysType(c.graph, n.info, tyBool)
proc expectMacroOrTemplateCall(c: PContext, n: PNode): PSym =
## The argument to the proc should be nkCall(...) or similar
## Returns the macro/template symbol
if isCallExpr(n):
var expandedSym = qualifiedLookUp(c, n[0], {checkUndeclared})
if expandedSym == nil:
errorUndeclaredIdentifier(c, n.info, n[0].renderTree)
return errorSym(c, n[0])
if expandedSym.kind notin {skMacro, skTemplate}:
localError(c.config, n.info, "'$1' is not a macro or template" % expandedSym.name.s)
return errorSym(c, n[0])
result = expandedSym
else:
localError(c.config, n.info, "'$1' is not a macro or template" % n.renderTree)
result = errorSym(c, n)
proc expectString(c: PContext, n: PNode): string =
var n = semConstExpr(c, n)
if n.kind in nkStrKinds:
return n.strVal
else:
localError(c.config, n.info, errStringLiteralExpected)
proc newAnonSym(c: PContext; kind: TSymKind, info: TLineInfo): PSym =
result = newSym(kind, c.cache.idAnon, getCurrOwner(c), info)
result.flags = {sfGenSym}
proc semExpandToAst(c: PContext, n: PNode): PNode =
let macroCall = n[1]
when false:
let expandedSym = expectMacroOrTemplateCall(c, macroCall)
if expandedSym.kind == skError: return n
macroCall.sons[0] = newSymNode(expandedSym, macroCall.info)
markUsed(c.config, n.info, expandedSym, c.graph.usageSym)
onUse(n.info, expandedSym)
if isCallExpr(macroCall):
for i in countup(1, macroCall.len-1):
#if macroCall.sons[0].typ.sons[i].kind != tyExpr:
macroCall.sons[i] = semExprWithType(c, macroCall[i], {})
# performing overloading resolution here produces too serious regressions:
let headSymbol = macroCall[0]
var cands = 0
var cand: PSym = nil
var o: TOverloadIter
var symx = initOverloadIter(o, c, headSymbol)
while symx != nil:
if symx.kind in {skTemplate, skMacro} and symx.typ.len == macroCall.len:
cand = symx
inc cands
symx = nextOverloadIter(o, c, headSymbol)
if cands == 0:
localError(c.config, n.info, "expected a template that takes " & $(macroCall.len-1) & " arguments")
elif cands >= 2:
localError(c.config, n.info, "ambiguous symbol in 'getAst' context: " & $macroCall)
else:
let info = macroCall.sons[0].info
macroCall.sons[0] = newSymNode(cand, info)
markUsed(c.config, info, cand, c.graph.usageSym)
onUse(info, cand)
# we just perform overloading resolution here:
#n.sons[1] = semOverloadedCall(c, macroCall, macroCall, {skTemplate, skMacro})
else:
localError(c.config, n.info, "getAst takes a call, but got " & n.renderTree)
# Preserve the magic symbol in order to be handled in evals.nim
internalAssert c.config, n.sons[0].sym.magic == mExpandToAst
#n.typ = getSysSym("NimNode").typ # expandedSym.getReturnType
if n.kind == nkStmtList and n.len == 1: result = n[0]
else: result = n
result.typ = sysTypeFromName(c.graph, n.info, "NimNode")
proc semExpandToAst(c: PContext, n: PNode, magicSym: PSym,
flags: TExprFlags = {}): PNode =
if sonsLen(n) == 2:
n.sons[0] = newSymNode(magicSym, n.info)
result = semExpandToAst(c, n)
else:
result = semDirectOp(c, n, flags)
proc processQuotations(c: PContext; n: var PNode, op: string,
quotes: var seq[PNode],
ids: var seq[PNode]) =
template returnQuote(q) =
quotes.add q
n = newIdentNode(getIdent(c.cache, $quotes.len), n.info)
ids.add n
return
if n.kind == nkPrefix:
checkSonsLen(n, 2, c.config)
if n[0].kind == nkIdent:
var examinedOp = n[0].ident.s
if examinedOp == op:
returnQuote n[1]
elif examinedOp.startsWith(op):
n.sons[0] = newIdentNode(getIdent(c.cache, examinedOp.substr(op.len)), n.info)
elif n.kind == nkAccQuoted and op == "``":
returnQuote n[0]
elif n.kind == nkIdent:
if n.ident.s == "result":
n = ids[0]
for i in 0 ..< n.safeLen:
processQuotations(c, n.sons[i], op, quotes, ids)
proc semQuoteAst(c: PContext, n: PNode): PNode =
internalAssert c.config, n.len == 2 or n.len == 3
# We transform the do block into a template with a param for
# each interpolation. We'll pass this template to getAst.
var
quotedBlock = n[^1]
op = if n.len == 3: expectString(c, n[1]) else: "``"
quotes = newSeq[PNode](2)
# the quotes will be added to a nkCall statement
# leave some room for the callee symbol and the result symbol
ids = newSeq[PNode](1)
# this will store the generated param names
# leave some room for the result symbol
if quotedBlock.kind != nkStmtList:
localError(c.config, n.info, errXExpected, "block")
# This adds a default first field to pass the result symbol
ids[0] = newAnonSym(c, skParam, n.info).newSymNode
processQuotations(c, quotedBlock, op, quotes, ids)
var dummyTemplate = newProcNode(
nkTemplateDef, quotedBlock.info, body = quotedBlock,
params = c.graph.emptyNode,
name = newAnonSym(c, skTemplate, n.info).newSymNode,
pattern = c.graph.emptyNode, genericParams = c.graph.emptyNode,
pragmas = c.graph.emptyNode, exceptions = c.graph.emptyNode)
if ids.len > 0:
dummyTemplate.sons[paramsPos] = newNodeI(nkFormalParams, n.info)
dummyTemplate[paramsPos].add getSysSym(c.graph, n.info, "typed").newSymNode # return type
ids.add getSysSym(c.graph, n.info, "untyped").newSymNode # params type
ids.add c.graph.emptyNode # no default value
dummyTemplate[paramsPos].add newNode(nkIdentDefs, n.info, ids)
var tmpl = semTemplateDef(c, dummyTemplate)
quotes[0] = tmpl[namePos]
# This adds a call to newIdentNode("result") as the first argument to the template call
quotes[1] = newNode(nkCall, n.info, @[newIdentNode(getIdent(c.cache, "newIdentNode"), n.info), newStrNode(nkStrLit, "result")])
result = newNode(nkCall, n.info, @[
createMagic(c.graph, "getAst", mExpandToAst).newSymNode,
newNode(nkCall, n.info, quotes)])
result = semExpandToAst(c, result)
proc tryExpr(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
# watch out, hacks ahead:
let oldErrorCount = c.config.errorCounter
let oldErrorMax = c.config.errorMax
let oldCompilesId = c.compilesContextId
inc c.compilesContextIdGenerator
c.compilesContextId = c.compilesContextIdGenerator
# do not halt after first error:
c.config.errorMax = high(int)
# open a scope for temporary symbol inclusions:
let oldScope = c.currentScope
openScope(c)
let oldOwnerLen = len(c.graph.owners)
let oldGenerics = c.generics
let oldErrorOutputs = c.config.m.errorOutputs
if efExplain notin flags: c.config.m.errorOutputs = {}
let oldContextLen = msgs.getInfoContextLen(c.config)
let oldInGenericContext = c.inGenericContext
let oldInUnrolledContext = c.inUnrolledContext
let oldInGenericInst = c.inGenericInst
let oldInStaticContext = c.inStaticContext
let oldProcCon = c.p
c.generics = @[]
var err: string
try:
result = semExpr(c, n, flags)
if c.config.errorCounter != oldErrorCount: result = nil
except ERecoverableError:
discard
# undo symbol table changes (as far as it's possible):
c.compilesContextId = oldCompilesId
c.generics = oldGenerics
c.inGenericContext = oldInGenericContext
c.inUnrolledContext = oldInUnrolledContext
c.inGenericInst = oldInGenericInst
c.inStaticContext = oldInStaticContext
c.p = oldProcCon
msgs.setInfoContextLen(c.config, oldContextLen)
setLen(c.graph.owners, oldOwnerLen)
c.currentScope = oldScope
c.config.m.errorOutputs = oldErrorOutputs
c.config.errorCounter = oldErrorCount
c.config.errorMax = oldErrorMax
proc semCompiles(c: PContext, n: PNode, flags: TExprFlags): PNode =
# we replace this node by a 'true' or 'false' node:
if sonsLen(n) != 2: return semDirectOp(c, n, flags)
result = newIntNode(nkIntLit, ord(tryExpr(c, n[1], flags) != nil))
result.info = n.info
result.typ = getSysType(c.graph, n.info, tyBool)
proc semShallowCopy(c: PContext, n: PNode, flags: TExprFlags): PNode =
if sonsLen(n) == 3:
# XXX ugh this is really a hack: shallowCopy() can be overloaded only
# with procs that take not 2 parameters:
result = newNodeI(nkFastAsgn, n.info)
result.add(n[1])
result.add(n[2])
result = semAsgn(c, result)
else:
result = semDirectOp(c, n, flags)
proc createFlowVar(c: PContext; t: PType; info: TLineInfo): PType =
result = newType(tyGenericInvocation, c.module)
addSonSkipIntLit(result, magicsys.getCompilerProc(c.graph, "FlowVar").typ)
addSonSkipIntLit(result, t)
result = instGenericContainer(c, info, result, allowMetaTypes = false)
proc instantiateCreateFlowVarCall(c: PContext; t: PType;
info: TLineInfo): PSym =
let sym = magicsys.getCompilerProc(c.graph, "nimCreateFlowVar")
if sym == nil:
localError(c.config, info, "system needs: nimCreateFlowVar")
var bindings: TIdTable
initIdTable(bindings)
bindings.idTablePut(sym.ast[genericParamsPos].sons[0].typ, t)
result = c.semGenerateInstance(c, sym, bindings, info)
# since it's an instantiation, we unmark it as a compilerproc. Otherwise
# codegen would fail:
if sfCompilerProc in result.flags:
result.flags = result.flags - {sfCompilerProc, sfExportC, sfImportC}
result.loc.r = nil
proc setMs(n: PNode, s: PSym): PNode =
result = n
n.sons[0] = newSymNode(s)
n.sons[0].info = n.info
proc semSizeof(c: PContext, n: PNode): PNode =
if sonsLen(n) != 2:
localError(c.config, n.info, errXExpectsTypeOrValue % "sizeof")
else:
n.sons[1] = semExprWithType(c, n.sons[1], {efDetermineType})
#restoreOldStyleType(n.sons[1])
n.typ = getSysType(c.graph, n.info, tyInt)
let size = getSize(c.config, n[1].typ)
if size >= 0:
result = newIntNode(nkIntLit, size)
result.info = n.info
result.typ = n.typ
else:
result = n
proc semMagic(c: PContext, n: PNode, s: PSym, flags: TExprFlags): PNode =
# this is a hotspot in the compiler!
result = n
case s.magic # magics that need special treatment
of mAddr:
checkSonsLen(n, 2, c.config)
result[0] = newSymNode(s, n[0].info)
result[1] = semAddrArg(c, n.sons[1], s.name.s == "unsafeAddr")
result.typ = makePtrType(c, result[1].typ)
of mTypeOf:
result = semTypeOf(c, n)
#of mArrGet: result = semArrGet(c, n, flags)
#of mArrPut: result = semArrPut(c, n, flags)
#of mAsgn: result = semAsgnOpr(c, n)
of mDefined: result = semDefined(c, setMs(n, s), false)
of mDefinedInScope: result = semDefined(c, setMs(n, s), true)
of mCompiles: result = semCompiles(c, setMs(n, s), flags)
#of mLow: result = semLowHigh(c, setMs(n, s), mLow)
#of mHigh: result = semLowHigh(c, setMs(n, s), mHigh)
of mIs: result = semIs(c, setMs(n, s), flags)
#of mOf: result = semOf(c, setMs(n, s))
of mShallowCopy: result = semShallowCopy(c, n, flags)
of mExpandToAst: result = semExpandToAst(c, n, s, flags)
of mQuoteAst: result = semQuoteAst(c, n)
of mAstToStr:
checkSonsLen(n, 2, c.config)
result = newStrNodeT(renderTree(n[1], {renderNoComments}), n, c.graph)
result.typ = getSysType(c.graph, n.info, tyString)
of mParallel:
if parallel notin c.features:
localError(c.config, n.info, "use the {.experimental.} pragma to enable 'parallel'")
result = setMs(n, s)
var x = n.lastSon
if x.kind == nkDo: x = x.sons[bodyPos]
inc c.inParallelStmt
result.sons[1] = semStmt(c, x, {})
dec c.inParallelStmt
of mSpawn:
result = setMs(n, s)
for i in 1 ..< n.len:
result.sons[i] = semExpr(c, n.sons[i])
let typ = result[^1].typ
if not typ.isEmptyType:
if spawnResult(typ, c.inParallelStmt > 0) == srFlowVar:
result.typ = createFlowVar(c, typ, n.info)
else:
result.typ = typ
result.add instantiateCreateFlowVarCall(c, typ, n.info).newSymNode
else:
result.add c.graph.emptyNode
of mProcCall:
result = setMs(n, s)
result.sons[1] = semExpr(c, n.sons[1])
result.typ = n[1].typ
of mPlugin:
# semDirectOp with conditional 'afterCallActions':
let nOrig = n.copyTree
#semLazyOpAux(c, n)
result = semOverloadedCallAnalyseEffects(c, n, nOrig, flags)
if result == nil:
result = errorNode(c, n)
else:
let callee = result.sons[0].sym
if callee.magic == mNone:
semFinishOperands(c, result)
activate(c, result)
fixAbstractType(c, result)
analyseIfAddressTakenInCall(c, result)
if callee.magic != mNone:
result = magicsAfterOverloadResolution(c, result, flags)
of mRunnableExamples:
if c.config.cmd == cmdDoc and n.len >= 2 and n.lastSon.kind == nkStmtList:
when false:
# some of this dead code was moved to `prepareExamples`
if sfMainModule in c.module.flags:
let inp = toFullPath(c.config, c.module.info)
if c.runnableExamples == nil:
c.runnableExamples = newTree(nkStmtList,
newTree(nkImportStmt, newStrNode(nkStrLit, expandFilename(inp))))
let imports = newTree(nkStmtList)
var savedLastSon = copyTree n.lastSon
extractImports(savedLastSon, imports)
for imp in imports: c.runnableExamples.add imp
c.runnableExamples.add newTree(nkBlockStmt, c.graph.emptyNode, copyTree savedLastSon)
result = setMs(n, s)
else:
result = c.graph.emptyNode
of mSizeOf: result = semSizeof(c, setMs(n, s))
of mOmpParFor:
checkMinSonsLen(n, 3, c.config)
result = semDirectOp(c, n, flags)
else:
result = semDirectOp(c, n, flags)
proc semWhen(c: PContext, n: PNode, semCheck = true): PNode =
# If semCheck is set to false, ``when`` will return the verbatim AST of
# the correct branch. Otherwise the AST will be passed through semStmt.
result = nil
template setResult(e: untyped) =
if semCheck: result = semExpr(c, e) # do not open a new scope!
else: result = e
# Check if the node is "when nimvm"
# when nimvm:
# ...
# else:
# ...
var whenNimvm = false
var typ = commonTypeBegin
if n.sons.len == 2 and n.sons[0].kind == nkElifBranch and
n.sons[1].kind == nkElse:
let exprNode = n.sons[0].sons[0]
if exprNode.kind == nkIdent:
whenNimvm = lookUp(c, exprNode).magic == mNimvm
elif exprNode.kind == nkSym:
whenNimvm = exprNode.sym.magic == mNimvm
if whenNimvm: n.flags.incl nfLL
for i in countup(0, sonsLen(n) - 1):
var it = n.sons[i]
case it.kind
of nkElifBranch, nkElifExpr:
checkSonsLen(it, 2, c.config)
if whenNimvm:
if semCheck:
it.sons[1] = semExpr(c, it.sons[1])
typ = commonType(typ, it.sons[1].typ)
result = n # when nimvm is not elimited until codegen
else:
let e = forceBool(c, semConstExpr(c, it.sons[0]))
if e.kind != nkIntLit:
# can happen for cascading errors, assume false
# InternalError(n.info, "semWhen")
discard
elif e.intVal != 0 and result == nil:
setResult(it.sons[1])
of nkElse, nkElseExpr:
checkSonsLen(it, 1, c.config)
if result == nil or whenNimvm:
if semCheck:
it.sons[0] = semExpr(c, it.sons[0])
typ = commonType(typ, it.sons[0].typ)
if result == nil:
result = it.sons[0]
else: illFormedAst(n, c.config)
if result == nil:
result = newNodeI(nkEmpty, n.info)
if whenNimvm: result.typ = typ
# The ``when`` statement implements the mechanism for platform dependent
# code. Thus we try to ensure here consistent ID allocation after the
# ``when`` statement.
idSynchronizationPoint(200)
proc semSetConstr(c: PContext, n: PNode): PNode =
result = newNodeI(nkCurly, n.info)
result.typ = newTypeS(tySet, c)
if sonsLen(n) == 0:
rawAddSon(result.typ, newTypeS(tyEmpty, c))
else:
# only semantic checking for all elements, later type checking:
var typ: PType = nil
for i in countup(0, sonsLen(n) - 1):
if isRange(n.sons[i]):
checkSonsLen(n.sons[i], 3, c.config)
n.sons[i].sons[1] = semExprWithType(c, n.sons[i].sons[1])
n.sons[i].sons[2] = semExprWithType(c, n.sons[i].sons[2])
if typ == nil:
typ = skipTypes(n.sons[i].sons[1].typ,
{tyGenericInst, tyVar, tyLent, tyOrdinal, tyAlias, tySink})
n.sons[i].typ = n.sons[i].sons[2].typ # range node needs type too
elif n.sons[i].kind == nkRange:
# already semchecked
if typ == nil:
typ = skipTypes(n.sons[i].sons[0].typ,
{tyGenericInst, tyVar, tyLent, tyOrdinal, tyAlias, tySink})
else:
n.sons[i] = semExprWithType(c, n.sons[i])
if typ == nil:
typ = skipTypes(n.sons[i].typ, {tyGenericInst, tyVar, tyLent, tyOrdinal, tyAlias, tySink})
if not isOrdinalType(typ, allowEnumWithHoles=true):
localError(c.config, n.info, errOrdinalTypeExpected)
typ = makeRangeType(c, 0, MaxSetElements-1, n.info)
elif lengthOrd(c.config, typ) > MaxSetElements:
typ = makeRangeType(c, 0, MaxSetElements-1, n.info)
addSonSkipIntLit(result.typ, typ)
for i in countup(0, sonsLen(n) - 1):
var m: PNode
let info = n.sons[i].info
if isRange(n.sons[i]):
m = newNodeI(nkRange, info)
addSon(m, fitNode(c, typ, n.sons[i].sons[1], info))
addSon(m, fitNode(c, typ, n.sons[i].sons[2], info))
elif n.sons[i].kind == nkRange: m = n.sons[i] # already semchecked
else:
m = fitNode(c, typ, n.sons[i], info)
addSon(result, m)
proc semTableConstr(c: PContext, n: PNode): PNode =
# we simply transform ``{key: value, key2, key3: value}`` to
# ``[(key, value), (key2, value2), (key3, value2)]``
result = newNodeI(nkBracket, n.info)
var lastKey = 0
for i in 0..n.len-1:
var x = n.sons[i]
if x.kind == nkExprColonExpr and sonsLen(x) == 2:
for j in countup(lastKey, i-1):
var pair = newNodeI(nkTupleConstr, x.info)
pair.add(n.sons[j])
pair.add(x[1])
result.add(pair)
var pair = newNodeI(nkTupleConstr, x.info)
pair.add(x[0])
pair.add(x[1])
result.add(pair)
lastKey = i+1
if lastKey != n.len: illFormedAst(n, c.config)
result = semExpr(c, result)
type
TParKind = enum
paNone, paSingle, paTupleFields, paTuplePositions
proc checkPar(c: PContext; n: PNode): TParKind =
var length = sonsLen(n)
if length == 0:
result = paTuplePositions # ()
elif length == 1:
if n.sons[0].kind == nkExprColonExpr: result = paTupleFields
elif n.kind == nkTupleConstr: result = paTuplePositions
else: result = paSingle # (expr)
else:
if n.sons[0].kind == nkExprColonExpr: result = paTupleFields
else: result = paTuplePositions
for i in countup(0, length - 1):
if result == paTupleFields:
if (n.sons[i].kind != nkExprColonExpr) or
not (n.sons[i].sons[0].kind in {nkSym, nkIdent}):
localError(c.config, n.sons[i].info, errNamedExprExpected)
return paNone
else:
if n.sons[i].kind == nkExprColonExpr:
localError(c.config, n.sons[i].info, errNamedExprNotAllowed)
return paNone
proc semTupleFieldsConstr(c: PContext, n: PNode, flags: TExprFlags): PNode =
result = newNodeI(nkTupleConstr, n.info)
var typ = newTypeS(tyTuple, c)
typ.n = newNodeI(nkRecList, n.info) # nkIdentDefs
var ids = initIntSet()
for i in countup(0, sonsLen(n) - 1):
if n[i].kind != nkExprColonExpr or n[i][0].kind notin {nkSym, nkIdent}:
illFormedAst(n.sons[i], c.config)
var id: PIdent
if n.sons[i].sons[0].kind == nkIdent: id = n.sons[i].sons[0].ident
else: id = n.sons[i].sons[0].sym.name
if containsOrIncl(ids, id.id):
localError(c.config, n.sons[i].info, errFieldInitTwice % id.s)
n.sons[i].sons[1] = semExprWithType(c, n.sons[i].sons[1],
flags*{efAllowDestructor})
var f = newSymS(skField, n.sons[i].sons[0], c)
f.typ = skipIntLit(n.sons[i].sons[1].typ)
f.position = i
rawAddSon(typ, f.typ)
addSon(typ.n, newSymNode(f))
n.sons[i].sons[0] = newSymNode(f)
addSon(result, n.sons[i])
result.typ = typ
proc semTuplePositionsConstr(c: PContext, n: PNode, flags: TExprFlags): PNode =
result = n # we don't modify n, but compute the type:
result.kind = nkTupleConstr
var typ = newTypeS(tyTuple, c) # leave typ.n nil!
for i in countup(0, sonsLen(n) - 1):
n.sons[i] = semExprWithType(c, n.sons[i], flags*{efAllowDestructor})
addSonSkipIntLit(typ, n.sons[i].typ)
result.typ = typ
proc isTupleType(n: PNode): bool =
if n.len == 0:
return false # don't interpret () as type
for i in countup(0, n.len - 1):
if n[i].typ == nil or n[i].typ.kind != tyTypeDesc:
return false
return true
include semobjconstr
proc semBlock(c: PContext, n: PNode; flags: TExprFlags): PNode =
result = n
inc(c.p.nestedBlockCounter)
checkSonsLen(n, 2, c.config)
openScope(c) # BUGFIX: label is in the scope of block!
if n.sons[0].kind != nkEmpty:
var labl = newSymG(skLabel, n.sons[0], c)
if sfGenSym notin labl.flags:
addDecl(c, labl)
elif labl.owner == nil:
labl.owner = c.p.owner
n.sons[0] = newSymNode(labl, n.sons[0].info)
suggestSym(c.config, n.sons[0].info, labl, c.graph.usageSym)
styleCheckDef(c.config, labl)
onDef(n[0].info, labl)
n.sons[1] = semExpr(c, n.sons[1], flags)
n.typ = n.sons[1].typ
if isEmptyType(n.typ): n.kind = nkBlockStmt
else: n.kind = nkBlockExpr
closeScope(c)
dec(c.p.nestedBlockCounter)
proc semExportExcept(c: PContext, n: PNode): PNode =
let moduleName = semExpr(c, n[0])
if moduleName.kind != nkSym or moduleName.sym.kind != skModule:
localError(c.config, n.info, "The export/except syntax expects a module name")
return n
let exceptSet = readExceptSet(c, n)
let exported = moduleName.sym
result = newNodeI(nkExportStmt, n.info)
strTableAdd(c.module.tab, exported)
var i: TTabIter
var s = initTabIter(i, exported.tab)
while s != nil:
if s.kind in ExportableSymKinds+{skModule} and
s.name.id notin exceptSet:
strTableAdd(c.module.tab, s)
result.add newSymNode(s, n.info)
s = nextIter(i, exported.tab)
proc semExport(c: PContext, n: PNode): PNode =
result = newNodeI(nkExportStmt, n.info)
for i in 0..<n.len:
let a = n.sons[i]
var o: TOverloadIter
var s = initOverloadIter(o, c, a)
if s == nil:
localError(c.config, a.info, errGenerated, "cannot export: " & renderTree(a))
elif s.kind == skModule:
# forward everything from that module:
strTableAdd(c.module.tab, s)
var ti: TTabIter
var it = initTabIter(ti, s.tab)
while it != nil:
if it.kind in ExportableSymKinds+{skModule}:
strTableAdd(c.module.tab, it)
result.add newSymNode(it, a.info)
it = nextIter(ti, s.tab)
else:
while s != nil:
if s.kind == skEnumField:
localError(c.config, a.info, errGenerated, "cannot export: " & renderTree(a) &
"; enum field cannot be exported individually")
if s.kind in ExportableSymKinds+{skModule}:
result.add(newSymNode(s, a.info))
strTableAdd(c.module.tab, s)
s = nextOverloadIter(o, c, a)
proc shouldBeBracketExpr(n: PNode): bool =
assert n.kind in nkCallKinds
let a = n.sons[0]
if a.kind in nkCallKinds:
let b = a[0]
if b.kind in nkSymChoices:
for i in 0..<b.len:
if b[i].kind == nkSym and b[i].sym.magic == mArrGet:
let be = newNodeI(nkBracketExpr, n.info)
for i in 1..<a.len: be.add(a[i])
n.sons[0] = be
return true
proc semExpr(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
result = n
if c.config.cmd == cmdIdeTools: suggestExpr(c, n)
if nfSem in n.flags: return
case n.kind
of nkIdent, nkAccQuoted:
let checks = if efNoEvaluateGeneric in flags:
{checkUndeclared, checkPureEnumFields}
elif efInCall in flags:
{checkUndeclared, checkModule, checkPureEnumFields}
else:
{checkUndeclared, checkModule, checkAmbiguity, checkPureEnumFields}
var s = qualifiedLookUp(c, n, checks)
if c.matchedConcept == nil: semCaptureSym(s, c.p.owner)
if s.kind in {skProc, skFunc, skMethod, skConverter, skIterator}:
#performProcvarCheck(c, n, s)
result = symChoice(c, n, s, scClosed)
if result.kind == nkSym:
markIndirect(c, result.sym)
# if isGenericRoutine(result.sym):
# localError(c.config, n.info, errInstantiateXExplicitly, s.name.s)
else:
result = semSym(c, n, s, flags)
of nkSym:
# because of the changed symbol binding, this does not mean that we
# don't have to check the symbol for semantics here again!
result = semSym(c, n, n.sym, flags)
of nkEmpty, nkNone, nkCommentStmt, nkType:
discard
of nkNilLit:
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyNil)
of nkIntLit:
if result.typ == nil: setIntLitType(c.graph, result)
of nkInt8Lit:
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyInt8)
of nkInt16Lit:
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyInt16)
of nkInt32Lit:
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyInt32)
of nkInt64Lit:
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyInt64)
of nkUIntLit:
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyUInt)
of nkUInt8Lit:
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyUInt8)
of nkUInt16Lit:
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyUInt16)
of nkUInt32Lit:
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyUInt32)
of nkUInt64Lit:
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyUInt64)
#of nkFloatLit:
# if result.typ == nil: result.typ = getFloatLitType(result)
of nkFloat32Lit:
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyFloat32)
of nkFloat64Lit, nkFloatLit:
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyFloat64)
of nkFloat128Lit:
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyFloat128)
of nkStrLit..nkTripleStrLit:
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyString)
of nkCharLit:
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyChar)
of nkDotExpr:
result = semFieldAccess(c, n, flags)
if result.kind == nkDotCall:
result.kind = nkCall
result = semExpr(c, result, flags)
of nkBind:
message(c.config, n.info, warnDeprecated, "bind is deprecated")
result = semExpr(c, n.sons[0], flags)
of nkTypeOfExpr, nkTupleTy, nkTupleClassTy, nkRefTy..nkEnumTy, nkStaticTy:
if c.matchedConcept != nil and n.len == 1:
let modifier = n.modifierTypeKindOfNode
if modifier != tyNone:
var baseType = semExpr(c, n[0]).typ.skipTypes({tyTypeDesc})
result.typ = c.makeTypeDesc(c.newTypeWithSons(modifier, @[baseType]))
return
var typ = semTypeNode(c, n, nil).skipTypes({tyTypeDesc})
result.typ = makeTypeDesc(c, typ)
of nkCall, nkInfix, nkPrefix, nkPostfix, nkCommand, nkCallStrLit:
# check if it is an expression macro:
checkMinSonsLen(n, 1, c.config)
#when defined(nimsuggest):
# if gIdeCmd == ideCon and c.config.m.trackPos == n.info: suggestExprNoCheck(c, n)
let mode = if nfDotField in n.flags: {} else: {checkUndeclared}
var s = qualifiedLookUp(c, n.sons[0], mode)
if s != nil:
#if c.config.cmd == cmdPretty and n.sons[0].kind == nkDotExpr:
# pretty.checkUse(n.sons[0].sons[1].info, s)
case s.kind
of skMacro:
if sfImmediate notin s.flags:
result = semDirectOp(c, n, flags)
else:
result = semMacroExpr(c, n, n, s, flags)
of skTemplate:
if sfImmediate notin s.flags:
result = semDirectOp(c, n, flags)
else:
result = semTemplateExpr(c, n, s, flags)
of skType:
# XXX think about this more (``set`` procs)
if n.len == 2:
result = semConv(c, n)
elif contains(c.ambiguousSymbols, s.id) and n.len == 1:
errorUseQualifier(c, n.info, s)
elif n.len == 1:
result = semObjConstr(c, n, flags)
elif s.magic == mNone: result = semDirectOp(c, n, flags)
else: result = semMagic(c, n, s, flags)
of skProc, skFunc, skMethod, skConverter, skIterator:
if s.magic == mNone: result = semDirectOp(c, n, flags)
else: result = semMagic(c, n, s, flags)
else:
#liMessage(n.info, warnUser, renderTree(n));
result = semIndirectOp(c, n, flags)
elif (n[0].kind == nkBracketExpr or shouldBeBracketExpr(n)) and
isSymChoice(n[0][0]):
# indirectOp can deal with explicit instantiations; the fixes
# the 'newSeq[T](x)' bug
setGenericParams(c, n.sons[0])
result = semDirectOp(c, n, flags)
elif isSymChoice(n.sons[0]) or nfDotField in n.flags:
result = semDirectOp(c, n, flags)
else:
result = semIndirectOp(c, n, flags)
of nkWhen:
if efWantStmt in flags:
result = semWhen(c, n, true)
else:
result = semWhen(c, n, false)
if result == n:
# This is a "when nimvm" stmt.
result = semWhen(c, n, true)
else:
result = semExpr(c, result, flags)
of nkBracketExpr:
checkMinSonsLen(n, 1, c.config)
result = semArrayAccess(c, n, flags)
of nkCurlyExpr:
result = semExpr(c, buildOverloadedSubscripts(n, getIdent(c.cache, "{}")), flags)
of nkPragmaExpr:
var
pragma = n[1]
pragmaName = considerQuotedIdent(c, pragma[0])
flags = flags
finalNodeFlags: TNodeFlags = {}
case whichKeyword(pragmaName)
of wExplain:
flags.incl efExplain
of wExecuteOnReload:
finalNodeFlags.incl nfExecuteOnReload
else:
# what other pragmas are allowed for expressions? `likely`, `unlikely`
invalidPragma(c, n)
result = semExpr(c, n[0], flags)
result.flags.incl finalNodeFlags
of nkPar, nkTupleConstr:
case checkPar(c, n)
of paNone: result = errorNode(c, n)
of paTuplePositions:
var tupexp = semTuplePositionsConstr(c, n, flags)
if isTupleType(tupexp):
# reinterpret as type
var typ = semTypeNode(c, n, nil).skipTypes({tyTypeDesc})
result.typ = makeTypeDesc(c, typ)
else:
result = tupexp
of paTupleFields: result = semTupleFieldsConstr(c, n, flags)
of paSingle: result = semExpr(c, n.sons[0], flags)
of nkCurly: result = semSetConstr(c, n)
of nkBracket: result = semArrayConstr(c, n, flags)
of nkObjConstr: result = semObjConstr(c, n, flags)
of nkLambdaKinds: result = semLambda(c, n, flags)
of nkDerefExpr: result = semDeref(c, n)
of nkAddr:
result = n
checkSonsLen(n, 1, c.config)
result[0] = semAddrArg(c, n.sons[0])
result.typ = makePtrType(c, result[0].typ)
of nkHiddenAddr, nkHiddenDeref:
checkSonsLen(n, 1, c.config)
n.sons[0] = semExpr(c, n.sons[0], flags)
of nkCast: result = semCast(c, n)
of nkIfExpr, nkIfStmt: result = semIf(c, n, flags)
of nkHiddenStdConv, nkHiddenSubConv, nkConv, nkHiddenCallConv:
checkSonsLen(n, 2, c.config)
considerGenSyms(c, n)
of nkStringToCString, nkCStringToString, nkObjDownConv, nkObjUpConv:
checkSonsLen(n, 1, c.config)
considerGenSyms(c, n)
of nkChckRangeF, nkChckRange64, nkChckRange:
checkSonsLen(n, 3, c.config)
considerGenSyms(c, n)
of nkCheckedFieldExpr:
checkMinSonsLen(n, 2, c.config)
considerGenSyms(c, n)
of nkTableConstr:
result = semTableConstr(c, n)
of nkClosedSymChoice, nkOpenSymChoice:
# handling of sym choices is context dependent
# the node is left intact for now
discard
of nkStaticExpr: result = semStaticExpr(c, n[0])
of nkAsgn: result = semAsgn(c, n)
of nkBlockStmt, nkBlockExpr: result = semBlock(c, n, flags)
of nkStmtList, nkStmtListExpr: result = semStmtList(c, n, flags)
of nkRaiseStmt: result = semRaise(c, n)
of nkVarSection: result = semVarOrLet(c, n, skVar)
of nkLetSection: result = semVarOrLet(c, n, skLet)
of nkConstSection: result = semConst(c, n)
of nkTypeSection: result = semTypeSection(c, n)
of nkDiscardStmt: result = semDiscard(c, n)
of nkWhileStmt: result = semWhile(c, n, flags)
of nkTryStmt: result = semTry(c, n, flags)
of nkBreakStmt, nkContinueStmt: result = semBreakOrContinue(c, n)
of nkForStmt, nkParForStmt: result = semFor(c, n, flags)
of nkCaseStmt: result = semCase(c, n, flags)
of nkReturnStmt: result = semReturn(c, n)
of nkUsingStmt: result = semUsing(c, n)
of nkAsmStmt: result = semAsm(c, n)
of nkYieldStmt: result = semYield(c, n)
of nkPragma: pragma(c, c.p.owner, n, stmtPragmas)
of nkIteratorDef: result = semIterator(c, n)
of nkProcDef: result = semProc(c, n)
of nkFuncDef: result = semFunc(c, n)
of nkMethodDef: result = semMethod(c, n)
of nkConverterDef: result = semConverterDef(c, n)
of nkMacroDef: result = semMacroDef(c, n)
of nkTemplateDef: result = semTemplateDef(c, n)
of nkImportStmt:
# this particular way allows 'import' in a 'compiles' context so that
# template canImport(x): bool =
# compiles:
# import x
#
# works:
if c.currentScope.depthLevel > 2 + c.compilesContextId:
localError(c.config, n.info, errXOnlyAtModuleScope % "import")
result = evalImport(c, n)
of nkImportExceptStmt:
if not isTopLevel(c): localError(c.config, n.info, errXOnlyAtModuleScope % "import")
result = evalImportExcept(c, n)
of nkFromStmt:
if not isTopLevel(c): localError(c.config, n.info, errXOnlyAtModuleScope % "from")
result = evalFrom(c, n)
of nkIncludeStmt:
#if not isTopLevel(c): localError(c.config, n.info, errXOnlyAtModuleScope % "include")
result = evalInclude(c, n)
of nkExportStmt:
if not isTopLevel(c): localError(c.config, n.info, errXOnlyAtModuleScope % "export")
result = semExport(c, n)
of nkExportExceptStmt:
if not isTopLevel(c): localError(c.config, n.info, errXOnlyAtModuleScope % "export")
result = semExportExcept(c, n)
of nkPragmaBlock:
result = semPragmaBlock(c, n)
of nkStaticStmt:
result = semStaticStmt(c, n)
of nkDefer:
if c.currentScope == c.topLevelScope:
localError(c.config, n.info, "defer statement not supported at top level")
n.sons[0] = semExpr(c, n.sons[0])
if not n.sons[0].typ.isEmptyType and not implicitlyDiscardable(n.sons[0]):
localError(c.config, n.info, "'defer' takes a 'void' expression")
#localError(c.config, n.info, errGenerated, "'defer' not allowed in this context")
of nkGotoState, nkState:
if n.len != 1 and n.len != 2: illFormedAst(n, c.config)
for i in 0 ..< n.len:
n.sons[i] = semExpr(c, n.sons[i])
of nkComesFrom: discard "ignore the comes from information for now"
else:
localError(c.config, n.info, "invalid expression: " &
renderTree(n, {renderNoComments}))
if result != nil: incl(result.flags, nfSem)