summary refs log tree commit diff stats
path: root/compiler/semexprs.nim
blob: 3e8edc68757d680133371f57ce54ae8bfb8cff5e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
pre { line-height: 125%; }
td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
.highlight .hll { background-color: #ffffcc }
.highlight .c { color: #888888 } /* Comment */
.highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */
.highlight .k { color: #008800; font-weight: bold } /* Keyword */
.highlight .ch { color: #888888 } /* Comment.Hashbang */
.highlight .cm { color: #888888 } /* Comment.Multiline */
.highlight .cp { color: #cc0000; font-weight: bold } /* Comment.Preproc */
.highlight .cpf { color: #888888 } /* Comment.PreprocFile */
.highlight .c1 { color: #888888 } /* Comment.Single */
.highlight .cs { color: #cc0000; font-weight: bold; background-color: #fff0f0 } /* Comment.Special */
.highlight .gd { color: #000000; background-color: #ffdddd } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */
.highlight .gr { color: #aa0000 } /* Generic.Error */
.highlight .gh { color: #333333 } /* Generic.Heading */
.highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #555555 } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #666666 } /* Generic.Subheading */
.highlight .gt { color: #aa0000 } /* Generic.Traceback */
.highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008800 } /* Keyword.Pseudo */
.highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */
.highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */
.highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */
.highlight .na { color: #336699 } /* Name.Attribute */
.highlight .nb { color: #003388 } /* Name.Builtin */
.highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */
.highlight .no { color: #003366; font-weight: bold } /* Name.Constant */
.highlight .nd { color: #555555 } /* Name.Decorator */
.highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */
.highlight .nl { color: #336699; font-style: italic } /* Name.Label */
.highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */
.highlight .py { color: #336699; font-weight: bold } /* Name.Property */
.highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #336699 } /* Name.Variable */
.highlight .ow { color: #008800 } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */
.highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */
.highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */
.highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */
.highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */
.highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */
.highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */
.highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */
.highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */
.highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */
.highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */
.highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */
.highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */
.highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */
.highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */
.highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */
.highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */
.highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */
.highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */
.highlight .vc { color: #336699 } /* Name.Variable.Class */
.highlight .vg { color: #dd7700 } /* Name.Variable.Global */
.highlight .vi { color: #3333bb } /* Name.Variable.Instance */
.highlight .vm { color: #336699 } /* Name.Variable.Magic */
.highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */
-- primitives for editing drawings
Drawing = {}
geom = require 'geom'

-- All drawings span 100% of some conceptual 'page width' and divide it up
-- into 256 parts.
function Drawing.draw(line)
  local pmx,pmy = love.mouse.getX(), love.mouse.getY()
  if pmx < 16+Line_width and pmy > line.y and pmy < line.y+Drawing.pixels(line.h) then
    love.graphics.setColor(0.75,0.75,0.75)
    love.graphics.rectangle('line', 16,line.y, Line_width,Drawing.pixels(line.h))
    if icon[Current_drawing_mode] then
      icon[Current_drawing_mode](16+Line_width-20, line.y+4)
    else
      icon[Previous_drawing_mode](16+Line_width-20, line.y+4)
    end

    if love.mouse.isDown('1') and love.keyboard.isDown('h') then
      draw_help_with_mouse_pressed(line)
      return
    end
  end

  if line.show_help then
    draw_help_without_mouse_pressed(line)
    return
  end

  local mx,my = Drawing.coord(pmx-16), Drawing.coord(pmy-line.y)

  for _,shape in ipairs(line.shapes) do
    assert(shape)
    if geom.on_shape(mx,my, line, shape) then
      love.graphics.setColor(1,0,0)
    else
      love.graphics.setColor(0,0,0)
    end
    Drawing.draw_shape(16,line.y, line, shape)
  end
  for i,p in ipairs(line.points) do
    if p.deleted == nil then
      if Drawing.near(p, mx,my) then
        love.graphics.setColor(1,0,0)
        love.graphics.circle('line', Drawing.pixels(p.x)+16,Drawing.pixels(p.y)+line.y, 4)
      else
        love.graphics.setColor(0,0,0)
        love.graphics.circle('fill', Drawing.pixels(p.x)+16,Drawing.pixels(p.y)+line.y, 2)
      end
      if p.name then
        -- todo: clip
        local x,y = Drawing.pixels(p.x)+16+5, Drawing.pixels(p.y)+line.y+5
        love.graphics.print(p.name, x,y)
        if Current_drawing_mode == 'name' and i == line.pending.target_point then
          -- create a faint red box for the name
          love.graphics.setColor(1,0,0,0.1)
          local name_text
          -- TODO: avoid computing name width on every repaint
          if p.name == '' then
            name_text = Em
          else
            name_text = App.newText(love.graphics.getFont(), p.name)
          end
          love.graphics.rectangle('fill', x,y, App.width(name_text), Line_height)
        end
      end
    end
  end
  love.graphics.setColor(0.75,0.75,0.75)
  Drawing.draw_pending_shape(16,line.y, line)
end

function Drawing.draw_shape(left,top, drawing, shape)
  if shape.mode == 'freehand' then
    local prev = nil
    for _,point in ipairs(shape.points) do
      if prev then
        love.graphics.line(Drawing.pixels(prev.x)+left,Drawing.pixels(prev.y)+top, Drawing.pixels(point.x)+left,Drawing.pixels(point.y)+top)
      end
      prev = point
    end
  elseif shape.mode == 'line' or shape.mode == 'manhattan' then
    local p1 = drawing.points[shape.p1]
    local p2 = drawing.points[shape.p2]
    love.graphics.line(Drawing.pixels(p1.x)+left,Drawing.pixels(p1.y)+top, Drawing.pixels(p2.x)+left,Drawing.pixels(p2.y)+top)
  elseif shape.mode == 'polygon' or shape.mode == 'rectangle' or shape.mode == 'square' then
    local prev = nil
    for _,point in ipairs(shape.vertices) do
      local curr = drawing.points[point]
      if prev then
        love.graphics.line(Drawing.pixels(prev.x)+left,Drawing.pixels(prev.y)+top, Drawing.pixels(curr.x)+left,Drawing.pixels(curr.y)+top)
      end
      prev = curr
    end
    -- close the loop
    local curr = drawing.points[shape.vertices[1]]
    love.graphics.line(Drawing.pixels(prev.x)+left,Drawing.pixels(prev.y)+top, Drawing.pixels(curr.x)+left,Drawing.pixels(curr.y)+top)
  elseif shape.mode == 'circle' then
    -- todo: clip
    local center = drawing.points[shape.center]
    love.graphics.circle('line', Drawing.pixels(center.x)+left,Drawing.pixels(center.y)+top, Drawing.pixels(shape.radius))
  elseif shape.mode == 'arc' then
    local center = drawing.points[shape.center]
    love.graphics.arc('line', 'open', Drawing.pixels(center.x)+left,Drawing.pixels(center.y)+top, Drawing.pixels(shape.radius), shape.start_angle, shape.end_angle, 360)
  elseif shape.mode == 'deleted' then
    -- ignore
  else
    print(shape.mode)
    assert(false)
  end
end

function Drawing.draw_pending_shape(left,top, drawing)
  local shape = drawing.pending
  if shape.mode == nil then
    -- nothing pending
  elseif shape.mode == 'freehand' then
    Drawing.draw_shape(left,top, drawing, shape)
  elseif shape.mode == 'line' then
    local mx,my = Drawing.coord(love.mouse.getX()-left), Drawing.coord(love.mouse.getY()-top)
    if mx < 0 or mx >= 256 or my < 0 or my >= drawing.h then
      return
    end
    local p1 = drawing.points[shape.p1]
    love.graphics.line(Drawing.pixels(p1.x)+left,Drawing.pixels(p1.y)+top, Drawing.pixels(mx)+left,Drawing.pixels(my)+top)
  elseif shape.mode == 'manhattan' then
    local mx,my = Drawing.coord(love.mouse.getX()-left), Drawing.coord(love.mouse.getY()-top)
    if mx < 0 or mx >= 256 or my < 0 or my >= drawing.h then
      return
    end
    local p1 = drawing.points[shape.p1]
    if math.abs(mx-p1.x) > math.abs(my-p1.y) then
      love.graphics.line(Drawing.pixels(p1.x)+left,Drawing.pixels(p1.y)+top, Drawing.pixels(mx)+left,Drawing.pixels(p1.y)+top)
    else
      love.graphics.line(Drawing.pixels(p1.x)+left,Drawing.pixels(p1.y)+top, Drawing.pixels(p1.x)+left,Drawing.pixels(my)+top)
    end
  elseif shape.mode == 'polygon' then
    -- don't close the loop on a pending polygon
    local prev = nil
    for _,point in ipairs(shape.vertices) do
      local curr = drawing.points[point]
      if prev then
        love.graphics.line(Drawing.pixels(prev.x)+left,Drawing.pixels(prev.y)+top, Drawing.pixels(curr.x)+left,Drawing.pixels(curr.y)+top)
      end
      prev = curr
    end
    love.graphics.line(Drawing.pixels(prev.x)+left,Drawing.pixels(prev.y)+top, love.mouse.getX(),love.mouse.getY())
  elseif shape.mode == 'rectangle' then
    local pmx,pmy = love.mouse.getX(), love.mouse.getY()
    local first = drawing.points[shape.vertices[1]]
    if #shape.vertices == 1 then
      love.graphics.line(Drawing.pixels(first.x)+left,Drawing.pixels(first.y)+top, pmx,pmy)
      return
    end
    local second = drawing.points[shape.vertices[2]]
    local mx,my = Drawing.coord(pmx-left), Drawing.coord(pmy-top)
    local thirdx,thirdy, fourthx,fourthy = Drawing.complete_rectangle(first.x,first.y, second.x,second.y, mx,my)
    love.graphics.line(Drawing.pixels(first.x)+left,Drawing.pixels(first.y)+top, Drawing.pixels(second.x)+left,Drawing.pixels(second.y)+top)
    love.graphics.line(Drawing.pixels(second.x)+left,Drawing.pixels(second.y)+top, Drawing.pixels(thirdx)+left,Drawing.pixels(thirdy)+top)
    love.graphics.line(Drawing.pixels(thirdx)+left,Drawing.pixels(thirdy)+top, Drawing.pixels(fourthx)+left,Drawing.pixels(fourthy)+top)
    love.graphics.line(Drawing.pixels(fourthx)+left,Drawing.pixels(fourthy)+top, Drawing.pixels(first.x)+left,Drawing.pixels(first.y)+top)
  elseif shape.mode == 'square' then
    local pmx,pmy = love.mouse.getX(), love.mouse.getY()
    local first = drawing.points[shape.vertices[1]]
    if #shape.vertices == 1 then
      love.graphics.line(Drawing.pixels(first.x)+left,Drawing.pixels(first.y)+top, pmx,pmy)
      return
    end
    local second = drawing.points[shape.vertices[2]]
    local mx,my = Drawing.coord(pmx-left), Drawing.coord(pmy-top)
    local thirdx,thirdy, fourthx,fourthy = Drawing.complete_square(first.x,first.y, second.x,second.y, mx,my)
    love.graphics.line(Drawing.pixels(first.x)+left,Drawing.pixels(first.y)+top, Drawing.pixels(second.x)+left,Drawing.pixels(second.y)+top)
    love.graphics.line(Drawing.pixels(second.x)+left,Drawing.pixels(second.y)+top, Drawing.pixels(thirdx)+left,Drawing.pixels(thirdy)+top)
    love.graphics.line(Drawing.pixels(thirdx)+left,Drawing.pixels(thirdy)+top, Drawing.pixels(fourthx)+left,Drawing.pixels(fourthy)+top)
    love.graphics.line(Drawing.pixels(fourthx)+left,Drawing.pixels(fourthy)+top, Drawing.pixels(first.x)+left,Drawing.pixels(first.y)+top)
  elseif shape.mode == 'circle' then
    local center = drawing.points[shape.center]
    local mx,my = Drawing.coord(love.mouse.getX()-left), Drawing.coord(love.mouse.getY()-top)
    if mx < 0 or mx >= 256 or my < 0 or my >= drawing.h then
      return
    end
    local cx,cy = Drawing.pixels(center.x)+left, Drawing.pixels(center.y)+top
    love.graphics.circle('line', cx,cy, geom.dist(cx,cy, love.mouse.getX(),love.mouse.getY()))
  elseif shape.mode == 'arc' then
    local center = drawing.points[shape.center]
    local mx,my = Drawing.coord(love.mouse.getX()-left), Drawing.coord(love.mouse.getY()-top)
    if mx < 0 or mx >= 256 or my < 0 or my >= drawing.h then
      return
    end
    shape.end_angle = geom.angle_with_hint(center.x,center.y, mx,my, shape.end_angle)
    local cx,cy = Drawing.pixels(center.x)+left, Drawing.pixels(center.y)+top
    love.graphics.arc('line', 'open', cx,cy, Drawing.pixels(shape.radius), shape.start_angle, shape.end_anglepre { line-height: 125%; }
td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
.highlight .hll { background-color: #ffffcc }
.highlight .c { color: #888888 } /* Comment */
.highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */
.highlight .k { color: #008800; font-weight: bold } /* Keyword */
.highlight .ch { color: #888888 } /* Comment.Hashbang */
.highlight .cm { color: #888888 } /* Comment.Multiline */
.highlight .cp { color: #cc0000; font-weight: bold } /* Comment.Preproc */
.highlight .cpf { color: #888888 } /* Comment.PreprocFile */
.highlight .c1 { color: #888888 } /* Comment.Single */
.highlight .cs { color: #cc0000; font-weight: bold; background-color: #fff0f0 } /* Comment.Special */
.highlight .gd { color: #000000; background-color: #ffdddd } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */
.highlight .gr { color: #aa0000 } /* Generic.Error */
.highlight .gh { color: #333333 } /* Generic.Heading */
.highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #555555 } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #666666 } /* Generic.Subheading */
.highlight .gt { color: #aa0000 } /* Generic.Traceback */
.highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008800 } /* Keyword.Pseudo */
.highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */
.highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */
.highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */
.highlight .na { color: #336699 } /* Name.Attribute */
.highlight .nb { color: #003388 } /* Name.Builtin */
.highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */
.highlight .no { color: #003366; font-weight: bold } /* Name.Constant */
.highlight .nd { color: #555555 } /* Name.Decorator */
.highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */
.highlight .nl { color: #336699; font-style: italic } /* Name.Label */
.highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */
.highlight .py { color: #336699; font-weight: bold } /* Name.Property */
.highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #336699 } /* Name.Variable */
.highlight .ow { color: #008800 } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */
.highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */
.highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */
.highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */
.highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */
.highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */
.highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */
.highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */
.highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */
.highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */
.highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */
.highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */
.highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */
.highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */
.highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */
.highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */
.highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */
.highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */
.highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */
.highlight .vc { color: #336699 } /* Name.Variable.Class */
.highlight .vg { color: #dd7700 } /* Name.Variable.Global */
.highlight .vi { color: #3333bb } /* Name.Variable.Instance */
.highlight .vm { color: #336699 } /* Name.Variable.Magic */
.highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */
#
#
#           The Nim Compiler
#        (c) Copyright 2013 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

# this module does the semantic checking for expressions
# included from sem.nim

const
  errExprXHasNoType = "expression '$1' has no type (or is ambiguous)"
  errXExpectsTypeOrValue = "'$1' expects a type or value"
  errVarForOutParamNeededX = "for a 'var' type a variable needs to be passed; but '$1' is immutable"
  errXStackEscape = "address of '$1' may not escape its stack frame"
  errExprHasNoAddress = "expression has no address"
  errCannotInterpretNodeX = "cannot evaluate '$1'"
  errNamedExprExpected = "named expression expected"
  errNamedExprNotAllowed = "named expression not allowed here"
  errFieldInitTwice = "field initialized twice: '$1'"
  errUndeclaredFieldX = "undeclared field: '$1'"

proc semTemplateExpr(c: PContext, n: PNode, s: PSym,
                     flags: TExprFlags = {}): PNode =
  let info = getCallLineInfo(n)
  markUsed(c.config, info, s, c.graph.usageSym)
  onUse(info, s)
  # Note: This is n.info on purpose. It prevents template from creating an info
  # context when called from an another template
  pushInfoContext(c.config, n.info, s.detailedInfo)
  result = evalTemplate(n, s, getCurrOwner(c), c.config, efFromHlo in flags)
  if efNoSemCheck notin flags: result = semAfterMacroCall(c, n, result, s, flags)
  popInfoContext(c.config)

  # XXX: A more elaborate line info rewrite might be needed
  result.info = info

proc semFieldAccess(c: PContext, n: PNode, flags: TExprFlags = {}): PNode

template rejectEmptyNode(n: PNode) =
  # No matter what a nkEmpty node is not what we want here
  if n.kind == nkEmpty: illFormedAst(n, c.config)

proc semOperand(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
  rejectEmptyNode(n)
  # same as 'semExprWithType' but doesn't check for proc vars
  result = semExpr(c, n, flags + {efOperand})
  if result.typ != nil:
    # XXX tyGenericInst here?
    if result.typ.kind == tyProc and tfUnresolved in result.typ.flags:
      localError(c.config, n.info, errProcHasNoConcreteType % n.renderTree)
    if result.typ.kind in {tyVar, tyLent}: result = newDeref(result)
  elif {efWantStmt, efAllowStmt} * flags != {}:
    result.typ = newTypeS(tyVoid, c)
  else:
    localError(c.config, n.info, errExprXHasNoType %
               renderTree(result, {renderNoComments}))
    result.typ = errorType(c)

proc semExprWithType(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
  rejectEmptyNode(n)
  result = semExpr(c, n, flags+{efWantValue})
  if result.kind == nkEmpty:
    # do not produce another redundant error message:
    result = errorNode(c, n)
  if result.typ == nil or result.typ == c.enforceVoidContext:
    localError(c.config, n.info, errExprXHasNoType %
                renderTree(result, {renderNoComments}))
    result.typ = errorType(c)
  else:
    if result.typ.kind in {tyVar, tyLent}: result = newDeref(result)

proc semExprNoDeref(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
  rejectEmptyNode(n)
  result = semExpr(c, n, flags+{efWantValue})
  if result.kind == nkEmpty:
    # do not produce another redundant error message:
    result = errorNode(c, n)
  if result.typ == nil:
    localError(c.config, n.info, errExprXHasNoType %
               renderTree(result, {renderNoComments}))
    result.typ = errorType(c)

proc semSymGenericInstantiation(c: PContext, n: PNode, s: PSym): PNode =
  result = symChoice(c, n, s, scClosed)

proc inlineConst(c: PContext, n: PNode, s: PSym): PNode {.inline.} =
  result = copyTree(s.ast)
  if result.isNil:
    localError(c.config, n.info, "constant of type '" & typeToString(s.typ) & "' has no value")
    result = newSymNode(s)
  else:
    result.typ = s.typ
    result.info = n.info

type
  TConvStatus = enum
    convOK,
    convNotNeedeed,
    convNotLegal

proc checkConversionBetweenObjects(castDest, src: PType; pointers: int): TConvStatus =
  let diff = inheritanceDiff(castDest, src)
  return if diff == high(int) or (pointers > 1 and diff != 0):
      convNotLegal
    else:
      convOK

const
  IntegralTypes = {tyBool, tyEnum, tyChar, tyInt..tyUInt64}

proc checkConvertible(c: PContext, castDest, src: PType): TConvStatus =
  result = convOK
  # We're interested in the inner type and not in the static tag
  var src = src.skipTypes({tyStatic})
  if sameType(castDest, src) and castDest.sym == src.sym:
    # don't annoy conversions that may be needed on another processor:
    if castDest.kind notin IntegralTypes+{tyRange}:
      result = convNotNeedeed
    return
  # Save for later
  var d = skipTypes(castDest, abstractVar)
  var s = src
  if s.kind in tyUserTypeClasses and s.isResolvedUserTypeClass:
    s = s.lastSon
  s = skipTypes(s, abstractVar-{tyTypeDesc})
  var pointers = 0
  while (d != nil) and (d.kind in {tyPtr, tyRef, tyOwned}) and (d.kind == s.kind):
    d = d.lastSon
    s = s.lastSon
    inc pointers
  if d == nil:
    result = convNotLegal
  elif d.kind == tyObject and s.kind == tyObject:
    result = checkConversionBetweenObjects(d, s, pointers)
  elif (skipTypes(castDest, abstractVarRange).kind in IntegralTypes) and
      (skipTypes(src, abstractVarRange-{tyTypeDesc}).kind in IntegralTypes):
    # accept conversion between integral types
    discard
  else:
    # we use d, s here to speed up that operation a bit:
    case cmpTypes(c, d, s)
    of isNone, isGeneric:
      if not compareTypes(castDest.skipTypes(abstractVar), src, dcEqIgnoreDistinct):
        result = convNotLegal
    else:
      discard

proc isCastable(conf: ConfigRef; dst, src: PType): bool =
  ## Checks whether the source type can be cast to the destination type.
  ## Casting is very unrestrictive; casts are allowed as long as
  ## castDest.size >= src.size, and typeAllowed(dst, skParam)
  #const
  #  castableTypeKinds = {tyInt, tyPtr, tyRef, tyCstring, tyString,
  #                       tySequence, tyPointer, tyNil, tyOpenArray,
  #                       tyProc, tySet, tyEnum, tyBool, tyChar}
  let src = src.skipTypes(tyUserTypeClasses)
  if skipTypes(dst, abstractInst-{tyOpenArray}).kind == tyOpenArray:
    return false
  if skipTypes(src, abstractInst-{tyTypeDesc}).kind == tyTypeDesc:
    return false

  var dstSize, srcSize: BiggestInt
  dstSize = computeSize(conf, dst)
  srcSize = computeSize(conf, src)
  if dstSize == -3 or srcSize == -3: # szUnknownSize
    # The Nim compiler can't detect if it's legal or not.
    # Just assume the programmer knows what he is doing.
    return true
  if dstSize < 0:
    result = false
  elif srcSize < 0:
    result = false
  elif typeAllowed(dst, skParam) != nil:
    result = false
  elif dst.kind == tyProc and dst.callConv == ccClosure:
    result = src.kind == tyProc and src.callConv == ccClosure
  else:
    result = (dstSize >= srcSize) or
        (skipTypes(dst, abstractInst).kind in IntegralTypes) or
        (skipTypes(src, abstractInst-{tyTypeDesc}).kind in IntegralTypes)
  if result and src.kind == tyNil:
    result = dst.size <= conf.target.ptrSize

proc isSymChoice(n: PNode): bool {.inline.} =
  result = n.kind in nkSymChoices

proc maybeLiftType(t: var PType, c: PContext, info: TLineInfo) =
  # XXX: liftParamType started to perform addDecl
  # we could do that instead in semTypeNode by snooping for added
  # gnrc. params, then it won't be necessary to open a new scope here
  openScope(c)
  var lifted = liftParamType(c, skType, newNodeI(nkArgList, info),
                             t, ":anon", info)
  closeScope(c)
  if lifted != nil: t = lifted

proc semConv(c: PContext, n: PNode): PNode =
  if sonsLen(n) != 2:
    localError(c.config, n.info, "a type conversion takes exactly one argument")
    return n

  result = newNodeI(nkConv, n.info)

  var targetType = semTypeNode(c, n.sons[0], nil)
  if targetType.kind == tyTypeDesc:
    internalAssert c.config, targetType.len > 0
    if targetType.base.kind == tyNone:
      return semTypeOf(c, n)
    else:
      targetType = targetType.base
  elif targetType.kind == tyStatic:
    var evaluated = semStaticExpr(c, n[1])
    if evaluated.kind == nkType or evaluated.typ.kind == tyTypeDesc:
      result = n
      result.typ = c.makeTypeDesc semStaticType(c, evaluated, nil)
      return
    elif targetType.base.kind == tyNone:
      return evaluated
    else:
      targetType = targetType.base

  maybeLiftType(targetType, c, n[0].info)

  if targetType.kind in {tySink, tyLent, tyOwned}:
    let baseType = semTypeNode(c, n.sons[1], nil).skipTypes({tyTypeDesc})
    let t = newTypeS(targetType.kind, c)
    if targetType.kind == tyOwned:
      t.flags.incl tfHasOwned
    t.rawAddSonNoPropagationOfTypeFlags baseType
    result = newNodeI(nkType, n.info)
    result.typ = makeTypeDesc(c, t)
    return

  result.addSon copyTree(n.sons[0])

  # special case to make MyObject(x = 3) produce a nicer error message:
  if n[1].kind == nkExprEqExpr and
      targetType.skipTypes(abstractPtrs).kind == tyObject:
    localError(c.config, n.info, "object construction uses ':', not '='")
  var op = semExprWithType(c, n.sons[1])
  if targetType.isMetaType:
    let final = inferWithMetatype(c, targetType, op, true)
    result.addSon final
    result.typ = final.typ
    return

  result.typ = targetType
  # XXX op is overwritten later on, this is likely added too early
  # here or needs to be overwritten too then.
  addSon(result, op)

  if not isSymChoice(op):
    let status = checkConvertible(c, result.typ, op.typ)
    case status
    of convOK:
      # handle SomeProcType(SomeGenericProc)
      if op.kind == nkSym and op.sym.isGenericRoutine:
        result.sons[1] = fitNode(c, result.typ, result.sons[1], result.info)
      elif op.kind in {nkPar, nkTupleConstr} and targetType.kind == tyTuple:
        op = fitNode(c, targetType, op, result.info)
    of convNotNeedeed:
      message(c.config, n.info, hintConvFromXtoItselfNotNeeded, result.typ.typeToString)
    of convNotLegal:
      result = fitNode(c, result.typ, result.sons[1], result.info)
      if result == nil:
        localError(c.config, n.info, "illegal conversion from '$1' to '$2'" %
          [op.typ.typeToString, result.typ.typeToString])
  else:
    for i in countup(0, sonsLen(op) - 1):
      let it = op.sons[i]
      let status = checkConvertible(c, result.typ, it.typ)
      if status in {convOK, convNotNeedeed}:
        markUsed(c.config, n.info, it.sym, c.graph.usageSym)
        onUse(n.info, it.sym)
        markIndirect(c, it.sym)
        return it
    errorUseQualifier(c, n.info, op.sons[0].sym)

proc semCast(c: PContext, n: PNode): PNode =
  ## Semantically analyze a casting ("cast[type](param)")
  checkSonsLen(n, 2, c.config)
  let targetType = semTypeNode(c, n.sons[0], nil)
  let castedExpr = semExprWithType(c, n.sons[1])
  if tfHasMeta in targetType.flags:
    localError(c.config, n.sons[0].info, "cannot cast to a non concrete type: '$1'" % $targetType)
  if not isCastable(c.config, targetType, castedExpr.typ):
    let tar = $targetType
    let alt = typeToString(targetType, preferDesc)
    let msg = if tar != alt: tar & "=" & alt else: tar
    localError(c.config, n.info, "expression cannot be cast to " & msg)
  result = newNodeI(nkCast, n.info)
  result.typ = targetType
  addSon(result, copyTree(n.sons[0]))
  addSon(result, castedExpr)

proc semLowHigh(c: PContext, n: PNode, m: TMagic): PNode =
  const
    opToStr: array[mLow..mHigh, string] = ["low", "high"]
  if sonsLen(n) != 2:
    localError(c.config, n.info, errXExpectsTypeOrValue % opToStr[m])
  else:
    n.sons[1] = semExprWithType(c, n.sons[1], {efDetermineType})
    var typ = skipTypes(n.sons[1].typ, abstractVarRange + {tyTypeDesc, tyUserTypeClassInst})
    case typ.kind
    of tySequence, tyString, tyCString, tyOpenArray, tyVarargs:
      n.typ = getSysType(c.graph, n.info, tyInt)
    of tyArray:
      n.typ = typ.sons[0] # indextype
    of tyInt..tyInt64, tyChar, tyBool, tyEnum, tyUInt8, tyUInt16, tyUInt32:
      # do not skip the range!
      n.typ = n.sons[1].typ.skipTypes(abstractVar)
    of tyGenericParam:
      # prepare this for resolving in semtypinst:
      # we must use copyTree here in order to avoid creating a cycle
      # that could easily turn into an infinite recursion in semtypinst
      n.typ = makeTypeFromExpr(c, n.copyTree)
    else:
      localError(c.config, n.info, "invalid argument for: " & opToStr[m])
  result = n

proc fixupStaticType(c: PContext, n: PNode) =
  # This proc can be applied to evaluated expressions to assign
  # them a static type.
  #
  # XXX: with implicit static, this should not be necessary,
  # because the output type of operations such as `semConstExpr`
  # should be a static type (as well as the type of any other
  # expression that can be implicitly evaluated). For now, we
  # apply this measure only in code that is enlightened to work
  # with static types.
  if n.typ.kind != tyStatic:
    n.typ = newTypeWithSons(getCurrOwner(c), tyStatic, @[n.typ])
    n.typ.n = n # XXX: cycles like the one here look dangerous.
                # Consider using `n.copyTree`

proc isOpImpl(c: PContext, n: PNode, flags: TExprFlags): PNode =
  internalAssert c.config,
    n.sonsLen == 3 and
    n[1].typ != nil and
    n[2].kind in {nkStrLit..nkTripleStrLit, nkType}

  var
    res = false
    t1 = n[1].typ
    t2 = n[2].typ

  if t1.kind == tyTypeDesc and t2.kind != tyTypeDesc:
    t1 = t1.base

  if n[2].kind in {nkStrLit..nkTripleStrLit}:
    case n[2].strVal.normalize
    of "closure":
      let t = skipTypes(t1, abstractRange)
      res = t.kind == tyProc and
            t.callConv == ccClosure and
            tfIterator notin t.flags
    of "iterator":
      let t = skipTypes(t1, abstractRange)
      res = t.kind == tyProc and
            t.callConv == ccClosure and
            tfIterator in t.flags
    else:
      res = false
  else:
    maybeLiftType(t2, c, n.info)
    var m: TCandidate
    initCandidate(c, m, t2)
    if efExplain in flags:
      m.diagnostics = @[]
      m.diagnosticsEnabled = true
    res = typeRel(m, t2, t1) >= isSubtype # isNone

  result = newIntNode(nkIntLit, ord(res))
  result.typ = n.typ

proc semIs(c: PContext, n: PNode, flags: TExprFlags): PNode =
  if sonsLen(n) != 3:
    localError(c.config, n.info, "'is' operator takes 2 arguments")

  let boolType = getSysType(c.graph, n.info, tyBool)
  result = n
  n.typ = boolType
  var liftLhs = true

  n.sons[1] = semExprWithType(c, n[1], {efDetermineType, efWantIterator})
  if n[2].kind notin {nkStrLit..nkTripleStrLit}:
    let t2 = semTypeNode(c, n[2], nil)
    n.sons[2] = newNodeIT(nkType, n[2].info, t2)
    if t2.kind == tyStatic:
      let evaluated = tryConstExpr(c, n[1])
      if evaluated != nil:
        c.fixupStaticType(evaluated)
        n[1] = evaluated
      else:
        result = newIntNode(nkIntLit, 0)
        result.typ = boolType
        return
    elif t2.kind == tyTypeDesc and
        (t2.base.kind == tyNone or tfExplicit in t2.flags):
      # When the right-hand side is an explicit type, we must
      # not allow regular values to be matched against the type:
      liftLhs = false
  else:
    n.sons[2] = semExpr(c, n[2])

  var lhsType = n[1].typ
  if lhsType.kind != tyTypeDesc:
    if liftLhs:
      n[1] = makeTypeSymNode(c, lhsType, n[1].info)
      lhsType = n[1].typ
  else:
    if lhsType.base.kind == tyNone or
        (c.inGenericContext > 0 and lhsType.base.containsGenericType):
      # BUGFIX: don't evaluate this too early: ``T is void``
      return

  result = isOpImpl(c, n, flags)

proc semOpAux(c: PContext, n: PNode) =
  const flags = {efDetermineType}
  for i in countup(1, n.sonsLen-1):
    var a = n.sons[i]
    if a.kind == nkExprEqExpr and sonsLen(a) == 2:
      let info = a.sons[0].info
      a.sons[0] = newIdentNode(considerQuotedIdent(c, a.sons[0], a), info)
      a.sons[1] = semExprWithType(c, a.sons[1], flags)
      a.typ = a.sons[1].typ
    else:
      n.sons[i] = semExprWithType(c, a, flags)

proc overloadedCallOpr(c: PContext, n: PNode): PNode =
  # quick check if there is *any* () operator overloaded:
  var par = getIdent(c.cache, "()")
  if searchInScopes(c, par) == nil:
    result = nil
  else:
    result = newNodeI(nkCall, n.info)
    addSon(result, newIdentNode(par, n.info))
    for i in countup(0, sonsLen(n) - 1): addSon(result, n.sons[i])
    result = semExpr(c, result)

proc changeType(c: PContext; n: PNode, newType: PType, check: bool) =
  case n.kind
  of nkCurly, nkBracket:
    for i in countup(0, sonsLen(n) - 1):
      changeType(c, n.sons[i], elemType(newType), check)
  of nkPar, nkTupleConstr:
    let tup = newType.skipTypes({tyGenericInst, tyAlias, tySink, tyDistinct})
    if tup.kind != tyTuple:
      if tup.kind == tyObject: return
      globalError(c.config, n.info, "no tuple type for constructor")
    elif sonsLen(n) > 0 and n.sons[0].kind == nkExprColonExpr:
      # named tuple?
      for i in countup(0, sonsLen(n) - 1):
        var m = n.sons[i].sons[0]
        if m.kind != nkSym:
          globalError(c.config, m.info, "invalid tuple constructor")
          return
        if tup.n != nil:
          var f = getSymFromList(tup.n, m.sym.name)
          if f == nil:
            globalError(c.config, m.info, "unknown identifier: " & m.sym.name.s)
            return
          changeType(c, n.sons[i].sons[1], f.typ, check)
        else:
          changeType(c, n.sons[i].sons[1], tup.sons[i], check)
    else:
      for i in countup(0, sonsLen(n) - 1):
        changeType(c, n.sons[i], tup.sons[i], check)
        when false:
          var m = n.sons[i]
          var a = newNodeIT(nkExprColonExpr, m.info, newType.sons[i])
          addSon(a, newSymNode(newType.n.sons[i].sym))
          addSon(a, m)
          changeType(m, tup.sons[i], check)
  of nkCharLit..nkUInt64Lit:
    if check and n.kind != nkUInt64Lit:
      let value = n.intVal
      if value < firstOrd(c.config, newType) or value > lastOrd(c.config, newType):
        localError(c.config, n.info, "cannot convert " & $value &
                                         " to " & typeToString(newType))
  else: discard
  n.typ = newType

proc arrayConstrType(c: PContext, n: PNode): PType =
  var typ = newTypeS(tyArray, c)
  rawAddSon(typ, nil)     # index type
  if sonsLen(n) == 0:
    rawAddSon(typ, newTypeS(tyEmpty, c)) # needs an empty basetype!
  else:
    var t = skipTypes(n.sons[0].typ, {tyGenericInst, tyVar, tyLent, tyOrdinal, tyAlias, tySink})
    addSonSkipIntLit(typ, t)
  typ.sons[0] = makeRangeType(c, 0, sonsLen(n) - 1, n.info)
  result = typ

proc semArrayConstr(c: PContext, n: PNode, flags: TExprFlags): PNode =
  result = newNodeI(nkBracket, n.info)
  result.typ = newTypeS(tyArray, c)
  rawAddSon(result.typ, nil)     # index type
  if sonsLen(n) == 0:
    rawAddSon(result.typ, newTypeS(tyEmpty, c)) # needs an empty basetype!
  else:
    var x = n.sons[0]
    var lastIndex: BiggestInt = 0
    var indexType = getSysType(c.graph, n.info, tyInt)
    if x.kind == nkExprColonExpr and sonsLen(x) == 2:
      var idx = semConstExpr(c, x.sons[0])
      lastIndex = getOrdValue(idx)
      indexType = idx.typ
      x = x.sons[1]

    let yy = semExprWithType(c, x)
    var typ = yy.typ
    addSon(result, yy)
    #var typ = skipTypes(result.sons[0].typ, {tyGenericInst, tyVar, tyLent, tyOrdinal})
    for i in countup(1, sonsLen(n) - 1):
      x = n.sons[i]
      if x.kind == nkExprColonExpr and sonsLen(x) == 2:
        var idx = semConstExpr(c, x.sons[0])
        idx = fitNode(c, indexType, idx, x.info)
        if lastIndex+1 != getOrdValue(idx):
          localError(c.config, x.info, "invalid order in array constructor")
        x = x.sons[1]

      let xx = semExprWithType(c, x, flags*{efAllowDestructor})
      result.add xx
      typ = commonType(typ, xx.typ)
      #n.sons[i] = semExprWithType(c, x, flags*{efAllowDestructor})
      #addSon(result, fitNode(c, typ, n.sons[i]))
      inc(lastIndex)
    addSonSkipIntLit(result.typ, typ)
    for i in 0 ..< result.len:
      result.sons[i] = fitNode(c, typ, result.sons[i], result.sons[i].info)
  result.typ.sons[0] = makeRangeType(c, 0, sonsLen(result) - 1, n.info)

proc fixAbstractType(c: PContext, n: PNode) =
  for i in 1 ..< n.len:
    let it = n.sons[i]
    # do not get rid of nkHiddenSubConv for OpenArrays, the codegen needs it:
    if it.kind == nkHiddenSubConv and
        skipTypes(it.typ, abstractVar).kind notin {tyOpenArray, tyVarargs}:
      if skipTypes(it.sons[1].typ, abstractVar).kind in
            {tyNil, tyTuple, tySet} or it[1].isArrayConstr:
        var s = skipTypes(it.typ, abstractVar)
        if s.kind != tyExpr:
          changeType(c, it.sons[1], s, check=true)
        n.sons[i] = it.sons[1]

proc isAssignable(c: PContext, n: PNode; isUnsafeAddr=false): TAssignableResult =
  result = parampatterns.isAssignable(c.p.owner, n, isUnsafeAddr)

proc isUnresolvedSym(s: PSym): bool =
  return s.kind == skGenericParam or
         tfInferrableStatic in s.typ.flags or
         (s.kind == skParam and s.typ.isMetaType) or
         (s.kind == skType and
          s.typ.flags * {tfGenericTypeParam, tfImplicitTypeParam} != {})

proc hasUnresolvedArgs(c: PContext, n: PNode): bool =
  # Checks whether an expression depends on generic parameters that
  # don't have bound values yet. E.g. this could happen in situations
  # such as:
  #  type Slot[T] = array[T.size, byte]
  #  proc foo[T](x: default(T))
  #
  # Both static parameter and type parameters can be unresolved.
  case n.kind
  of nkSym:
    return isUnresolvedSym(n.sym)
  of nkIdent, nkAccQuoted:
    let ident = considerQuotedIdent(c, n)
    let sym = searchInScopes(c, ident)
    if sym != nil:
      return isUnresolvedSym(sym)
    else:
      return false
  else:
    for i in 0..<n.safeLen:
      if hasUnresolvedArgs(c, n.sons[i]): return true
    return false

proc newHiddenAddrTaken(c: PContext, n: PNode): PNode =
  if n.kind == nkHiddenDeref and not (c.config.cmd == cmdCompileToCpp or
                                      sfCompileToCpp in c.module.flags):
    checkSonsLen(n, 1, c.config)
    result = n.sons[0]
  else:
    result = newNodeIT(nkHiddenAddr, n.info, makeVarType(c, n.typ))
    addSon(result, n)
    if isAssignable(c, n) notin {arLValue, arLocalLValue}:
      localError(c.config, n.info, errVarForOutParamNeededX % renderNotLValue(n))

proc analyseIfAddressTaken(c: PContext, n: PNode): PNode =
  result = n
  case n.kind
  of nkSym:
    # n.sym.typ can be nil in 'check' mode ...
    if n.sym.typ != nil and
        skipTypes(n.sym.typ, abstractInst-{tyTypeDesc}).kind notin {tyVar, tyLent}:
      incl(n.sym.flags, sfAddrTaken)
      result = newHiddenAddrTaken(c, n)
  of nkDotExpr:
    checkSonsLen(n, 2, c.config)
    if n.sons[1].kind != nkSym:
      internalError(c.config, n.info, "analyseIfAddressTaken")
      return
    if skipTypes(n.sons[1].sym.typ, abstractInst-{tyTypeDesc}).kind notin {tyVar, tyLent}:
      incl(n.sons[1].sym.flags, sfAddrTaken)
      result = newHiddenAddrTaken(c, n)
  of nkBracketExpr:
    checkMinSonsLen(n, 1, c.config)
    if skipTypes(n.sons[0].typ, abstractInst-{tyTypeDesc}).kind notin {tyVar, tyLent}:
      if n.sons[0].kind == nkSym: incl(n.sons[0].sym.flags, sfAddrTaken)
      result = newHiddenAddrTaken(c, n)
  else:
    result = newHiddenAddrTaken(c, n)

proc analyseIfAddressTakenInCall(c: PContext, n: PNode) =
  checkMinSonsLen(n, 1, c.config)
  const
    FakeVarParams = {mNew, mNewFinalize, mInc, ast.mDec, mIncl, mExcl,
      mSetLengthStr, mSetLengthSeq, mAppendStrCh, mAppendStrStr, mSwap,
      mAppendSeqElem, mNewSeq, mReset, mShallowCopy, mDeepCopy, mMove,
      mWasMoved}

  # get the real type of the callee
  # it may be a proc var with a generic alias type, so we skip over them
  var t = n.sons[0].typ.skipTypes({tyGenericInst, tyAlias, tySink})

  if n.sons[0].kind == nkSym and n.sons[0].sym.magic in FakeVarParams:
    # BUGFIX: check for L-Value still needs to be done for the arguments!
    # note sometimes this is eval'ed twice so we check for nkHiddenAddr here:
    for i in countup(1, sonsLen(n) - 1):
      if i < sonsLen(t) and t.sons[i] != nil and
          skipTypes(t.sons[i], abstractInst-{tyTypeDesc}).kind == tyVar:
        let it = n[i]
        if isAssignable(c, it) notin {arLValue, arLocalLValue}:
          if it.kind != nkHiddenAddr:
            localError(c.config, it.info, errVarForOutParamNeededX % $it)
    # bug #5113: disallow newSeq(result) where result is a 'var T':
    if n[0].sym.magic in {mNew, mNewFinalize, mNewSeq}:
      var arg = n[1] #.skipAddr
      if arg.kind == nkHiddenDeref: arg = arg[0]
      if arg.kind == nkSym and arg.sym.kind == skResult and
          arg.typ.skipTypes(abstractInst).kind in {tyVar, tyLent}:
        localError(c.config, n.info, errXStackEscape % renderTree(n[1], {renderNoComments}))

    return
  for i in countup(1, sonsLen(n) - 1):
    let n = if n.kind == nkHiddenDeref: n[0] else: n
    if n.sons[i].kind == nkHiddenCallConv:
      # we need to recurse explicitly here as converters can create nested
      # calls and then they wouldn't be analysed otherwise
      analyseIfAddressTakenInCall(c, n.sons[i])
    if i < sonsLen(t) and
        skipTypes(t.sons[i], abstractInst-{tyTypeDesc}).kind == tyVar:
      if n.sons[i].kind != nkHiddenAddr:
        n.sons[i] = analyseIfAddressTaken(c, n.sons[i])

include semmagic

proc evalAtCompileTime(c: PContext, n: PNode): PNode =
  result = n
  if n.kind notin nkCallKinds or n.sons[0].kind != nkSym: return
  var callee = n.sons[0].sym
  # workaround for bug #537 (overly aggressive inlining leading to
  # wrong NimNode semantics):
  if n.typ != nil and tfTriggersCompileTime in n.typ.flags: return

  # constant folding that is necessary for correctness of semantic pass:
  if callee.magic != mNone and callee.magic in ctfeWhitelist and n.typ != nil:
    var call = newNodeIT(nkCall, n.info, n.typ)
    call.add(n.sons[0])
    var allConst = true
    for i in 1 ..< n.len:
      var a = getConstExpr(c.module, n.sons[i], c.graph)
      if a == nil:
        allConst = false
        a = n.sons[i]
        if a.kind == nkHiddenStdConv: a = a.sons[1]
      call.add(a)
    if allConst:
      result = semfold.getConstExpr(c.module, call, c.graph)
      if result.isNil: result = n
      else: return result

  block maybeLabelAsStatic:
    # XXX: temporary work-around needed for tlateboundstatic.
    # This is certainly not correct, but it will get the job
    # done until we have a more robust infrastructure for
    # implicit statics.
    if n.len > 1:
      for i in 1 ..< n.len:
        # see bug #2113, it's possible that n[i].typ for errornous code:
        if n[i].typ.isNil or n[i].typ.kind != tyStatic or
            tfUnresolved notin n[i].typ.flags:
          break maybeLabelAsStatic
      n.typ = newTypeWithSons(c, tyStatic, @[n.typ])
      n.typ.flags.incl tfUnresolved

  # optimization pass: not necessary for correctness of the semantic pass
  if {sfNoSideEffect, sfCompileTime} * callee.flags != {} and
     {sfForward, sfImportc} * callee.flags == {} and n.typ != nil:
    if sfCompileTime notin callee.flags and
        optImplicitStatic notin c.config.options: return

    if callee.magic notin ctfeWhitelist: return
    if callee.kind notin {skProc, skFunc, skConverter} or callee.isGenericRoutine:
      return

    if n.typ != nil and typeAllowed(n.typ, skConst) != nil: return

    var call = newNodeIT(nkCall, n.info, n.typ)
    call.add(n.sons[0])
    for i in 1 ..< n.len:
      let a = getConstExpr(c.module, n.sons[i], c.graph)
      if a == nil: return n
      call.add(a)

    #echo "NOW evaluating at compile time: ", call.renderTree
    if c.inStaticContext == 0 or sfNoSideEffect in callee.flags:
      if sfCompileTime in callee.flags:
        result = evalStaticExpr(c.module, c.graph, call, c.p.owner)
        if result.isNil:
          localError(c.config, n.info, errCannotInterpretNodeX % renderTree(call))
        else: result = fixupTypeAfterEval(c, result, n)
      else:
        result = evalConstExpr(c.module, c.graph, call)
        if result.isNil: result = n
        else: result = fixupTypeAfterEval(c, result, n)
    else:
      result = n
    #if result != n:
    #  echo "SUCCESS evaluated at compile time: ", call.renderTree

proc semStaticExpr(c: PContext, n: PNode): PNode =
  inc c.inStaticContext
  openScope(c)
  let a = semExprWithType(c, n)
  closeScope(c)
  dec c.inStaticContext
  if a.findUnresolvedStatic != nil: return a
  result = evalStaticExpr(c.module, c.graph, a, c.p.owner)
  if result.isNil:
    localError(c.config, n.info, errCannotInterpretNodeX % renderTree(n))
    result = c.graph.emptyNode
  else:
    result = fixupTypeAfterEval(c, result, a)

proc semOverloadedCallAnalyseEffects(c: PContext, n: PNode, nOrig: PNode,
                                     flags: TExprFlags): PNode =
  if flags*{efInTypeof, efWantIterator} != {}:
    # consider: 'for x in pReturningArray()' --> we don't want the restriction
    # to 'skIterator' anymore; skIterator is preferred in sigmatch already
    # for typeof support.
    # for ``type(countup(1,3))``, see ``tests/ttoseq``.
    result = semOverloadedCall(c, n, nOrig,
      {skProc, skFunc, skMethod, skConverter, skMacro, skTemplate, skIterator}, flags)
  else:
    result = semOverloadedCall(c, n, nOrig,
      {skProc, skFunc, skMethod, skConverter, skMacro, skTemplate}, flags)

  if result != nil:
    if result.sons[0].kind != nkSym:
      internalError(c.config, "semOverloadedCallAnalyseEffects")
      return
    let callee = result.sons[0].sym
    case callee.kind
    of skMacro, skTemplate: discard
    else:
      if callee.kind == skIterator and callee.id == c.p.owner.id:
        localError(c.config, n.info, errRecursiveDependencyX % callee.name.s)
        # error correction, prevents endless for loop elimination in transf.
        # See bug #2051:
        result.sons[0] = newSymNode(errorSym(c, n))

proc semObjConstr(c: PContext, n: PNode, flags: TExprFlags): PNode

proc resolveIndirectCall(c: PContext; n, nOrig: PNode;
                         t: PType): TCandidate =
  initCandidate(c, result, t)
  matches(c, n, nOrig, result)
  if result.state != csMatch:
    # try to deref the first argument:
    if implicitDeref in c.features and canDeref(n):
      n.sons[1] = n.sons[1].tryDeref
      initCandidate(c, result, t)
      matches(c, n, nOrig, result)

proc bracketedMacro(n: PNode): PSym =
  if n.len >= 1 and n[0].kind == nkSym:
    result = n[0].sym
    if result.kind notin {skMacro, skTemplate}:
      result = nil

proc setGenericParams(c: PContext, n: PNode) =
  for i in 1 ..< n.len:
    n[i].typ = semTypeNode(c, n[i], nil)

proc afterCallActions(c: PContext; n, orig: PNode, flags: TExprFlags): PNode =
  result = n
  let callee = result.sons[0].sym
  case callee.kind
  of skMacro: result = semMacroExpr(c, result, orig, callee, flags)
  of skTemplate: result = semTemplateExpr(c, result, callee, flags)
  else:
    semFinishOperands(c, result)
    activate(c, result)
    fixAbstractType(c, result)
    analyseIfAddressTakenInCall(c, result)
    if callee.magic != mNone:
      result = magicsAfterOverloadResolution(c, result, flags)
    if result.typ != nil and
        not (result.typ.kind == tySequence and result.typ.sons[0].kind == tyEmpty):
      liftTypeBoundOps(c.graph, result.typ, n.info)
    #result = patchResolvedTypeBoundOp(c, result)
  if c.matchedConcept == nil:
    result = evalAtCompileTime(c, result)

proc semIndirectOp(c: PContext, n: PNode, flags: TExprFlags): PNode =
  result = nil
  checkMinSonsLen(n, 1, c.config)
  var prc = n.sons[0]
  if n.sons[0].kind == nkDotExpr:
    checkSonsLen(n.sons[0], 2, c.config)
    let n0 = semFieldAccess(c, n.sons[0])
    if n0.kind == nkDotCall:
      # it is a static call!
      result = n0
      result.kind = nkCall
      result.flags.incl nfExplicitCall
      for i in countup(1, sonsLen(n) - 1): addSon(result, n.sons[i])
      return semExpr(c, result, flags)
    else:
      n.sons[0] = n0
  else:
    n.sons[0] = semExpr(c, n.sons[0], {efInCall})
    let t = n.sons[0].typ
    if t != nil and t.kind in {tyVar, tyLent}:
      n.sons[0] = newDeref(n.sons[0])
    elif n.sons[0].kind == nkBracketExpr:
      let s = bracketedMacro(n.sons[0])
      if s != nil:
        setGenericParams(c, n[0])
        return semDirectOp(c, n, flags)

  let nOrig = n.copyTree
  semOpAux(c, n)
  var t: PType = nil
  if n.sons[0].typ != nil:
    t = skipTypes(n.sons[0].typ, abstractInst-{tyTypeDesc})
  if t != nil and t.kind == tyProc:
    # This is a proc variable, apply normal overload resolution
    let m = resolveIndirectCall(c, n, nOrig, t)
    if m.state != csMatch:
      if c.config.m.errorOutputs == {}:
        # speed up error generation:
        globalError(c.config, n.info, "type mismatch")
        return c.graph.emptyNode
      else:
        var hasErrorType = false
        var msg = "type mismatch: got <"
        for i in countup(1, sonsLen(n) - 1):
          if i > 1: add(msg, ", ")
          let nt = n.sons[i].typ
          add(msg, typeToString(nt))
          if nt.kind == tyError:
            hasErrorType = true
            break
        if not hasErrorType:
          add(msg, ">\nbut expected one of: \n" &
              typeToString(n.sons[0].typ))
          localError(c.config, n.info, msg)
        return errorNode(c, n)
      result = nil
    else:
      result = m.call
      instGenericConvertersSons(c, result, m)

  elif t != nil and t.kind == tyTypeDesc:
    if n.len == 1: return semObjConstr(c, n, flags)
    return semConv(c, n)
  else:
    result = overloadedCallOpr(c, n)
    # Now that nkSym does not imply an iteration over the proc/iterator space,
    # the old ``prc`` (which is likely an nkIdent) has to be restored:
    if result == nil:
      # XXX: hmm, what kind of symbols will end up here?
      # do we really need to try the overload resolution?
      n.sons[0] = prc
      nOrig.sons[0] = prc
      n.flags.incl nfExprCall
      result = semOverloadedCallAnalyseEffects(c, n, nOrig, flags)
      if result == nil: return errorNode(c, n)
    elif result.kind notin nkCallKinds:
      # the semExpr() in overloadedCallOpr can even break this condition!
      # See bug #904 of how to trigger it:
      return result
  #result = afterCallActions(c, result, nOrig, flags)
  if result.sons[0].kind == nkSym:
    result = afterCallActions(c, result, nOrig, flags)
  else:
    fixAbstractType(c, result)
    analyseIfAddressTakenInCall(c, result)

proc semDirectOp(c: PContext, n: PNode, flags: TExprFlags): PNode =
  # this seems to be a hotspot in the compiler!
  let nOrig = n.copyTree
  #semLazyOpAux(c, n)
  result = semOverloadedCallAnalyseEffects(c, n, nOrig, flags)
  if result != nil: result = afterCallActions(c, result, nOrig, flags)
  else: result = errorNode(c, n)

proc buildEchoStmt(c: PContext, n: PNode): PNode =
  # we MUST not check 'n' for semantics again here! But for now we give up:
  result = newNodeI(nkCall, n.info)
  var e = strTableGet(c.graph.systemModule.tab, getIdent(c.cache, "echo"))
  if e != nil:
    add(result, newSymNode(e))
  else:
    localError(c.config, n.info, "system needs: echo")
    add(result, errorNode(c, n))
  add(result, n)
  result = semExpr(c, result)

proc semExprNoType(c: PContext, n: PNode): PNode =
  let isPush = hintExtendedContext in c.config.notes
  if isPush: pushInfoContext(c.config, n.info)
  result = semExpr(c, n, {efWantStmt})
  result = discardCheck(c, result, {})
  if isPush: popInfoContext(c.config)

proc isTypeExpr(n: PNode): bool =
  case n.kind
  of nkType, nkTypeOfExpr: result = true
  of nkSym: result = n.sym.kind == skType
  else: result = false

proc createSetType(c: PContext; baseType: PType): PType =
  assert baseType != nil
  result = newTypeS(tySet, c)
  rawAddSon(result, baseType)

proc lookupInRecordAndBuildCheck(c: PContext, n, r: PNode, field: PIdent,
                                 check: var PNode): PSym =
  # transform in a node that contains the runtime check for the
  # field, if it is in a case-part...
  result = nil
  case r.kind
  of nkRecList:
    for i in countup(0, sonsLen(r) - 1):
      result = lookupInRecordAndBuildCheck(c, n, r.sons[i], field, check)
      if result != nil: return
  of nkRecCase:
    checkMinSonsLen(r, 2, c.config)
    if (r.sons[0].kind != nkSym): illFormedAst(r, c.config)
    result = lookupInRecordAndBuildCheck(c, n, r.sons[0], field, check)
    if result != nil: return
    let setType = createSetType(c, r.sons[0].typ)
    var s = newNodeIT(nkCurly, r.info, setType)
    for i in countup(1, sonsLen(r) - 1):
      var it = r.sons[i]
      case it.kind
      of nkOfBranch:
        result = lookupInRecordAndBuildCheck(c, n, lastSon(it), field, check)
        if result == nil:
          for j in 0..sonsLen(it)-2: addSon(s, copyTree(it.sons[j]))
        else:
          if check == nil:
            check = newNodeI(nkCheckedFieldExpr, n.info)
            addSon(check, c.graph.emptyNode) # make space for access node
          s = newNodeIT(nkCurly, n.info, setType)
          for j in countup(0, sonsLen(it) - 2): addSon(s, copyTree(it.sons[j]))
          var inExpr = newNodeIT(nkCall, n.info, getSysType(c.graph, n.info, tyBool))
          addSon(inExpr, newSymNode(c.graph.opContains, n.info))
          addSon(inExpr, s)
          addSon(inExpr, copyTree(r.sons[0]))
          addSon(check, inExpr)
          #addSon(check, semExpr(c, inExpr))
          return
      of nkElse:
        result = lookupInRecordAndBuildCheck(c, n, lastSon(it), field, check)
        if result != nil:
          if check == nil:
            check = newNodeI(nkCheckedFieldExpr, n.info)
            addSon(check, c.graph.emptyNode) # make space for access node
          var inExpr = newNodeIT(nkCall, n.info, getSysType(c.graph, n.info, tyBool))
          addSon(inExpr, newSymNode(c.graph.opContains, n.info))
          addSon(inExpr, s)
          addSon(inExpr, copyTree(r.sons[0]))
          var notExpr = newNodeIT(nkCall, n.info, getSysType(c.graph, n.info, tyBool))
          addSon(notExpr, newSymNode(c.graph.opNot, n.info))
          addSon(notExpr, inExpr)
          addSon(check, notExpr)
          return
      else: illFormedAst(it, c.config)
  of nkSym:
    if r.sym.name.id == field.id: result = r.sym
  else: illFormedAst(n, c.config)

const
  tyTypeParamsHolders = {tyGenericInst, tyCompositeTypeClass}
  tyDotOpTransparent = {tyVar, tyLent, tyPtr, tyRef, tyOwned, tyAlias, tySink}

proc readTypeParameter(c: PContext, typ: PType,
                       paramName: PIdent, info: TLineInfo): PNode =
  # Note: This function will return emptyNode when attempting to read
  # a static type parameter that is not yet resolved (e.g. this may
  # happen in proc signatures such as `proc(x: T): array[T.sizeParam, U]`
  if typ.kind in {tyUserTypeClass, tyUserTypeClassInst}:
    for statement in typ.n:
      case statement.kind
      of nkTypeSection:
        for def in statement:
          if def[0].sym.name.id == paramName.id:
            # XXX: Instead of lifting the section type to a typedesc
            # here, we could try doing it earlier in semTypeSection.
            # This seems semantically correct and then we'll be able
            # to return the section symbol directly here
            let foundType = makeTypeDesc(c, def[2].typ)
            return newSymNode(copySym(def[0].sym).linkTo(foundType), info)

      of nkConstSection:
        for def in statement:
          if def[0].sym.name.id == paramName.id:
            return def[2]

      else:
        discard

  if typ.kind != tyUserTypeClass:
    let ty = if typ.kind == tyCompositeTypeClass: typ.sons[1].skipGenericAlias
             else: typ.skipGenericAlias
    let tbody = ty.sons[0]
    for s in countup(0, tbody.len-2):
      let tParam = tbody.sons[s]
      if tParam.sym.name.id == paramName.id:
        let rawTyp = ty.sons[s + 1]
        if rawTyp.kind == tyStatic:
          if rawTyp.n != nil:
            return rawTyp.n
          else:
            return c.graph.emptyNode
        else:
          let foundTyp = makeTypeDesc(c, rawTyp)
          return newSymNode(copySym(tParam.sym).linkTo(foundTyp), info)

  return nil

proc semSym(c: PContext, n: PNode, sym: PSym, flags: TExprFlags): PNode =
  let s = getGenSym(c, sym)
  case s.kind
  of skConst:
    markUsed(c.config, n.info, s, c.graph.usageSym)
    onUse(n.info, s)
    let typ = skipTypes(s.typ, abstractInst-{tyTypeDesc})
    case typ.kind
    of  tyNil, tyChar, tyInt..tyInt64, tyFloat..tyFloat128,
        tyTuple, tySet, tyUInt..tyUInt64:
      if s.magic == mNone: result = inlineConst(c, n, s)
      else: result = newSymNode(s, n.info)
    of tyArray, tySequence:
      # Consider::
      #     const x = []
      #     proc p(a: openarray[int])
      #     proc q(a: openarray[char])
      #     p(x)
      #     q(x)
      #
      # It is clear that ``[]`` means two totally different things. Thus, we
      # copy `x`'s AST into each context, so that the type fixup phase can
      # deal with two different ``[]``.
      if s.ast.len == 0: result = inlineConst(c, n, s)
      else: result = newSymNode(s, n.info)
    of tyStatic:
      if typ.n != nil:
        result = typ.n
        result.typ = typ.base
      else:
        result = newSymNode(s, n.info)
    else:
      result = newSymNode(s, n.info)
  of skMacro:
    if efNoEvaluateGeneric in flags and s.ast[genericParamsPos].len > 0 or
       (n.kind notin nkCallKinds and s.requiredParams > 0):
      markUsed(c.config, n.info, s, c.graph.usageSym)
      onUse(n.info, s)
      result = symChoice(c, n, s, scClosed)
    else:
      result = semMacroExpr(c, n, n, s, flags)
  of skTemplate:
    if efNoEvaluateGeneric in flags and s.ast[genericParamsPos].len > 0 or
       (n.kind notin nkCallKinds and s.requiredParams > 0) or
       sfCustomPragma in sym.flags:
      let info = getCallLineInfo(n)
      markUsed(c.config, info, s, c.graph.usageSym)
      onUse(info, s)
      result = symChoice(c, n, s, scClosed)
    else:
      result = semTemplateExpr(c, n, s, flags)
  of skParam:
    markUsed(c.config, n.info, s, c.graph.usageSym)
    onUse(n.info, s)
    if s.typ != nil and s.typ.kind == tyStatic and s.typ.n != nil:
      # XXX see the hack in sigmatch.nim ...
      return s.typ.n
    elif sfGenSym in s.flags:
      # the owner should have been set by now by addParamOrResult
      internalAssert c.config, s.owner != nil
      if c.p.wasForwarded:
        # gensym'ed parameters that nevertheless have been forward declared
        # need a special fixup:
        let realParam = c.p.owner.typ.n[s.position+1]
        internalAssert c.config, realParam.kind == nkSym and realParam.sym.kind == skParam
        return newSymNode(c.p.owner.typ.n[s.position+1].sym, n.info)
      elif c.p.owner.kind == skMacro:
        # gensym'ed macro parameters need a similar hack (see bug #1944):
        var u = searchInScopes(c, s.name)
        internalAssert c.config, u != nil and u.kind == skParam and u.owner == s.owner
        return newSymNode(u, n.info)
    result = newSymNode(s, n.info)
  of skVar, skLet, skResult, skForVar:
    if s.magic == mNimvm:
      localError(c.config, n.info, "illegal context for 'nimvm' magic")

    markUsed(c.config, n.info, s, c.graph.usageSym)
    onUse(n.info, s)
    result = newSymNode(s, n.info)
    # We cannot check for access to outer vars for example because it's still
    # not sure the symbol really ends up being used:
    # var len = 0 # but won't be called
    # genericThatUsesLen(x) # marked as taking a closure?
  of skGenericParam:
    onUse(n.info, s)
    if s.typ.kind == tyStatic:
      result = newSymNode(s, n.info)
      result.typ = s.typ
    elif s.ast != nil:
      result = semExpr(c, s.ast)
    else:
      n.typ = s.typ
      return n
  of skType:
    markUsed(c.config, n.info, s, c.graph.usageSym)
    onUse(n.info, s)
    if s.typ.kind == tyStatic and s.typ.base.kind != tyNone and s.typ.n != nil:
      return s.typ.n
    result = newSymNode(s, n.info)
    result.typ = makeTypeDesc(c, s.typ)
  of skField:
    var p = c.p
    while p != nil and p.selfSym == nil:
      p = p.next
    if p != nil and p.selfSym != nil:
      var ty = skipTypes(p.selfSym.typ, {tyGenericInst, tyVar, tyLent, tyPtr, tyRef,
                                         tyAlias, tySink, tyOwned})
      while tfBorrowDot in ty.flags: ty = ty.skipTypes({tyDistinct})
      var check: PNode = nil
      if ty.kind == tyObject:
        while true:
          check = nil
          let f = lookupInRecordAndBuildCheck(c, n, ty.n, s.name, check)
          if f != nil and fieldVisible(c, f):
            # is the access to a public field or in the same module or in a friend?
            doAssert f == s
            markUsed(c.config, n.info, f, c.graph.usageSym)
            onUse(n.info, f)
            result = newNodeIT(nkDotExpr, n.info, f.typ)
            result.add makeDeref(newSymNode(p.selfSym))
            result.add newSymNode(f) # we now have the correct field
            if check != nil:
              check.sons[0] = result
              check.typ = result.typ
              result = check
            return result
          if ty.sons[0] == nil: break
          ty = skipTypes(ty.sons[0], skipPtrs)
    # old code, not sure if it's live code:
    markUsed(c.config, n.info, s, c.graph.usageSym)
    onUse(n.info, s)
    result = newSymNode(s, n.info)
  else:
    let info = getCallLineInfo(n)
    markUsed(c.config, info, s, c.graph.usageSym)
    onUse(info, s)
    result = newSymNode(s, info)

proc builtinFieldAccess(c: PContext, n: PNode, flags: TExprFlags): PNode =
  ## returns nil if it's not a built-in field access
  checkSonsLen(n, 2, c.config)
  # tests/bind/tbindoverload.nim wants an early exit here, but seems to
  # work without now. template/tsymchoicefield doesn't like an early exit
  # here at all!
  #if isSymChoice(n.sons[1]): return
  when defined(nimsuggest):
    if c.config.cmd == cmdIdeTools:
      suggestExpr(c, n)
      if exactEquals(c.config.m.trackPos, n[1].info): suggestExprNoCheck(c, n)

  var s = qualifiedLookUp(c, n, {checkAmbiguity, checkUndeclared, checkModule})
  if s != nil:
    if s.kind in OverloadableSyms:
      result = symChoice(c, n, s, scClosed)
      if result.kind == nkSym: result = semSym(c, n, s, flags)
    else:
      markUsed(c.config, n.sons[1].info, s, c.graph.usageSym)
      result = semSym(c, n, s, flags)
    onUse(n.sons[1].info, s)
    return

  n.sons[0] = semExprWithType(c, n.sons[0], flags+{efDetermineType})
  #restoreOldStyleType(n.sons[0])
  var i = considerQuotedIdent(c, n.sons[1], n)
  var ty = n.sons[0].typ
  var f: PSym = nil
  result = nil

  template tryReadingGenericParam(t: PType) =
    case t.kind
    of tyTypeParamsHolders:
      result = readTypeParameter(c, t, i, n.info)
      if result == c.graph.emptyNode:
        result = n
        n.typ = makeTypeFromExpr(c, n.copyTree)
      return
    of tyUserTypeClasses:
      if t.isResolvedUserTypeClass:
        return readTypeParameter(c, t, i, n.info)
      else:
        n.typ = makeTypeFromExpr(c, copyTree(n))
        return n
    of tyGenericParam, tyAnything:
      n.typ = makeTypeFromExpr(c, copyTree(n))
      return n
    else:
      discard

  var argIsType = false

  if ty.kind == tyTypeDesc:
    if ty.base.kind == tyNone:
      # This is a still unresolved typedesc parameter.
      # If this is a regular proc, then all bets are off and we must return
      # tyFromExpr, but when this happen in a macro this is not a built-in
      # field access and we leave the compiler to compile a normal call:
      if getCurrOwner(c).kind != skMacro:
        n.typ = makeTypeFromExpr(c, n.copyTree)
        return n
      else:
        return nil
    else:
      ty = ty.base
      argIsType = true
  else:
    argIsType = isTypeExpr(n.sons[0])

  if argIsType:
    ty = ty.skipTypes(tyDotOpTransparent)
    case ty.kind
    of tyEnum:
      # look up if the identifier belongs to the enum:
      while ty != nil:
        f = getSymFromList(ty.n, i)
        if f != nil: break
        ty = ty.sons[0]         # enum inheritance
      if f != nil:
        result = newSymNode(f)
        result.info = n.info
        result.typ = ty
        markUsed(c.config, n.info, f, c.graph.usageSym)
        onUse(n.info, f)
        return
    of tyObject, tyTuple:
      if ty.n != nil and ty.n.kind == nkRecList:
        let field = lookupInRecord(ty.n, i)
        if field != nil:
          n.typ = makeTypeDesc(c, field.typ)
          return n
    else:
      tryReadingGenericParam(ty)
      return
    # XXX: This is probably not relevant any more
    # reset to prevent 'nil' bug: see "tests/reject/tenumitems.nim":
    ty = n.sons[0].typ
    return nil
  if ty.kind in tyUserTypeClasses and ty.isResolvedUserTypeClass:
    ty = ty.lastSon
  ty = skipTypes(ty, {tyGenericInst, tyVar, tyLent, tyPtr, tyRef, tyOwned, tyAlias, tySink})
  while tfBorrowDot in ty.flags: ty = ty.skipTypes({tyDistinct})
  var check: PNode = nil
  if ty.kind == tyObject:
    while true:
      check = nil
      f = lookupInRecordAndBuildCheck(c, n, ty.n, i, check)
      if f != nil: break
      if ty.sons[0] == nil: break
      ty = skipTypes(ty.sons[0], skipPtrs)
    if f != nil:
      let visibilityCheckNeeded =
        if n[1].kind == nkSym and n[1].sym == f:
          false # field lookup was done already, likely by hygienic template or bindSym
        else: true
      if not visibilityCheckNeeded or fieldVisible(c, f):
        # is the access to a public field or in the same module or in a friend?
        markUsed(c.config, n.sons[1].info, f, c.graph.usageSym)
        onUse(n.sons[1].info, f)
        n.sons[0] = makeDeref(n.sons[0])
        n.sons[1] = newSymNode(f) # we now have the correct field
        n.typ = f.typ
        if check == nil:
          result = n
        else:
          check.sons[0] = n
          check.typ = n.typ
          result = check
  elif ty.kind == tyTuple and ty.n != nil:
    f = getSymFromList(ty.n, i)
    if f != nil:
      markUsed(c.config, n.sons[1].info, f, c.graph.usageSym)
      onUse(n.sons[1].info, f)
      n.sons[0] = makeDeref(n.sons[0])
      n.sons[1] = newSymNode(f)
      n.typ = f.typ
      result = n

  # we didn't find any field, let's look for a generic param
  if result == nil:
    let t = n.sons[0].typ.skipTypes(tyDotOpTransparent)
    tryReadingGenericParam(t)

proc dotTransformation(c: PContext, n: PNode): PNode =
  if isSymChoice(n.sons[1]):
    result = newNodeI(nkDotCall, n.info)
    addSon(result, n.sons[1])
    addSon(result, copyTree(n[0]))
  else:
    var i = considerQuotedIdent(c, n.sons[1], n)
    result = newNodeI(nkDotCall, n.info)
    result.flags.incl nfDotField
    addSon(result, newIdentNode(i, n[1].info))
    addSon(result, copyTree(n[0]))

proc semFieldAccess(c: PContext, n: PNode, flags: TExprFlags): PNode =
  # this is difficult, because the '.' is used in many different contexts
  # in Nim. We first allow types in the semantic checking.
  result = builtinFieldAccess(c, n, flags)
  if result == nil:
    result = dotTransformation(c, n)

proc buildOverloadedSubscripts(n: PNode, ident: PIdent): PNode =
  result = newNodeI(nkCall, n.info)
  result.add(newIdentNode(ident, n.info))
  for i in 0 .. n.len-1: result.add(n[i])

proc semDeref(c: PContext, n: PNode): PNode =
  checkSonsLen(n, 1, c.config)
  n.sons[0] = semExprWithType(c, n.sons[0])
  result = n
  var t = skipTypes(n.sons[0].typ, {tyGenericInst, tyVar, tyLent, tyAlias, tySink, tyOwned})
  case t.kind
  of tyRef, tyPtr: n.typ = t.lastSon
  else: result = nil
  #GlobalError(n.sons[0].info, errCircumNeedsPointer)

proc semSubscript(c: PContext, n: PNode, flags: TExprFlags): PNode =
  ## returns nil if not a built-in subscript operator; also called for the
  ## checking of assignments
  if sonsLen(n) == 1:
    let x = semDeref(c, n)
    if x == nil: return nil
    result = newNodeIT(nkDerefExpr, x.info, x.typ)
    result.add(x[0])
    return
  checkMinSonsLen(n, 2, c.config)
  # make sure we don't evaluate generic macros/templates
  n.sons[0] = semExprWithType(c, n.sons[0],
                              {efNoEvaluateGeneric})
  var arr = skipTypes(n.sons[0].typ, {tyGenericInst, tyUserTypeClassInst, tyOwned,
                                      tyVar, tyLent, tyPtr, tyRef, tyAlias, tySink})
  if arr.kind == tyStatic:
    if arr.base.kind == tyNone:
      result = n
      result.typ = semStaticType(c, n[1], nil)
      return
    elif arr.n != nil:
      return semSubscript(c, arr.n, flags)
    else:
      arr = arr.base

  case arr.kind
  of tyArray, tyOpenArray, tyVarargs, tySequence, tyString, tyCString,
    tyUncheckedArray:
    if n.len != 2: return nil
    n.sons[0] = makeDeref(n.sons[0])
    for i in countup(1, sonsLen(n) - 1):
      n.sons[i] = semExprWithType(c, n.sons[i],
                                  flags*{efInTypeof, efDetermineType})
    # Arrays index type is dictated by the range's type
    if arr.kind == tyArray:
      var indexType = arr.sons[0]
      var arg = indexTypesMatch(c, indexType, n.sons[1].typ, n.sons[1])
      if arg != nil:
        n.sons[1] = arg
        result = n
        result.typ = elemType(arr)
    # Other types have a bit more of leeway
    elif n.sons[1].typ.skipTypes(abstractRange-{tyDistinct}).kind in
        {tyInt..tyInt64, tyUInt..tyUInt64}:
      result = n
      result.typ = elemType(arr)
  of tyTypeDesc:
    # The result so far is a tyTypeDesc bound
    # a tyGenericBody. The line below will substitute
    # it with the instantiated type.
    result = n
    result.typ = makeTypeDesc(c, semTypeNode(c, n, nil))
    #result = symNodeFromType(c, semTypeNode(c, n, nil), n.info)
  of tyTuple:
    if n.len != 2: return nil
    n.sons[0] = makeDeref(n.sons[0])
    # [] operator for tuples requires constant expression:
    n.sons[1] = semConstExpr(c, n.sons[1])
    if skipTypes(n.sons[1].typ, {tyGenericInst, tyRange, tyOrdinal, tyAlias, tySink}).kind in
        {tyInt..tyInt64}:
      let idx = getOrdValue(n.sons[1])
      if idx >= 0 and idx < len(arr): n.typ = arr.sons[int(idx)]
      else: localError(c.config, n.info, "invalid index value for tuple subscript")
      result = n
    else:
      result = nil
  else:
    let s = if n.sons[0].kind == nkSym: n.sons[0].sym
            elif n[0].kind in nkSymChoices: n.sons[0][0].sym
            else: nil
    if s != nil:
      case s.kind
      of skProc, skFunc, skMethod, skConverter, skIterator:
        # type parameters: partial generic specialization
        n.sons[0] = semSymGenericInstantiation(c, n.sons[0], s)
        result = explicitGenericInstantiation(c, n, s)
      of skMacro, skTemplate:
        if efInCall in flags:
          # We are processing macroOrTmpl[] in macroOrTmpl[](...) call.
          # Return as is, so it can be transformed into complete macro or
          # template call in semIndirectOp caller.
          result = n
        else:
          # We are processing macroOrTmpl[] not in call. Transform it to the
          # macro or template call with generic arguments here.
          n.kind = nkCall
          case s.kind
          of skMacro: result = semMacroExpr(c, n, n, s, flags)
          of skTemplate: result = semTemplateExpr(c, n, s, flags)
          else: discard
      of skType:
        result = symNodeFromType(c, semTypeNode(c, n, nil), n.info)
      else:
        discard

proc semArrayAccess(c: PContext, n: PNode, flags: TExprFlags): PNode =
  result = semSubscript(c, n, flags)
  if result == nil:
    # overloaded [] operator:
    result = semExpr(c, buildOverloadedSubscripts(n, getIdent(c.cache, "[]")))

proc propertyWriteAccess(c: PContext, n, nOrig, a: PNode): PNode =
  var id = considerQuotedIdent(c, a[1], a)
  var setterId = newIdentNode(getIdent(c.cache, id.s & '='), n.info)
  # a[0] is already checked for semantics, that does ``builtinFieldAccess``
  # this is ugly. XXX Semantic checking should use the ``nfSem`` flag for
  # nodes?
  let aOrig = nOrig[0]
  result = newNode(nkCall, n.info, sons = @[setterId, a[0],
                                            semExprWithType(c, n[1])])
  result.flags.incl nfDotSetter
  let orig = newNode(nkCall, n.info, sons = @[setterId, aOrig[0], nOrig[1]])
  result = semOverloadedCallAnalyseEffects(c, result, orig, {})

  if result != nil:
    result = afterCallActions(c, result, nOrig, {})
    #fixAbstractType(c, result)
    #analyseIfAddressTakenInCall(c, result)

proc takeImplicitAddr(c: PContext, n: PNode; isLent: bool): PNode =
  # See RFC #7373, calls returning 'var T' are assumed to
  # return a view into the first argument (if there is one):
  let root = exprRoot(n)
  if root != nil and root.owner == c.p.owner:
    if root.kind in {skLet, skVar, skTemp} and sfGlobal notin root.flags:
      localError(c.config, n.info, "'$1' escapes its stack frame; context: '$2'; see $3/var_t_return.html" % [
        root.name.s, renderTree(n, {renderNoComments}), explanationsBaseUrl])
    elif root.kind == skParam and root.position != 0:
      localError(c.config, n.info, "'$1' is not the first parameter; context: '$2'; see $3/var_t_return.html" % [
        root.name.s, renderTree(n, {renderNoComments}), explanationsBaseUrl])
  case n.kind
  of nkHiddenAddr, nkAddr: return n
  of nkHiddenDeref, nkDerefExpr: return n.sons[0]
  of nkBracketExpr:
    if len(n) == 1: return n.sons[0]
  else: discard
  let valid = isAssignable(c, n)
  if valid != arLValue:
    if valid == arLocalLValue:
      localError(c.config, n.info, errXStackEscape % renderTree(n, {renderNoComments}))
    elif not isLent:
      localError(c.config, n.info, errExprHasNoAddress)
  result = newNodeIT(nkHiddenAddr, n.info, makePtrType(c, n.typ))
  result.add(n)

proc asgnToResultVar(c: PContext, n, le, ri: PNode) {.inline.} =
  if le.kind == nkHiddenDeref:
    var x = le.sons[0]
    if x.typ.kind in {tyVar, tyLent} and x.kind == nkSym and x.sym.kind == skResult:
      n.sons[0] = x # 'result[]' --> 'result'
      n.sons[1] = takeImplicitAddr(c, ri, x.typ.kind == tyLent)
      x.typ.flags.incl tfVarIsPtr
      #echo x.info, " setting it for this type ", typeToString(x.typ), " ", n.info
  # Special typing rule: do not allow to pass 'owned T' to 'T' in 'result = x':
  if ri.typ != nil and ri.typ.skipTypes(abstractInst).kind == tyOwned and
      le.typ != nil and le.typ.skipTypes(abstractInst).kind != tyOwned:
    localError(c.config, n.info, "cannot return an owned pointer as an unowned pointer; " &
      "use 'owned(" & typeToString(le.typ) & ")' as the return type")

template resultTypeIsInferrable(typ: PType): untyped =
  typ.isMetaType and typ.kind != tyTypeDesc


proc goodLineInfo(arg: PNode): TLineinfo =
  if arg.kind == nkStmtListExpr and arg.len > 0:
    goodLineInfo(arg[^1])
  else:
    arg.info

proc semAsgn(c: PContext, n: PNode; mode=asgnNormal): PNode =
  checkSonsLen(n, 2, c.config)
  var a = n.sons[0]
  case a.kind
  of nkDotExpr:
    # r.f = x
    # --> `f=` (r, x)
    let nOrig = n.copyTree
    a = builtinFieldAccess(c, a, {efLValue})
    if a == nil:
      a = propertyWriteAccess(c, n, nOrig, n[0])
      if a != nil: return a
      # we try without the '='; proc that return 'var' or macros are still
      # possible:
      a = dotTransformation(c, n[0])
      if a.kind == nkDotCall:
        a.kind = nkCall
        a = semExprWithType(c, a, {efLValue})
  of nkBracketExpr:
    # a[i] = x
    # --> `[]=`(a, i, x)
    a = semSubscript(c, a, {efLValue})
    if a == nil:
      result = buildOverloadedSubscripts(n.sons[0], getIdent(c.cache, "[]="))
      add(result, n[1])
      if mode == noOverloadedSubscript:
        bracketNotFoundError(c, result)
        return n
      else:
        result = semExprNoType(c, result)
        return result
  of nkCurlyExpr:
    # a{i} = x -->  `{}=`(a, i, x)
    result = buildOverloadedSubscripts(n.sons[0], getIdent(c.cache, "{}="))
    add(result, n[1])
    return semExprNoType(c, result)
  of nkPar, nkTupleConstr:
    if a.len >= 2:
      # unfortunately we need to rewrite ``(x, y) = foo()`` already here so
      # that overloading of the assignment operator still works. Usually we
      # prefer to do these rewritings in transf.nim:
      return semStmt(c, lowerTupleUnpackingForAsgn(c.graph, n, c.p.owner), {})
    else:
      a = semExprWithType(c, a, {efLValue})
  else:
    a = semExprWithType(c, a, {efLValue})
  n.sons[0] = a
  # a = b # both are vars, means: a[] = b[]
  # a = b # b no 'var T' means: a = addr(b)
  var le = a.typ
  if le == nil:
    localError(c.config, a.info, "expression has no type")
  elif (skipTypes(le, {tyGenericInst, tyAlias, tySink}).kind != tyVar and
        isAssignable(c, a) == arNone) or
      skipTypes(le, abstractVar).kind in {tyOpenArray, tyVarargs}:
    # Direct assignment to a discriminant is allowed!
    localError(c.config, a.info, errXCannotBeAssignedTo %
               renderTree(a, {renderNoComments}))
  else:
    let
      lhs = n.sons[0]
      lhsIsResult = lhs.kind == nkSym and lhs.sym.kind == skResult
    var
      rhs = semExprWithType(c, n.sons[1],
        if lhsIsResult: {efAllowDestructor} else: {})
    if lhsIsResult:
      n.typ = c.enforceVoidContext
      if c.p.owner.kind != skMacro and resultTypeIsInferrable(lhs.sym.typ):
        var rhsTyp = rhs.typ
        if rhsTyp.kind in tyUserTypeClasses and rhsTyp.isResolvedUserTypeClass:
          rhsTyp = rhsTyp.lastSon
        if cmpTypes(c, lhs.typ, rhsTyp) in {isGeneric, isEqual}:
          internalAssert c.config, c.p.resultSym != nil
          # Make sure the type is valid for the result variable
          typeAllowedCheck(c.config, n.info, rhsTyp, skResult)
          lhs.typ = rhsTyp
          c.p.resultSym.typ = rhsTyp
          c.p.owner.typ.sons[0] = rhsTyp
        else:
          typeMismatch(c.config, n.info, lhs.typ, rhsTyp)

    n.sons[1] = fitNode(c, le, rhs, goodLineInfo(n[1]))
    liftTypeBoundOps(c.graph, lhs.typ, lhs.info)
    #liftTypeBoundOps(c, n.sons[0].typ, n.sons[0].info)

    fixAbstractType(c, n)
    asgnToResultVar(c, n, n.sons[0], n.sons[1])
  result = n

proc semReturn(c: PContext, n: PNode): PNode =
  result = n
  checkSonsLen(n, 1, c.config)
  if c.p.owner.kind in {skConverter, skMethod, skProc, skFunc, skMacro} or (
     c.p.owner.kind == skIterator and c.p.owner.typ.callConv == ccClosure):
    if n.sons[0].kind != nkEmpty:
      # transform ``return expr`` to ``result = expr; return``
      if c.p.resultSym != nil:
        var a = newNodeI(nkAsgn, n.sons[0].info)
        addSon(a, newSymNode(c.p.resultSym))
        addSon(a, n.sons[0])
        n.sons[0] = semAsgn(c, a)
        # optimize away ``result = result``:
        if n[0][1].kind == nkSym and n[0][1].sym == c.p.resultSym:
          n.sons[0] = c.graph.emptyNode
      else:
        localError(c.config, n.info, errNoReturnTypeDeclared)
  else:
    localError(c.config, n.info, "'return' not allowed here")

proc semProcBody(c: PContext, n: PNode): PNode =
  openScope(c)
  result = semExpr(c, n)
  if c.p.resultSym != nil and not isEmptyType(result.typ):
    if result.kind == nkNilLit:
      # or ImplicitlyDiscardable(result):
      # new semantic: 'result = x' triggers the void context
      result.typ = nil
    elif result.kind == nkStmtListExpr and result.typ.kind == tyNil:
      # to keep backwards compatibility bodies like:
      #   nil
      #   # comment
      # are not expressions:
      fixNilType(c, result)
    else:
      var a = newNodeI(nkAsgn, n.info, 2)
      a.sons[0] = newSymNode(c.p.resultSym)
      a.sons[1] = result
      result = semAsgn(c, a)
  else:
    result = discardCheck(c, result, {})

  if c.p.owner.kind notin {skMacro, skTemplate} and
     c.p.resultSym != nil and c.p.resultSym.typ.isMetaType:
    if isEmptyType(result.typ):
      # we inferred a 'void' return type:
      c.p.resultSym.typ = errorType(c)
      c.p.owner.typ.sons[0] = nil
    else:
      localError(c.config, c.p.resultSym.info, errCannotInferReturnType)

  closeScope(c)

proc semYieldVarResult(c: PContext, n: PNode, restype: PType) =
  var t = skipTypes(restype, {tyGenericInst, tyAlias, tySink})
  case t.kind
  of tyVar, tyLent:
    if t.kind == tyVar: t.flags.incl tfVarIsPtr # bugfix for #4048, #4910, #6892
    if n.sons[0].kind in {nkHiddenStdConv, nkHiddenSubConv}:
      n.sons[0] = n.sons[0].sons[1]
    n.sons[0] = takeImplicitAddr(c, n.sons[0], t.kind == tyLent)
  of tyTuple:
    for i in 0..<t.sonsLen:
      var e = skipTypes(t.sons[i], {tyGenericInst, tyAlias, tySink})
      if e.kind in {tyVar, tyLent}:
        if e.kind == tyVar: e.flags.incl tfVarIsPtr # bugfix for #4048, #4910, #6892
        if n.sons[0].kind in {nkPar, nkTupleConstr}:
          n.sons[0].sons[i] = takeImplicitAddr(c, n.sons[0].sons[i], e.kind == tyLent)
        elif n.sons[0].kind in {nkHiddenStdConv, nkHiddenSubConv} and
             n.sons[0].sons[1].kind in {nkPar, nkTupleConstr}:
          var a = n.sons[0].sons[1]
          a.sons[i] = takeImplicitAddr(c, a.sons[i], false)
        else:
          localError(c.config, n.sons[0].info, errXExpected, "tuple constructor")
  else: discard

proc semYield(c: PContext, n: PNode): PNode =
  result = n
  checkSonsLen(n, 1, c.config)
  if c.p.owner == nil or c.p.owner.kind != skIterator:
    localError(c.config, n.info, errYieldNotAllowedHere)
  elif n.sons[0].kind != nkEmpty:
    n.sons[0] = semExprWithType(c, n.sons[0]) # check for type compatibility:
    var iterType = c.p.owner.typ
    let restype = iterType.sons[0]
    if restype != nil:
      if restype.kind != tyExpr:
        n.sons[0] = fitNode(c, restype, n.sons[0], n.info)
      if n.sons[0].typ == nil: internalError(c.config, n.info, "semYield")

      if resultTypeIsInferrable(restype):
        let inferred = n.sons[0].typ
        iterType.sons[0] = inferred

      semYieldVarResult(c, n, restype)
    else:
      localError(c.config, n.info, errCannotReturnExpr)
  elif c.p.owner.typ.sons[0] != nil:
    localError(c.config, n.info, errGenerated, "yield statement must yield a value")

proc lookUpForDefined(c: PContext, i: PIdent, onlyCurrentScope: bool): PSym =
  if onlyCurrentScope:
    result = localSearchInScope(c, i)
  else:
    result = searchInScopes(c, i) # no need for stub loading

proc lookUpForDefined(c: PContext, n: PNode, onlyCurrentScope: bool): PSym =
  case n.kind
  of nkIdent:
    result = lookUpForDefined(c, n.ident, onlyCurrentScope)
  of nkDotExpr:
    result = nil
    if onlyCurrentScope: return
    checkSonsLen(n, 2, c.config)
    var m = lookUpForDefined(c, n.sons[0], onlyCurrentScope)
    if m != nil and m.kind == skModule:
      let ident = considerQuotedIdent(c, n[1], n)
      if m == c.module:
        result = strTableGet(c.topLevelScope.symbols, ident)
      else:
        result = strTableGet(m.tab, ident)
  of nkAccQuoted:
    result = lookUpForDefined(c, considerQuotedIdent(c, n), onlyCurrentScope)
  of nkSym:
    result = n.sym
  of nkOpenSymChoice, nkClosedSymChoice:
    result = n.sons[0].sym
  else:
    localError(c.config, n.info, "identifier expected, but got: " & renderTree(n))
    result = nil

proc semDefined(c: PContext, n: PNode, onlyCurrentScope: bool): PNode =
  checkSonsLen(n, 2, c.config)
  # we replace this node by a 'true' or 'false' node:
  result = newIntNode(nkIntLit, 0)
  if not onlyCurrentScope and considerQuotedIdent(c, n[0], n).s == "defined":
    let d = considerQuotedIdent(c, n[1], n)
    result.intVal = ord isDefined(c.config, d.s)
  elif lookUpForDefined(c, n.sons[1], onlyCurrentScope) != nil:
    result.intVal = 1
  result.info = n.info
  result.typ = getSysType(c.graph, n.info, tyBool)

proc expectMacroOrTemplateCall(c: PContext, n: PNode): PSym =
  ## The argument to the proc should be nkCall(...) or similar
  ## Returns the macro/template symbol
  if isCallExpr(n):
    var expandedSym = qualifiedLookUp(c, n[0], {checkUndeclared})
    if expandedSym == nil:
      errorUndeclaredIdentifier(c, n.info, n[0].renderTree)
      return errorSym(c, n[0])

    if expandedSym.kind notin {skMacro, skTemplate}:
      localError(c.config, n.info, "'$1' is not a macro or template" % expandedSym.name.s)
      return errorSym(c, n[0])

    result = expandedSym
  else:
    localError(c.config, n.info, "'$1' is not a macro or template" % n.renderTree)
    result = errorSym(c, n)

proc expectString(c: PContext, n: PNode): string =
  var n = semConstExpr(c, n)
  if n.kind in nkStrKinds:
    return n.strVal
  else:
    localError(c.config, n.info, errStringLiteralExpected)

proc newAnonSym(c: PContext; kind: TSymKind, info: TLineInfo): PSym =
  result = newSym(kind, c.cache.idAnon, getCurrOwner(c), info)
  result.flags = {sfGenSym}

proc semExpandToAst(c: PContext, n: PNode): PNode =
  let macroCall = n[1]

  when false:
    let expandedSym = expectMacroOrTemplateCall(c, macroCall)
    if expandedSym.kind == skError: return n

    macroCall.sons[0] = newSymNode(expandedSym, macroCall.info)
    markUsed(c.config, n.info, expandedSym, c.graph.usageSym)
    onUse(n.info, expandedSym)

  if isCallExpr(macroCall):
    for i in countup(1, macroCall.len-1):
      #if macroCall.sons[0].typ.sons[i].kind != tyExpr:
      macroCall.sons[i] = semExprWithType(c, macroCall[i], {})
    # performing overloading resolution here produces too serious regressions:
    let headSymbol = macroCall[0]
    var cands = 0
    var cand: PSym = nil
    var o: TOverloadIter
    var symx = initOverloadIter(o, c, headSymbol)
    while symx != nil:
      if symx.kind in {skTemplate, skMacro} and symx.typ.len == macroCall.len:
        cand = symx
        inc cands
      symx = nextOverloadIter(o, c, headSymbol)
    if cands == 0:
      localError(c.config, n.info, "expected a template that takes " & $(macroCall.len-1) & " arguments")
    elif cands >= 2:
      localError(c.config, n.info, "ambiguous symbol in 'getAst' context: " & $macroCall)
    else:
      let info = macroCall.sons[0].info
      macroCall.sons[0] = newSymNode(cand, info)
      markUsed(c.config, info, cand, c.graph.usageSym)
      onUse(info, cand)

    # we just perform overloading resolution here:
    #n.sons[1] = semOverloadedCall(c, macroCall, macroCall, {skTemplate, skMacro})
  else:
    localError(c.config, n.info, "getAst takes a call, but got " & n.renderTree)
  # Preserve the magic symbol in order to be handled in evals.nim
  internalAssert c.config, n.sons[0].sym.magic == mExpandToAst
  #n.typ = getSysSym("NimNode").typ # expandedSym.getReturnType
  if n.kind == nkStmtList and n.len == 1: result = n[0]
  else: result = n
  result.typ = sysTypeFromName(c.graph, n.info, "NimNode")

proc semExpandToAst(c: PContext, n: PNode, magicSym: PSym,
                    flags: TExprFlags = {}): PNode =
  if sonsLen(n) == 2:
    n.sons[0] = newSymNode(magicSym, n.info)
    result = semExpandToAst(c, n)
  else:
    result = semDirectOp(c, n, flags)

proc processQuotations(c: PContext; n: var PNode, op: string,
                       quotes: var seq[PNode],
                       ids: var seq[PNode]) =
  template returnQuote(q) =
    quotes.add q
    n = newIdentNode(getIdent(c.cache, $quotes.len), n.info)
    ids.add n
    return


  if n.kind == nkPrefix:
    checkSonsLen(n, 2, c.config)
    if n[0].kind == nkIdent:
      var examinedOp = n[0].ident.s
      if examinedOp == op:
        returnQuote n[1]
      elif examinedOp.startsWith(op):
        n.sons[0] = newIdentNode(getIdent(c.cache, examinedOp.substr(op.len)), n.info)
  elif n.kind == nkAccQuoted and op == "``":
    returnQuote n[0]
  elif n.kind == nkIdent:
    if n.ident.s == "result":
      n = ids[0]

  for i in 0 ..< n.safeLen:
    processQuotations(c, n.sons[i], op, quotes, ids)

proc semQuoteAst(c: PContext, n: PNode): PNode =
  internalAssert c.config, n.len == 2 or n.len == 3
  # We transform the do block into a template with a param for
  # each interpolation. We'll pass this template to getAst.
  var
    quotedBlock = n[^1]
    op = if n.len == 3: expectString(c, n[1]) else: "``"
    quotes = newSeq[PNode](2)
      # the quotes will be added to a nkCall statement
      # leave some room for the callee symbol and the result symbol
    ids = newSeq[PNode](1)
      # this will store the generated param names
      # leave some room for the result symbol

  if quotedBlock.kind != nkStmtList:
    localError(c.config, n.info, errXExpected, "block")

  # This adds a default first field to pass the result symbol
  ids[0] = newAnonSym(c, skParam, n.info).newSymNode
  processQuotations(c, quotedBlock, op, quotes, ids)

  var dummyTemplate = newProcNode(
    nkTemplateDef, quotedBlock.info, body = quotedBlock,
    params = c.graph.emptyNode,
    name = newAnonSym(c, skTemplate, n.info).newSymNode,
              pattern = c.graph.emptyNode, genericParams = c.graph.emptyNode,
              pragmas = c.graph.emptyNode, exceptions = c.graph.emptyNode)

  if ids.len > 0:
    dummyTemplate.sons[paramsPos] = newNodeI(nkFormalParams, n.info)
    dummyTemplate[paramsPos].add getSysSym(c.graph, n.info, "typed").newSymNode # return type
    ids.add getSysSym(c.graph, n.info, "untyped").newSymNode # params type
    ids.add c.graph.emptyNode # no default value
    dummyTemplate[paramsPos].add newNode(nkIdentDefs, n.info, ids)

  var tmpl = semTemplateDef(c, dummyTemplate)
  quotes[0] = tmpl[namePos]
  # This adds a call to newIdentNode("result") as the first argument to the template call
  quotes[1] = newNode(nkCall, n.info, @[newIdentNode(getIdent(c.cache, "newIdentNode"), n.info), newStrNode(nkStrLit, "result")])
  result = newNode(nkCall, n.info, @[
     createMagic(c.graph, "getAst", mExpandToAst).newSymNode,
    newNode(nkCall, n.info, quotes)])
  result = semExpandToAst(c, result)

proc tryExpr(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
  # watch out, hacks ahead:
  let oldErrorCount = c.config.errorCounter
  let oldErrorMax = c.config.errorMax
  let oldCompilesId = c.compilesContextId
  inc c.compilesContextIdGenerator
  c.compilesContextId = c.compilesContextIdGenerator
  # do not halt after first error:
  c.config.errorMax = high(int)

  # open a scope for temporary symbol inclusions:
  let oldScope = c.currentScope
  openScope(c)
  let oldOwnerLen = len(c.graph.owners)
  let oldGenerics = c.generics
  let oldErrorOutputs = c.config.m.errorOutputs
  if efExplain notin flags: c.config.m.errorOutputs = {}
  let oldContextLen = msgs.getInfoContextLen(c.config)

  let oldInGenericContext = c.inGenericContext
  let oldInUnrolledContext = c.inUnrolledContext
  let oldInGenericInst = c.inGenericInst
  let oldInStaticContext = c.inStaticContext
  let oldProcCon = c.p
  c.generics = @[]
  var err: string
  try:
    result = semExpr(c, n, flags)
    if c.config.errorCounter != oldErrorCount: result = nil
  except ERecoverableError:
    discard
  # undo symbol table changes (as far as it's possible):
  c.compilesContextId = oldCompilesId
  c.generics = oldGenerics
  c.inGenericContext = oldInGenericContext
  c.inUnrolledContext = oldInUnrolledContext
  c.inGenericInst = oldInGenericInst
  c.inStaticContext = oldInStaticContext
  c.p = oldProcCon
  msgs.setInfoContextLen(c.config, oldContextLen)
  setLen(c.graph.owners, oldOwnerLen)
  c.currentScope = oldScope
  c.config.m.errorOutputs = oldErrorOutputs
  c.config.errorCounter = oldErrorCount
  c.config.errorMax = oldErrorMax

proc semCompiles(c: PContext, n: PNode, flags: TExprFlags): PNode =
  # we replace this node by a 'true' or 'false' node:
  if sonsLen(n) != 2: return semDirectOp(c, n, flags)

  result = newIntNode(nkIntLit, ord(tryExpr(c, n[1], flags) != nil))
  result.info = n.info
  result.typ = getSysType(c.graph, n.info, tyBool)

proc semShallowCopy(c: PContext, n: PNode, flags: TExprFlags): PNode =
  if sonsLen(n) == 3:
    # XXX ugh this is really a hack: shallowCopy() can be overloaded only
    # with procs that take not 2 parameters:
    result = newNodeI(nkFastAsgn, n.info)
    result.add(n[1])
    result.add(n[2])
    result = semAsgn(c, result)
  else:
    result = semDirectOp(c, n, flags)

proc createFlowVar(c: PContext; t: PType; info: TLineInfo): PType =
  result = newType(tyGenericInvocation, c.module)
  addSonSkipIntLit(result, magicsys.getCompilerProc(c.graph, "FlowVar").typ)
  addSonSkipIntLit(result, t)
  result = instGenericContainer(c, info, result, allowMetaTypes = false)

proc instantiateCreateFlowVarCall(c: PContext; t: PType;
                                  info: TLineInfo): PSym =
  let sym = magicsys.getCompilerProc(c.graph, "nimCreateFlowVar")
  if sym == nil:
    localError(c.config, info, "system needs: nimCreateFlowVar")
  var bindings: TIdTable
  initIdTable(bindings)
  bindings.idTablePut(sym.ast[genericParamsPos].sons[0].typ, t)
  result = c.semGenerateInstance(c, sym, bindings, info)
  # since it's an instantiation, we unmark it as a compilerproc. Otherwise
  # codegen would fail:
  if sfCompilerProc in result.flags:
    result.flags = result.flags - {sfCompilerProc, sfExportC, sfImportC}
    result.loc.r = nil

proc setMs(n: PNode, s: PSym): PNode =
  result = n
  n.sons[0] = newSymNode(s)
  n.sons[0].info = n.info

proc semSizeof(c: PContext, n: PNode): PNode =
  if sonsLen(n) != 2:
    localError(c.config, n.info, errXExpectsTypeOrValue % "sizeof")
  else:
    n.sons[1] = semExprWithType(c, n.sons[1], {efDetermineType})
    #restoreOldStyleType(n.sons[1])
  n.typ = getSysType(c.graph, n.info, tyInt)

  let size = getSize(c.config, n[1].typ)
  if size >= 0:
    result = newIntNode(nkIntLit, size)
    result.info = n.info
    result.typ = n.typ
  else:
    result = n

proc semMagic(c: PContext, n: PNode, s: PSym, flags: TExprFlags): PNode =
  # this is a hotspot in the compiler!
  result = n
  case s.magic # magics that need special treatment
  of mAddr:
    checkSonsLen(n, 2, c.config)
    result[0] = newSymNode(s, n[0].info)
    result[1] = semAddrArg(c, n.sons[1], s.name.s == "unsafeAddr")
    result.typ = makePtrType(c, result[1].typ)
  of mTypeOf:
    result = semTypeOf(c, n)
  #of mArrGet: result = semArrGet(c, n, flags)
  #of mArrPut: result = semArrPut(c, n, flags)
  #of mAsgn: result = semAsgnOpr(c, n)
  of mDefined: result = semDefined(c, setMs(n, s), false)
  of mDefinedInScope: result = semDefined(c, setMs(n, s), true)
  of mCompiles: result = semCompiles(c, setMs(n, s), flags)
  #of mLow: result = semLowHigh(c, setMs(n, s), mLow)
  #of mHigh: result = semLowHigh(c, setMs(n, s), mHigh)
  of mIs: result = semIs(c, setMs(n, s), flags)
  #of mOf: result = semOf(c, setMs(n, s))
  of mShallowCopy: result = semShallowCopy(c, n, flags)
  of mExpandToAst: result = semExpandToAst(c, n, s, flags)
  of mQuoteAst: result = semQuoteAst(c, n)
  of mAstToStr:
    checkSonsLen(n, 2, c.config)
    result = newStrNodeT(renderTree(n[1], {renderNoComments}), n, c.graph)
    result.typ = getSysType(c.graph, n.info, tyString)
  of mParallel:
    if parallel notin c.features:
      localError(c.config, n.info, "use the {.experimental.} pragma to enable 'parallel'")
    result = setMs(n, s)
    var x = n.lastSon
    if x.kind == nkDo: x = x.sons[bodyPos]
    inc c.inParallelStmt
    result.sons[1] = semStmt(c, x, {})
    dec c.inParallelStmt
  of mSpawn:
    result = setMs(n, s)
    for i in 1 ..< n.len:
      result.sons[i] = semExpr(c, n.sons[i])
    let typ = result[^1].typ
    if not typ.isEmptyType:
      if spawnResult(typ, c.inParallelStmt > 0) == srFlowVar:
        result.typ = createFlowVar(c, typ, n.info)
      else:
        result.typ = typ
      result.add instantiateCreateFlowVarCall(c, typ, n.info).newSymNode
    else:
      result.add c.graph.emptyNode
  of mProcCall:
    result = setMs(n, s)
    result.sons[1] = semExpr(c, n.sons[1])
    result.typ = n[1].typ
  of mPlugin:
    # semDirectOp with conditional 'afterCallActions':
    let nOrig = n.copyTree
    #semLazyOpAux(c, n)
    result = semOverloadedCallAnalyseEffects(c, n, nOrig, flags)
    if result == nil:
      result = errorNode(c, n)
    else:
      let callee = result.sons[0].sym
      if callee.magic == mNone:
        semFinishOperands(c, result)
      activate(c, result)
      fixAbstractType(c, result)
      analyseIfAddressTakenInCall(c, result)
      if callee.magic != mNone:
        result = magicsAfterOverloadResolution(c, result, flags)
  of mRunnableExamples:
    if c.config.cmd == cmdDoc and n.len >= 2 and n.lastSon.kind == nkStmtList:
      when false:
        # some of this dead code was moved to `prepareExamples`
        if sfMainModule in c.module.flags:
          let inp = toFullPath(c.config, c.module.info)
          if c.runnableExamples == nil:
            c.runnableExamples = newTree(nkStmtList,
              newTree(nkImportStmt, newStrNode(nkStrLit, expandFilename(inp))))
          let imports = newTree(nkStmtList)
          var savedLastSon = copyTree n.lastSon
          extractImports(savedLastSon, imports)
          for imp in imports: c.runnableExamples.add imp
          c.runnableExamples.add newTree(nkBlockStmt, c.graph.emptyNode, copyTree savedLastSon)
      result = setMs(n, s)
    else:
      result = c.graph.emptyNode
  of mSizeOf: result = semSizeof(c, setMs(n, s))
  of mOmpParFor:
    checkMinSonsLen(n, 3, c.config)
    result = semDirectOp(c, n, flags)
  else:
    result = semDirectOp(c, n, flags)

proc semWhen(c: PContext, n: PNode, semCheck = true): PNode =
  # If semCheck is set to false, ``when`` will return the verbatim AST of
  # the correct branch. Otherwise the AST will be passed through semStmt.
  result = nil

  template setResult(e: untyped) =
    if semCheck: result = semExpr(c, e) # do not open a new scope!
    else: result = e

  # Check if the node is "when nimvm"
  # when nimvm:
  #   ...
  # else:
  #   ...
  var whenNimvm = false
  var typ = commonTypeBegin
  if n.sons.len == 2 and n.sons[0].kind == nkElifBranch and
      n.sons[1].kind == nkElse:
    let exprNode = n.sons[0].sons[0]
    if exprNode.kind == nkIdent:
      whenNimvm = lookUp(c, exprNode).magic == mNimvm
    elif exprNode.kind == nkSym:
      whenNimvm = exprNode.sym.magic == mNimvm
    if whenNimvm: n.flags.incl nfLL

  for i in countup(0, sonsLen(n) - 1):
    var it = n.sons[i]
    case it.kind
    of nkElifBranch, nkElifExpr:
      checkSonsLen(it, 2, c.config)
      if whenNimvm:
        if semCheck:
          it.sons[1] = semExpr(c, it.sons[1])
          typ = commonType(typ, it.sons[1].typ)
        result = n # when nimvm is not elimited until codegen
      else:
        let e = forceBool(c, semConstExpr(c, it.sons[0]))
        if e.kind != nkIntLit:
          # can happen for cascading errors, assume false
          # InternalError(n.info, "semWhen")
          discard
        elif e.intVal != 0 and result == nil:
          setResult(it.sons[1])
    of nkElse, nkElseExpr:
      checkSonsLen(it, 1, c.config)
      if result == nil or whenNimvm:
        if semCheck:
          it.sons[0] = semExpr(c, it.sons[0])
          typ = commonType(typ, it.sons[0].typ)
        if result == nil:
          result = it.sons[0]
    else: illFormedAst(n, c.config)
  if result == nil:
    result = newNodeI(nkEmpty, n.info)
  if whenNimvm: result.typ = typ
  # The ``when`` statement implements the mechanism for platform dependent
  # code. Thus we try to ensure here consistent ID allocation after the
  # ``when`` statement.
  idSynchronizationPoint(200)

proc semSetConstr(c: PContext, n: PNode): PNode =
  result = newNodeI(nkCurly, n.info)
  result.typ = newTypeS(tySet, c)
  if sonsLen(n) == 0:
    rawAddSon(result.typ, newTypeS(tyEmpty, c))
  else:
    # only semantic checking for all elements, later type checking:
    var typ: PType = nil
    for i in countup(0, sonsLen(n) - 1):
      if isRange(n.sons[i]):
        checkSonsLen(n.sons[i], 3, c.config)
        n.sons[i].sons[1] = semExprWithType(c, n.sons[i].sons[1])
        n.sons[i].sons[2] = semExprWithType(c, n.sons[i].sons[2])
        if typ == nil:
          typ = skipTypes(n.sons[i].sons[1].typ,
                          {tyGenericInst, tyVar, tyLent, tyOrdinal, tyAlias, tySink})
        n.sons[i].typ = n.sons[i].sons[2].typ # range node needs type too
      elif n.sons[i].kind == nkRange:
        # already semchecked
        if typ == nil:
          typ = skipTypes(n.sons[i].sons[0].typ,
                          {tyGenericInst, tyVar, tyLent, tyOrdinal, tyAlias, tySink})
      else:
        n.sons[i] = semExprWithType(c, n.sons[i])
        if typ == nil:
          typ = skipTypes(n.sons[i].typ, {tyGenericInst, tyVar, tyLent, tyOrdinal, tyAlias, tySink})
    if not isOrdinalType(typ, allowEnumWithHoles=true):
      localError(c.config, n.info, errOrdinalTypeExpected)
      typ = makeRangeType(c, 0, MaxSetElements-1, n.info)
    elif lengthOrd(c.config, typ) > MaxSetElements:
      typ = makeRangeType(c, 0, MaxSetElements-1, n.info)
    addSonSkipIntLit(result.typ, typ)
    for i in countup(0, sonsLen(n) - 1):
      var m: PNode
      let info = n.sons[i].info
      if isRange(n.sons[i]):
        m = newNodeI(nkRange, info)
        addSon(m, fitNode(c, typ, n.sons[i].sons[1], info))
        addSon(m, fitNode(c, typ, n.sons[i].sons[2], info))
      elif n.sons[i].kind == nkRange: m = n.sons[i] # already semchecked
      else:
        m = fitNode(c, typ, n.sons[i], info)
      addSon(result, m)

proc semTableConstr(c: PContext, n: PNode): PNode =
  # we simply transform ``{key: value, key2, key3: value}`` to
  # ``[(key, value), (key2, value2), (key3, value2)]``
  result = newNodeI(nkBracket, n.info)
  var lastKey = 0
  for i in 0..n.len-1:
    var x = n.sons[i]
    if x.kind == nkExprColonExpr and sonsLen(x) == 2:
      for j in countup(lastKey, i-1):
        var pair = newNodeI(nkTupleConstr, x.info)
        pair.add(n.sons[j])
        pair.add(x[1])
        result.add(pair)

      var pair = newNodeI(nkTupleConstr, x.info)
      pair.add(x[0])
      pair.add(x[1])
      result.add(pair)

      lastKey = i+1

  if lastKey != n.len: illFormedAst(n, c.config)
  result = semExpr(c, result)

type
  TParKind = enum
    paNone, paSingle, paTupleFields, paTuplePositions

proc checkPar(c: PContext; n: PNode): TParKind =
  var length = sonsLen(n)
  if length == 0:
    result = paTuplePositions # ()
  elif length == 1:
    if n.sons[0].kind == nkExprColonExpr: result = paTupleFields
    elif n.kind == nkTupleConstr: result = paTuplePositions
    else: result = paSingle         # (expr)
  else:
    if n.sons[0].kind == nkExprColonExpr: result = paTupleFields
    else: result = paTuplePositions
    for i in countup(0, length - 1):
      if result == paTupleFields:
        if (n.sons[i].kind != nkExprColonExpr) or
            not (n.sons[i].sons[0].kind in {nkSym, nkIdent}):
          localError(c.config, n.sons[i].info, errNamedExprExpected)
          return paNone
      else:
        if n.sons[i].kind == nkExprColonExpr:
          localError(c.config, n.sons[i].info, errNamedExprNotAllowed)
          return paNone

proc semTupleFieldsConstr(c: PContext, n: PNode, flags: TExprFlags): PNode =
  result = newNodeI(nkTupleConstr, n.info)
  var typ = newTypeS(tyTuple, c)
  typ.n = newNodeI(nkRecList, n.info) # nkIdentDefs
  var ids = initIntSet()
  for i in countup(0, sonsLen(n) - 1):
    if n[i].kind != nkExprColonExpr or n[i][0].kind notin {nkSym, nkIdent}:
      illFormedAst(n.sons[i], c.config)
    var id: PIdent
    if n.sons[i].sons[0].kind == nkIdent: id = n.sons[i].sons[0].ident
    else: id = n.sons[i].sons[0].sym.name
    if containsOrIncl(ids, id.id):
      localError(c.config, n.sons[i].info, errFieldInitTwice % id.s)
    n.sons[i].sons[1] = semExprWithType(c, n.sons[i].sons[1],
                                        flags*{efAllowDestructor})
    var f = newSymS(skField, n.sons[i].sons[0], c)
    f.typ = skipIntLit(n.sons[i].sons[1].typ)
    f.position = i
    rawAddSon(typ, f.typ)
    addSon(typ.n, newSymNode(f))
    n.sons[i].sons[0] = newSymNode(f)
    addSon(result, n.sons[i])
  result.typ = typ

proc semTuplePositionsConstr(c: PContext, n: PNode, flags: TExprFlags): PNode =
  result = n                  # we don't modify n, but compute the type:
  result.kind = nkTupleConstr
  var typ = newTypeS(tyTuple, c)  # leave typ.n nil!
  for i in countup(0, sonsLen(n) - 1):
    n.sons[i] = semExprWithType(c, n.sons[i], flags*{efAllowDestructor})
    addSonSkipIntLit(typ, n.sons[i].typ)
  result.typ = typ

proc isTupleType(n: PNode): bool =
  if n.len == 0:
    return false # don't interpret () as type
  for i in countup(0, n.len - 1):
    if n[i].typ == nil or n[i].typ.kind != tyTypeDesc:
      return false
  return true

include semobjconstr

proc semBlock(c: PContext, n: PNode; flags: TExprFlags): PNode =
  result = n
  inc(c.p.nestedBlockCounter)
  checkSonsLen(n, 2, c.config)
  openScope(c) # BUGFIX: label is in the scope of block!
  if n.sons[0].kind != nkEmpty:
    var labl = newSymG(skLabel, n.sons[0], c)
    if sfGenSym notin labl.flags:
      addDecl(c, labl)
    elif labl.owner == nil:
      labl.owner = c.p.owner
    n.sons[0] = newSymNode(labl, n.sons[0].info)
    suggestSym(c.config, n.sons[0].info, labl, c.graph.usageSym)
    styleCheckDef(c.config, labl)
    onDef(n[0].info, labl)
  n.sons[1] = semExpr(c, n.sons[1], flags)
  n.typ = n.sons[1].typ
  if isEmptyType(n.typ): n.kind = nkBlockStmt
  else: n.kind = nkBlockExpr
  closeScope(c)
  dec(c.p.nestedBlockCounter)

proc semExportExcept(c: PContext, n: PNode): PNode =
  let moduleName = semExpr(c, n[0])
  if moduleName.kind != nkSym or moduleName.sym.kind != skModule:
    localError(c.config, n.info, "The export/except syntax expects a module name")
    return n
  let exceptSet = readExceptSet(c, n)
  let exported = moduleName.sym
  result = newNodeI(nkExportStmt, n.info)
  strTableAdd(c.module.tab, exported)
  var i: TTabIter
  var s = initTabIter(i, exported.tab)
  while s != nil:
    if s.kind in ExportableSymKinds+{skModule} and
       s.name.id notin exceptSet:
      strTableAdd(c.module.tab, s)
      result.add newSymNode(s, n.info)
    s = nextIter(i, exported.tab)

proc semExport(c: PContext, n: PNode): PNode =
  result = newNodeI(nkExportStmt, n.info)
  for i in 0..<n.len:
    let a = n.sons[i]
    var o: TOverloadIter
    var s = initOverloadIter(o, c, a)
    if s == nil:
      localError(c.config, a.info, errGenerated, "cannot export: " & renderTree(a))
    elif s.kind == skModule:
      # forward everything from that module:
      strTableAdd(c.module.tab, s)
      var ti: TTabIter
      var it = initTabIter(ti, s.tab)
      while it != nil:
        if it.kind in ExportableSymKinds+{skModule}:
          strTableAdd(c.module.tab, it)
          result.add newSymNode(it, a.info)
        it = nextIter(ti, s.tab)
    else:
      while s != nil:
        if s.kind == skEnumField:
          localError(c.config, a.info, errGenerated, "cannot export: " & renderTree(a) &
            "; enum field cannot be exported individually")
        if s.kind in ExportableSymKinds+{skModule}:
          result.add(newSymNode(s, a.info))
          strTableAdd(c.module.tab, s)
        s = nextOverloadIter(o, c, a)

proc shouldBeBracketExpr(n: PNode): bool =
  assert n.kind in nkCallKinds
  let a = n.sons[0]
  if a.kind in nkCallKinds:
    let b = a[0]
    if b.kind in nkSymChoices:
      for i in 0..<b.len:
        if b[i].kind == nkSym and b[i].sym.magic == mArrGet:
          let be = newNodeI(nkBracketExpr, n.info)
          for i in 1..<a.len: be.add(a[i])
          n.sons[0] = be
          return true

proc semExpr(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
  result = n
  if c.config.cmd == cmdIdeTools: suggestExpr(c, n)
  if nfSem in n.flags: return
  case n.kind
  of nkIdent, nkAccQuoted:
    let checks = if efNoEvaluateGeneric in flags:
        {checkUndeclared, checkPureEnumFields}
      elif efInCall in flags:
        {checkUndeclared, checkModule, checkPureEnumFields}
      else:
        {checkUndeclared, checkModule, checkAmbiguity, checkPureEnumFields}
    var s = qualifiedLookUp(c, n, checks)
    if c.matchedConcept == nil: semCaptureSym(s, c.p.owner)
    if s.kind in {skProc, skFunc, skMethod, skConverter, skIterator}:
      #performProcvarCheck(c, n, s)
      result = symChoice(c, n, s, scClosed)
      if result.kind == nkSym:
        markIndirect(c, result.sym)
        # if isGenericRoutine(result.sym):
        #   localError(c.config, n.info, errInstantiateXExplicitly, s.name.s)
    else:
      result = semSym(c, n, s, flags)
  of nkSym:
    # because of the changed symbol binding, this does not mean that we
    # don't have to check the symbol for semantics here again!
    result = semSym(c, n, n.sym, flags)
  of nkEmpty, nkNone, nkCommentStmt, nkType:
    discard
  of nkNilLit:
    if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyNil)
  of nkIntLit:
    if result.typ == nil: setIntLitType(c.graph, result)
  of nkInt8Lit:
    if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyInt8)
  of nkInt16Lit:
    if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyInt16)
  of nkInt32Lit:
    if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyInt32)
  of nkInt64Lit:
    if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyInt64)
  of nkUIntLit:
    if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyUInt)
  of nkUInt8Lit:
    if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyUInt8)
  of nkUInt16Lit:
    if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyUInt16)
  of nkUInt32Lit:
    if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyUInt32)
  of nkUInt64Lit:
    if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyUInt64)
  #of nkFloatLit:
  #  if result.typ == nil: result.typ = getFloatLitType(result)
  of nkFloat32Lit:
    if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyFloat32)
  of nkFloat64Lit, nkFloatLit:
    if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyFloat64)
  of nkFloat128Lit:
    if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyFloat128)
  of nkStrLit..nkTripleStrLit:
    if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyString)
  of nkCharLit:
    if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyChar)
  of nkDotExpr:
    result = semFieldAccess(c, n, flags)
    if result.kind == nkDotCall:
      result.kind = nkCall
      result = semExpr(c, result, flags)
  of nkBind:
    message(c.config, n.info, warnDeprecated, "bind is deprecated")
    result = semExpr(c, n.sons[0], flags)
  of nkTypeOfExpr, nkTupleTy, nkTupleClassTy, nkRefTy..nkEnumTy, nkStaticTy:
    if c.matchedConcept != nil and n.len == 1:
      let modifier = n.modifierTypeKindOfNode
      if modifier != tyNone:
        var baseType = semExpr(c, n[0]).typ.skipTypes({tyTypeDesc})
        result.typ = c.makeTypeDesc(c.newTypeWithSons(modifier, @[baseType]))
        return
    var typ = semTypeNode(c, n, nil).skipTypes({tyTypeDesc})
    result.typ = makeTypeDesc(c, typ)
  of nkCall, nkInfix, nkPrefix, nkPostfix, nkCommand, nkCallStrLit:
    # check if it is an expression macro:
    checkMinSonsLen(n, 1, c.config)
    #when defined(nimsuggest):
    #  if gIdeCmd == ideCon and c.config.m.trackPos == n.info: suggestExprNoCheck(c, n)
    let mode = if nfDotField in n.flags: {} else: {checkUndeclared}
    var s = qualifiedLookUp(c, n.sons[0], mode)
    if s != nil:
      #if c.config.cmd == cmdPretty and n.sons[0].kind == nkDotExpr:
      #  pretty.checkUse(n.sons[0].sons[1].info, s)
      case s.kind
      of skMacro:
        if sfImmediate notin s.flags:
          result = semDirectOp(c, n, flags)
        else:
          result = semMacroExpr(c, n, n, s, flags)
      of skTemplate:
        if sfImmediate notin s.flags:
          result = semDirectOp(c, n, flags)
        else:
          result = semTemplateExpr(c, n, s, flags)
      of skType:
        # XXX think about this more (``set`` procs)
        if n.len == 2:
          result = semConv(c, n)
        elif contains(c.ambiguousSymbols, s.id) and n.len == 1:
          errorUseQualifier(c, n.info, s)
        elif n.len == 1:
          result = semObjConstr(c, n, flags)
        elif s.magic == mNone: result = semDirectOp(c, n, flags)
        else: result = semMagic(c, n, s, flags)
      of skProc, skFunc, skMethod, skConverter, skIterator:
        if s.magic == mNone: result = semDirectOp(c, n, flags)
        else: result = semMagic(c, n, s, flags)
      else:
        #liMessage(n.info, warnUser, renderTree(n));
        result = semIndirectOp(c, n, flags)
    elif (n[0].kind == nkBracketExpr or shouldBeBracketExpr(n)) and
        isSymChoice(n[0][0]):
      # indirectOp can deal with explicit instantiations; the fixes
      # the 'newSeq[T](x)' bug
      setGenericParams(c, n.sons[0])
      result = semDirectOp(c, n, flags)
    elif isSymChoice(n.sons[0]) or nfDotField in n.flags:
      result = semDirectOp(c, n, flags)
    else:
      result = semIndirectOp(c, n, flags)
  of nkWhen:
    if efWantStmt in flags:
      result = semWhen(c, n, true)
    else:
      result = semWhen(c, n, false)
      if result == n:
        # This is a "when nimvm" stmt.
        result = semWhen(c, n, true)
      else:
        result = semExpr(c, result, flags)
  of nkBracketExpr:
    checkMinSonsLen(n, 1, c.config)
    result = semArrayAccess(c, n, flags)
  of nkCurlyExpr:
    result = semExpr(c, buildOverloadedSubscripts(n, getIdent(c.cache, "{}")), flags)
  of nkPragmaExpr:
    var
      pragma = n[1]
      pragmaName = considerQuotedIdent(c, pragma[0])
      flags = flags
      finalNodeFlags: TNodeFlags = {}

    case whichKeyword(pragmaName)
    of wExplain:
      flags.incl efExplain
    of wExecuteOnReload:
      finalNodeFlags.incl nfExecuteOnReload
    else:
      # what other pragmas are allowed for expressions? `likely`, `unlikely`
      invalidPragma(c, n)

    result = semExpr(c, n[0], flags)
    result.flags.incl finalNodeFlags
  of nkPar, nkTupleConstr:
    case checkPar(c, n)
    of paNone: result = errorNode(c, n)
    of paTuplePositions:
      var tupexp = semTuplePositionsConstr(c, n, flags)
      if isTupleType(tupexp):
        # reinterpret as type
        var typ = semTypeNode(c, n, nil).skipTypes({tyTypeDesc})
        result.typ = makeTypeDesc(c, typ)
      else:
        result = tupexp
    of paTupleFields: result = semTupleFieldsConstr(c, n, flags)
    of paSingle: result = semExpr(c, n.sons[0], flags)
  of nkCurly: result = semSetConstr(c, n)
  of nkBracket: result = semArrayConstr(c, n, flags)
  of nkObjConstr: result = semObjConstr(c, n, flags)
  of nkLambdaKinds: result = semLambda(c, n, flags)
  of nkDerefExpr: result = semDeref(c, n)
  of nkAddr:
    result = n
    checkSonsLen(n, 1, c.config)
    result[0] = semAddrArg(c, n.sons[0])
    result.typ = makePtrType(c, result[0].typ)
  of nkHiddenAddr, nkHiddenDeref:
    checkSonsLen(n, 1, c.config)
    n.sons[0] = semExpr(c, n.sons[0], flags)
  of nkCast: result = semCast(c, n)
  of nkIfExpr, nkIfStmt: result = semIf(c, n, flags)
  of nkHiddenStdConv, nkHiddenSubConv, nkConv, nkHiddenCallConv:
    checkSonsLen(n, 2, c.config)
    considerGenSyms(c, n)
  of nkStringToCString, nkCStringToString, nkObjDownConv, nkObjUpConv:
    checkSonsLen(n, 1, c.config)
    considerGenSyms(c, n)
  of nkChckRangeF, nkChckRange64, nkChckRange:
    checkSonsLen(n, 3, c.config)
    considerGenSyms(c, n)
  of nkCheckedFieldExpr:
    checkMinSonsLen(n, 2, c.config)
    considerGenSyms(c, n)
  of nkTableConstr:
    result = semTableConstr(c, n)
  of nkClosedSymChoice, nkOpenSymChoice:
    # handling of sym choices is context dependent
    # the node is left intact for now
    discard
  of nkStaticExpr: result = semStaticExpr(c, n[0])
  of nkAsgn: result = semAsgn(c, n)
  of nkBlockStmt, nkBlockExpr: result = semBlock(c, n, flags)
  of nkStmtList, nkStmtListExpr: result = semStmtList(c, n, flags)
  of nkRaiseStmt: result = semRaise(c, n)
  of nkVarSection: result = semVarOrLet(c, n, skVar)
  of nkLetSection: result = semVarOrLet(c, n, skLet)
  of nkConstSection: result = semConst(c, n)
  of nkTypeSection: result = semTypeSection(c, n)
  of nkDiscardStmt: result = semDiscard(c, n)
  of nkWhileStmt: result = semWhile(c, n, flags)
  of nkTryStmt: result = semTry(c, n, flags)
  of nkBreakStmt, nkContinueStmt: result = semBreakOrContinue(c, n)
  of nkForStmt, nkParForStmt: result = semFor(c, n, flags)
  of nkCaseStmt: result = semCase(c, n, flags)
  of nkReturnStmt: result = semReturn(c, n)
  of nkUsingStmt: result = semUsing(c, n)
  of nkAsmStmt: result = semAsm(c, n)
  of nkYieldStmt: result = semYield(c, n)
  of nkPragma: pragma(c, c.p.owner, n, stmtPragmas)
  of nkIteratorDef: result = semIterator(c, n)
  of nkProcDef: result = semProc(c, n)
  of nkFuncDef: result = semFunc(c, n)
  of nkMethodDef: result = semMethod(c, n)
  of nkConverterDef: result = semConverterDef(c, n)
  of nkMacroDef: result = semMacroDef(c, n)
  of nkTemplateDef: result = semTemplateDef(c, n)
  of nkImportStmt:
    # this particular way allows 'import' in a 'compiles' context so that
    # template canImport(x): bool =
    #   compiles:
    #     import x
    #
    # works:
    if c.currentScope.depthLevel > 2 + c.compilesContextId:
      localError(c.config, n.info, errXOnlyAtModuleScope % "import")
    result = evalImport(c, n)
  of nkImportExceptStmt:
    if not isTopLevel(c): localError(c.config, n.info, errXOnlyAtModuleScope % "import")
    result = evalImportExcept(c, n)
  of nkFromStmt:
    if not isTopLevel(c): localError(c.config, n.info, errXOnlyAtModuleScope % "from")
    result = evalFrom(c, n)
  of nkIncludeStmt:
    #if not isTopLevel(c): localError(c.config, n.info, errXOnlyAtModuleScope % "include")
    result = evalInclude(c, n)
  of nkExportStmt:
    if not isTopLevel(c): localError(c.config, n.info, errXOnlyAtModuleScope % "export")
    result = semExport(c, n)
  of nkExportExceptStmt:
    if not isTopLevel(c): localError(c.config, n.info, errXOnlyAtModuleScope % "export")
    result = semExportExcept(c, n)
  of nkPragmaBlock:
    result = semPragmaBlock(c, n)
  of nkStaticStmt:
    result = semStaticStmt(c, n)
  of nkDefer:
    if c.currentScope == c.topLevelScope:
      localError(c.config, n.info, "defer statement not supported at top level")
    n.sons[0] = semExpr(c, n.sons[0])
    if not n.sons[0].typ.isEmptyType and not implicitlyDiscardable(n.sons[0]):
      localError(c.config, n.info, "'defer' takes a 'void' expression")
    #localError(c.config, n.info, errGenerated, "'defer' not allowed in this context")
  of nkGotoState, nkState:
    if n.len != 1 and n.len != 2: illFormedAst(n, c.config)
    for i in 0 ..< n.len:
      n.sons[i] = semExpr(c, n.sons[i])
  of nkComesFrom: discard "ignore the comes from information for now"
  else:
    localError(c.config, n.info, "invalid expression: " &
               renderTree(n, {renderNoComments}))
  if result != nil: incl(result.flags, nfSem)