#
#
# The Nim Compiler
# (c) Copyright 2013 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# this module does the semantic checking for expressions
# included from sem.nim
when defined(nimCompilerStacktraceHints):
import std/stackframes
const
errExprXHasNoType = "expression '$1' has no type (or is ambiguous)"
errXExpectsTypeOrValue = "'$1' expects a type or value"
errVarForOutParamNeededX = "for a 'var' type a variable needs to be passed; but '$1' is immutable"
errXStackEscape = "address of '$1' may not escape its stack frame"
errExprHasNoAddress = "expression has no address"
errCannotInterpretNodeX = "cannot evaluate '$1'"
errNamedExprExpected = "named expression expected"
errNamedExprNotAllowed = "named expression not allowed here"
errFieldInitTwice = "field initialized twice: '$1'"
errUndeclaredFieldX = "undeclared field: '$1'"
proc semTemplateExpr(c: PContext, n: PNode, s: PSym,
flags: TExprFlags = {}; expectedType: PType = nil): PNode =
rememberExpansion(c, n.info, s)
let info = getCallLineInfo(n)
markUsed(c, info, s)
onUse(info, s)
# Note: This is n.info on purpose. It prevents template from creating an info
# context when called from an another template
pushInfoContext(c.config, n.info, s.detailedInfo)
result = evalTemplate(n, s, getCurrOwner(c), c.config, c.cache,
c.templInstCounter, c.idgen, efFromHlo in flags)
if efNoSemCheck notin flags:
result = semAfterMacroCall(c, n, result, s, flags, expectedType)
popInfoContext(c.config)
# XXX: A more elaborate line info rewrite might be needed
result.info = info
proc semFieldAccess(c: PContext, n: PNode, flags: TExprFlags = {}): PNode
template rejectEmptyNode(n: PNode) =
# No matter what a nkEmpty node is not what we want here
if n.kind == nkEmpty: illFormedAst(n, c.config)
proc semOperand(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
rejectEmptyNode(n)
# same as 'semExprWithType' but doesn't check for proc vars
result = semExpr(c, n, flags + {efOperand, efAllowSymChoice})
if result.typ != nil:
if result.typ.kind in {tyVar, tyLent}: result = newDeref(result)
elif {efWantStmt, efAllowStmt} * flags != {}:
result.typ = newTypeS(tyVoid, c)
else:
localError(c.config, n.info, errExprXHasNoType %
renderTree(result, {renderNoComments}))
result.typ = errorType(c)
proc semExprCheck(c: PContext, n: PNode, flags: TExprFlags, expectedType: PType = nil): PNode =
rejectEmptyNode(n)
result = semExpr(c, n, flags+{efWantValue}, expectedType)
let
isEmpty = result.kind == nkEmpty
isTypeError = result.typ != nil and result.typ.kind == tyError
if isEmpty or isTypeError:
# bug #12741, redundant error messages are the lesser evil here:
localError(c.config, n.info, errExprXHasNoType %
renderTree(result, {renderNoComments}))
if isEmpty:
# do not produce another redundant error message:
result = errorNode(c, n)
proc semExprWithType(c: PContext, n: PNode, flags: TExprFlags = {}, expectedType: PType = nil): PNode =
result = semExprCheck(c, n, flags-{efTypeAllowed}, expectedType)
if result.typ == nil and efInTypeof in flags:
result.typ = c.voidType
elif result.typ == nil or result.typ == c.enforceVoidContext:
localError(c.config, n.info, errExprXHasNoType %
renderTree(result, {renderNoComments}))
result.typ = errorType(c)
elif result.typ.kind == tyError:
# associates the type error to the current owner
result.typ = errorType(c)
elif efTypeAllowed in flags and result.typ.kind == tyProc and
hasUnresolvedParams(result, {}):
# mirrored with semOperand but only on efTypeAllowed
let owner = result.typ.owner
let err =
# consistent error message with evaltempl/semMacroExpr
if owner != nil and owner.kind in {skTemplate, skMacro}:
errMissingGenericParamsForTemplate % n.renderTree
else:
errProcHasNoConcreteType % n.renderTree
localError(c.config, n.info, err)
result.typ = errorType(c)
else:
if result.typ.kind in {tyVar, tyLent}: result = newDeref(result)
proc semExprNoDeref(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
result = semExprCheck(c, n, flags)
if result.typ == nil:
localError(c.config, n.info, errExprXHasNoType %
renderTree(result, {renderNoComments}))
result.typ = errorType(c)
proc semSymGenericInstantiation(c: PContext, n: PNode, s: PSym): PNode =
result = symChoice(c, n, s, scClosed)
proc semSym(c: PContext, n: PNode, sym: PSym, flags: TExprFlags): PNode
proc isSymChoice(n: PNode): bool {.inline.} =
result = n.kind in nkSymChoices
proc resolveSymChoice(c: PContext, n: var PNode, flags: TExprFlags = {}, expectedType: PType = nil) =
## Attempts to resolve a symchoice `n`, `n` remains a symchoice if
## it cannot be resolved (this is the case even when `n.len == 1`).
if expectedType != nil:
# resolve from type inference, see paramTypesMatch
n = fitNode(c, expectedType, n, n.info)
if isSymChoice(n) and efAllowSymChoice notin flags:
# some contexts might want sym choices preserved for later disambiguation
# in general though they are ambiguous
let first = n[0].sym
var foundSym: PSym = nil
if first.kind == skEnumField and
not isAmbiguous(c, first.name, {skEnumField}, foundSym) and
foundSym == first:
# choose the first resolved enum field, i.e. the latest in scope
# to mirror behavior before overloadable enums
n = n[0]
proc semOpenSym(c: PContext, n: PNode, flags: TExprFlags, expectedType: PType,
warnDisabled = false): PNode =
## sem the child of an `nkOpenSym` node, that is, captured symbols that can be
## replaced by newly injected symbols in generics. `s` must be the captured
## symbol if the original node is an `nkSym` node; and `nil` if it is an
## `nkOpenSymChoice`, in which case only non-overloadable injected symbols
## will be considered.
let isSym = n.kind == nkSym
let ident = n.getPIdent
assert ident != nil
let id = newIdentNode(ident, n.info)
c.isAmbiguous = false
let s2 = qualifiedLookUp(c, id, {})
# for `nkSym`, the first found symbol being different and unambiguous is
# enough to replace the original
# for `nkOpenSymChoice`, the first found symbol must be non-overloadable,
# since otherwise we have to use regular `nkOpenSymChoice` functionality
# but of the overloadable sym kinds, semExpr does not handle skModule, skMacro, skTemplate
# as overloaded in the case where `nkIdent` finds them first
if s2 != nil and not c.isAmbiguous and
((isSym and s2 != n.sym) or
(not isSym and s2.kind notin OverloadableSyms-{skModule, skMacro, skTemplate})):
# only consider symbols defined under current proc:
var o = s2.owner
while o != nil:
if o == c.p.owner:
if not warnDisabled:
result = semExpr(c, id, flags, expectedType)
return
else:
var msg =
"a new symbol '" & ident.s & "' has been injected during " &
# msgContext should show what is being instantiated:
"template or generic instantiation, however "
if isSym:
msg.add(
getSymRepr(c.config, n.sym) & " captured at " &
"the proc declaration will be used instead; " &
"either enable --experimental:openSym to use the injected symbol, " &
"or `bind` this captured symbol explicitly")
else:
msg.add(
"overloads of " & ident.s & " will be used instead; " &
"either enable --experimental:openSym to use the injected symbol, " &
"or `bind` this symbol explicitly")
message(c.config, n.info, warnIgnoredSymbolInjection, msg)
break
o = o.owner
# nothing found
if not warnDisabled and isSym:
result = semExpr(c, n, flags, expectedType)
else:
result = nil
if not isSym:
# set symchoice node type back to None
n.typ = newTypeS(tyNone, c)
proc semSymChoice(c: PContext, n: PNode, flags: TExprFlags = {}, expectedType: PType = nil): PNode =
if n.kind == nkOpenSymChoice:
result = semOpenSym(c, n, flags, expectedType, warnDisabled = nfDisabledOpenSym in n.flags)
if result != nil:
return
result = n
resolveSymChoice(c, result, flags, expectedType)
if isSymChoice(result) and result.len == 1:
# resolveSymChoice can leave 1 sym
result = result[0]
if isSymChoice(result) and efAllowSymChoice notin flags:
var err = "ambiguous identifier: '" & result[0].sym.name.s &
"' -- use one of the following:\n"
for child in n:
let candidate = child.sym
err.add " " & candidate.owner.name.s & "." & candidate.name.s
err.add ": " & typeToString(candidate.typ) & "\n"
localError(c.config, n.info, err)
n.typ = errorType(c)
result = n
if result.kind == nkSym:
result = semSym(c, result, result.sym, flags)
proc inlineConst(c: PContext, n: PNode, s: PSym): PNode {.inline.} =
result = copyTree(s.astdef)
if result.isNil:
localError(c.config, n.info, "constant of type '" & typeToString(s.typ) & "' has no value")
result = newSymNode(s)
else:
result.typ = s.typ
result.info = n.info
type
TConvStatus = enum
convOK,
convNotNeedeed,
convNotLegal,
convNotInRange
proc checkConversionBetweenObjects(castDest, src: PType; pointers: int): TConvStatus =
let diff = inheritanceDiff(castDest, src)
return if diff == high(int) or (pointers > 1 and diff != 0):
convNotLegal
else:
convOK
const
IntegralTypes = {tyBool, tyEnum, tyChar, tyInt..tyUInt64}
proc checkConvertible(c: PContext, targetTyp: PType, src: PNode): TConvStatus =
let srcTyp = src.typ.skipTypes({tyStatic})
result = convOK
if sameType(targetTyp, srcTyp) and targetTyp.sym == srcTyp.sym:
# don't annoy conversions that may be needed on another processor:
if targetTyp.kind notin IntegralTypes+{tyRange}:
result = convNotNeedeed
return
var d = skipTypes(targetTyp, abstractVar)
var s = srcTyp
if s.kind in tyUserTypeClasses and s.isResolvedUserTypeClass:
s = s.last
s = skipTypes(s, abstractVar-{tyTypeDesc, tyOwned})
if s.kind == tyOwned and d.kind != tyOwned:
s = s.skipModifier
var pointers = 0
while (d != nil) and (d.kind in {tyPtr, tyRef, tyOwned}):
if s.kind == tyOwned and d.kind != tyOwned:
s = s.skipModifier
elif d.kind != s.kind:
break
else:
d = d.elementType
s = s.elementType
inc pointers
let targetBaseTyp = skipTypes(targetTyp, abstractVarRange)
let srcBaseTyp = skipTypes(srcTyp, abstractVarRange-{tyTypeDesc})
if d == nil:
result = convNotLegal
elif d.skipTypes(abstractInst).kind == tyObject and s.skipTypes(abstractInst).kind == tyObject:
result = checkConversionBetweenObjects(d.skipTypes(abstractInst), s.skipTypes(abstractInst), pointers)
elif (targetBaseTyp.kind in IntegralTypes) and
(srcBaseTyp.kind in IntegralTypes):
if targetTyp.kind == tyEnum and srcBaseTyp.kind == tyEnum and
not sameType(targetTyp, srcBaseTyp):
message(c.config, src.info, warnSuspiciousEnumConv, "suspicious code: enum to enum conversion")
# `elif` would be incorrect here
if targetTyp.kind == tyBool:
discard "convOk"
elif targetTyp.isOrdinalType:
if src.kind in nkCharLit..nkUInt64Lit and
src.getInt notin firstOrd(c.config, targetTyp)..lastOrd(c.config, targetTyp) and
targetTyp.kind notin {tyUInt..tyUInt64}:
result = convNotInRange
elif src.kind in nkFloatLit..nkFloat64Lit and
(classify(src.floatVal) in {fcNan, fcNegInf, fcInf} or
src.floatVal.int64 notin firstOrd(c.config, targetTyp)..lastOrd(c.config, targetTyp)):
result = convNotInRange
elif targetBaseTyp.kind in tyFloat..tyFloat64:
if src.kind in nkFloatLit..nkFloat64Lit and
not floatRangeCheck(src.floatVal, targetTyp):
result = convNotInRange
elif src.kind in nkCharLit..nkUInt64Lit and
not floatRangeCheck(src.intVal.float, targetTyp):
result = convNotInRange
else:
# we use d, s here to speed up that operation a bit:
if d.kind == tyFromExpr:
result = convNotLegal
return
case cmpTypes(c, d, s)
of isNone, isGeneric:
if not compareTypes(targetTyp.skipTypes(abstractVar), srcTyp.skipTypes({tyOwned}), dcEqIgnoreDistinct):
result = convNotLegal
else:
discard
proc isCastable(c: PContext; dst, src: PType, info: TLineInfo): bool =
## Checks whether the source type can be cast to the destination type.
## Casting is very unrestrictive; casts are allowed as long as
## dst.size >= src.size, and typeAllowed(dst, skParam)
#const
# castableTypeKinds = {tyInt, tyPtr, tyRef, tyCstring, tyString,
# tySequence, tyPointer, tyNil, tyOpenArray,
# tyProc, tySet, tyEnum, tyBool, tyChar}
let src = src.skipTypes(tyUserTypeClasses)
if skipTypes(dst, abstractInst-{tyOpenArray}).kind == tyOpenArray:
return false
if skipTypes(src, abstractInst-{tyTypeDesc}).kind == tyTypeDesc:
return false
if skipTypes(dst, abstractInst).kind == tyBuiltInTypeClass:
return false
let conf = c.config
if conf.selectedGC in {gcArc, gcOrc, gcAtomicArc}:
let d = skipTypes(dst, abstractInst)
let s = skipTypes(src, abstractInst)
if d.kind == tyRef and s.kind == tyRef and s[0].isFinal != d[0].isFinal:
return false
elif d.kind in IntegralTypes and s.kind in {tyString, tySequence}:
return false
var dstSize, srcSize: BiggestInt
dstSize = computeSize(conf, dst)
srcSize = computeSize(conf, src)
if dstSize == -3 or srcSize == -3: # szUnknownSize
# The Nim compiler can't detect if it's legal or not.
# Just assume the programmer knows what he is doing.
return true
if dstSize < 0:
return false
elif srcSize < 0:
return false
elif typeAllowed(dst, skParam, c, {taIsCastable}) != nil:
return false
elif dst.kind == tyProc and dst.callConv == ccClosure:
return src.kind == tyProc and src.callConv == ccClosure
else:
result = (dstSize >= srcSize) or
(skipTypes(dst, abstractInst).kind in IntegralTypes) or
(skipTypes(src, abstractInst-{tyTypeDesc}).kind in IntegralTypes)
if result and src.kind == tyNil:
return dst.size <= conf.target.ptrSize
proc maybeLiftType(t: var PType, c: PContext, info: TLineInfo) =
# XXX: liftParamType started to perform addDecl
# we could do that instead in semTypeNode by snooping for added
# gnrc. params, then it won't be necessary to open a new scope here
openScope(c)
var lifted = liftParamType(c, skType, newNodeI(nkArgList, info),
t, ":anon", info)
closeScope(c)
if lifted != nil: t = lifted
proc isOwnedSym(c: PContext; n: PNode): bool =
let s = qualifiedLookUp(c, n, {})
result = s != nil and sfSystemModule in s.owner.flags and s.name.s == "owned"
proc semConv(c: PContext, n: PNode; flags: TExprFlags = {}, expectedType: PType = nil): PNode =
if n.len != 2:
localError(c.config, n.info, "a type conversion takes exactly one argument")
return n
result = newNodeI(nkConv, n.info)
var targetType = semTypeNode(c, n[0], nil)
case targetType.skipTypes({tyDistinct}).kind
of tyTypeDesc:
internalAssert c.config, targetType.len > 0
if targetType.base.kind == tyNone:
return semTypeOf(c, n)
else:
targetType = targetType.base
of tyStatic:
var evaluated = semStaticExpr(c, n[1], expectedType)
if evaluated.kind == nkType or evaluated.typ.kind == tyTypeDesc:
result = n
result.typ = c.makeTypeDesc semStaticType(c, evaluated, nil)
return
elif targetType.base.kind == tyNone:
return evaluated
else:
targetType = targetType.base
of tyAnything, tyUntyped, tyTyped:
localError(c.config, n.info, "illegal type conversion to '$1'" % typeToString(targetType))
else: discard
maybeLiftType(targetType, c, n[0].info)
if targetType.kind in {tySink, tyLent} or isOwnedSym(c, n[0]):
let baseType = semTypeNode(c, n[1], nil).skipTypes({tyTypeDesc})
let t = newTypeS(targetType.kind, c, baseType)
if targetType.kind == tyOwned:
t.flags.incl tfHasOwned
result = newNodeI(nkType, n.info)
result.typ = makeTypeDesc(c, t)
return
result.add copyTree(n[0])
# special case to make MyObject(x = 3) produce a nicer error message:
if n[1].kind == nkExprEqExpr and
targetType.skipTypes(abstractPtrs).kind == tyObject:
localError(c.config, n.info, "object construction uses ':', not '='")
var op = semExprWithType(c, n[1], flags * {efDetermineType} + {efAllowSymChoice})
if isSymChoice(op) and op[0].sym.kind notin routineKinds:
# T(foo) disambiguation syntax only allowed for routines
op = semSymChoice(c, op)
if targetType.kind != tyGenericParam and targetType.isMetaType:
let final = inferWithMetatype(c, targetType, op, true)
result.add final
result.typ = final.typ
return
result.typ = targetType
# XXX op is overwritten later on, this is likely added too early
# here or needs to be overwritten too then.
result.add op
if targetType.kind == tyGenericParam or
(op.typ != nil and op.typ.kind == tyFromExpr and c.inGenericContext > 0):
# expression is compiled early in a generic body
result.typ = makeTypeFromExpr(c, copyTree(result))
return result
if not isSymChoice(op):
let status = checkConvertible(c, result.typ, op)
case status
of convOK:
# handle SomeProcType(SomeGenericProc)
if op.kind == nkSym and op.sym.isGenericRoutine:
result[1] = fitNode(c, result.typ, result[1], result.info)
elif op.kind in {nkPar, nkTupleConstr} and targetType.kind == tyTuple:
op = fitNode(c, targetType, op, result.info)
of convNotNeedeed:
if efNoSem2Check notin flags:
message(c.config, n.info, hintConvFromXtoItselfNotNeeded, result.typ.typeToString)
of convNotLegal:
result = fitNode(c, result.typ, result[1], result.info)
if result == nil:
localError(c.config, n.info, "illegal conversion from '$1' to '$2'" %
[op.typ.typeToString, result.typ.typeToString])
of convNotInRange:
let value =
if op.kind in {nkCharLit..nkUInt64Lit}: $op.getInt else: $op.getFloat
localError(c.config, n.info, errGenerated, value & " can't be converted to " &
result.typ.typeToString)
else:
for i in 0..<op.len:
let it = op[i]
let status = checkConvertible(c, result.typ, it)
if status in {convOK, convNotNeedeed}:
markUsed(c, n.info, it.sym)
onUse(n.info, it.sym)
markIndirect(c, it.sym)
return it
errorUseQualifier(c, n.info, op[0].sym)
proc semCast(c: PContext, n: PNode): PNode =
## Semantically analyze a casting ("cast[type](param)")
checkSonsLen(n, 2, c.config)
let targetType = semTypeNode(c, n[0], nil)
let castedExpr = semExprWithType(c, n[1])
if castedExpr.kind == nkClosedSymChoice:
errorUseQualifier(c, n[1].info, castedExpr)
if targetType == nil:
localError(c.config, n.info, "Invalid usage of cast, cast requires a type to convert to, e.g., cast[int](0d).")
if tfHasMeta in targetType.flags:
localError(c.config, n[0].info, "cannot cast to a non concrete type: '$1'" % $targetType)
if not isCastable(c, targetType, castedExpr.typ, n.info):
localError(c.config, n.info, "expression cannot be cast to '$1'" % $targetType)
result = newNodeI(nkCast, n.info)
result.typ = targetType
result.add copyTree(n[0])
result.add castedExpr
proc semLowHigh(c: PContext, n: PNode, m: TMagic): PNode =
const
opToStr: array[mLow..mHigh, string] = ["low", "high"]
if n.len != 2:
localError(c.config, n.info, errXExpectsTypeOrValue % opToStr[m])
else:
n[1] = semExprWithType(c, n[1], {efDetermineType})
var typ = skipTypes(n[1].typ, abstractVarRange + {tyTypeDesc, tyUserTypeClassInst})
case typ.kind
of tySequence, tyString, tyCstring, tyOpenArray, tyVarargs:
n.typ = getSysType(c.graph, n.info, tyInt)
of tyArray:
n.typ = typ.indexType
if n.typ.kind == tyRange and emptyRange(n.typ.n[0], n.typ.n[1]): #Invalid range
n.typ = getSysType(c.graph, n.info, tyInt)
of tyInt..tyInt64, tyChar, tyBool, tyEnum, tyUInt..tyUInt64, tyFloat..tyFloat64:
n.typ = n[1].typ.skipTypes({tyTypeDesc})
of tyGenericParam:
# prepare this for resolving in semtypinst:
# we must use copyTree here in order to avoid creating a cycle
# that could easily turn into an infinite recursion in semtypinst
n.typ = makeTypeFromExpr(c, n.copyTree)
else:
localError(c.config, n.info, "invalid argument for: " & opToStr[m])
result = n
proc fixupStaticType(c: PContext, n: PNode) =
# This proc can be applied to evaluated expressions to assign
# them a static type.
#
# XXX: with implicit static, this should not be necessary,
# because the output type of operations such as `semConstExpr`
# should be a static type (as well as the type of any other
# expression that can be implicitly evaluated). For now, we
# apply this measure only in code that is enlightened to work
# with static types.
if n.typ.kind != tyStatic:
n.typ = newTypeS(tyStatic, c, n.typ)
n.typ.n = n # XXX: cycles like the one here look dangerous.
# Consider using `n.copyTree`
proc isOpImpl(c: PContext, n: PNode, flags: TExprFlags): PNode =
internalAssert c.config,
n.len == 3 and
n[1].typ != nil and
n[2].kind in {nkStrLit..nkTripleStrLit, nkType}
var
res = false
t1 = n[1].typ
t2 = n[2].typ
if t1.kind == tyTypeDesc and t2.kind != tyTypeDesc:
t1 = t1.base
if n[2].kind in {nkStrLit..nkTripleStrLit}:
case n[2].strVal.normalize
of "closure":
let t = skipTypes(t1, abstractRange)
res = t.kind == tyProc and
t.callConv == ccClosure
of "iterator":
# holdover from when `is iterator` didn't work
let t = skipTypes(t1, abstractRange)
res = t.kind == tyProc and
t.callConv == ccClosure and
tfIterator in t.flags
else:
res = false
else:
if t1.skipTypes({tyGenericInst, tyAlias, tySink, tyDistinct}).kind != tyGenericBody:
maybeLiftType(t2, c, n.info)
else:
#[
for this case:
type Foo = object[T]
Foo is Foo
]#
discard
var m = newCandidate(c, t2)
if efExplain in flags:
m.diagnostics = @[]
m.diagnosticsEnabled = true
res = typeRel(m, t2, t1) >= isSubtype # isNone
# `res = sameType(t1, t2)` would be wrong, e.g. for `int is (int|float)`
result = newIntNode(nkIntLit, ord(res))
result.typ = n.typ
proc semIs(c: PContext, n: PNode, flags: TExprFlags): PNode =
if n.len != 3 or n[2].kind == nkEmpty:
localError(c.config, n.info, "'is' operator takes 2 arguments")
return errorNode(c, n)
let boolType = getSysType(c.graph, n.info, tyBool)
result = n
n.typ = boolType
var liftLhs = true
n[1] = semExprWithType(c, n[1], {efDetermineType, efWantIterator})
if n[2].kind notin {nkStrLit..nkTripleStrLit}:
let t2 = semTypeNode(c, n[2], nil)
n[2] = newNodeIT(nkType, n[2].info, t2)
if t2.kind == tyStatic:
let evaluated = tryConstExpr(c, n[1])
if evaluated != nil:
c.fixupStaticType(evaluated)
n[1] = evaluated
else:
result = newIntNode(nkIntLit, 0)
result.typ = boolType
return
elif t2.kind == tyTypeDesc and
(t2.base.kind == tyNone or tfExplicit in t2.flags):
# When the right-hand side is an explicit type, we must
# not allow regular values to be matched against the type:
liftLhs = false
else:
n[2] = semExpr(c, n[2])
var lhsType = n[1].typ
if lhsType.kind != tyTypeDesc:
if liftLhs:
n[1] = makeTypeSymNode(c, lhsType, n[1].info)
lhsType = n[1].typ
else:
if c.inGenericContext > 0 and lhsType.base.containsGenericType:
# BUGFIX: don't evaluate this too early: ``T is void``
return
result = isOpImpl(c, n, flags)
proc semOpAux(c: PContext, n: PNode) =
const flags = {efDetermineType, efAllowSymChoice}
for i in 1..<n.len:
var a = n[i]
if a.kind == nkExprEqExpr and a.len == 2:
let info = a[0].info
a[0] = newIdentNode(considerQuotedIdent(c, a[0], a), info)
a[1] = semExprWithType(c, a[1], flags)
a.typ = a[1].typ
else:
n[i] = semExprWithType(c, a, flags)
proc overloadedCallOpr(c: PContext, n: PNode): PNode =
# quick check if there is *any* () operator overloaded:
var par = getIdent(c.cache, "()")
var amb = false
if searchInScopes(c, par, amb) == nil:
result = nil
else:
result = newNodeI(nkCall, n.info)
result.add newIdentNode(par, n.info)
for i in 0..<n.len: result.add n[i]
result = semExpr(c, result, flags = {efNoUndeclared})
proc changeType(c: PContext; n: PNode, newType: PType, check: bool) =
case n.kind
of nkCurly:
for i in 0..<n.len:
if n[i].kind == nkRange:
changeType(c, n[i][0], elemType(newType), check)
changeType(c, n[i][1], elemType(newType), check)
else:
changeType(c, n[i], elemType(newType), check)
of nkBracket:
for i in 0..<n.len:
changeType(c, n[i], elemType(newType), check)
of nkPar, nkTupleConstr:
let tup = newType.skipTypes({tyGenericInst, tyAlias, tySink, tyDistinct})
if tup.kind != tyTuple:
if tup.kind == tyObject: return
globalError(c.config, n.info, "no tuple type for constructor")
elif n.len > 0 and n[0].kind == nkExprColonExpr:
# named tuple?
for i in 0..<n.len:
var m = n[i][0]
if m.kind != nkSym:
globalError(c.config, m.info, "invalid tuple constructor")
return
if tup.n != nil:
var f = getSymFromList(tup.n, m.sym.name)
if f == nil:
globalError(c.config, m.info, "unknown identifier: " & m.sym.name.s)
return
changeType(c, n[i][1], f.typ, check)
else:
changeType(c, n[i][1], tup[i], check)
else:
for i in 0..<n.len:
changeType(c, n[i], tup[i], check)
when false:
var m = n[i]
var a = newNodeIT(nkExprColonExpr, m.info, newType[i])
a.add newSymNode(newType.n[i].sym)
a.add m
changeType(m, tup[i], check)
of nkCharLit..nkUInt64Lit:
if check and n.kind != nkUInt64Lit and not sameTypeOrNil(n.typ, newType):
let value = n.intVal
if value < firstOrd(c.config, newType) or value > lastOrd(c.config, newType):
localError(c.config, n.info, "cannot convert " & $value &
" to " & typeNameAndDesc(newType))
of nkFloatLit..nkFloat64Lit:
if check and not floatRangeCheck(n.floatVal, newType):
localError(c.config, n.info, errFloatToString % [$n.floatVal, typeNameAndDesc(newType)])
of nkSym:
if check and n.sym.kind == skEnumField and not sameTypeOrNil(n.sym.typ, newType):
let value = n.sym.position
if value < firstOrd(c.config, newType) or value > lastOrd(c.config, newType):
localError(c.config, n.info, "cannot convert '" & n.sym.name.s &
"' to '" & typeNameAndDesc(newType) & "'")
else: discard
n.typ = newType
proc arrayConstrType(c: PContext, n: PNode): PType =
var typ = newTypeS(tyArray, c)
rawAddSon(typ, nil) # index type
if n.len == 0:
rawAddSon(typ, newTypeS(tyEmpty, c)) # needs an empty basetype!
else:
var t = skipTypes(n[0].typ, {tyGenericInst, tyVar, tyLent, tyOrdinal, tyAlias, tySink})
addSonSkipIntLit(typ, t, c.idgen)
typ.setIndexType makeRangeType(c, 0, n.len - 1, n.info)
result = typ
proc semArrayConstr(c: PContext, n: PNode, flags: TExprFlags; expectedType: PType = nil): PNode =
result = newNodeI(nkBracket, n.info)
result.typ = newTypeS(tyArray, c)
var expectedElementType, expectedIndexType: PType = nil
if expectedType != nil:
let expected = expectedType.skipTypes(abstractRange-{tyDistinct})
case expected.kind
of tyArray:
expectedIndexType = expected[0]
expectedElementType = expected[1]
of tyOpenArray:
expectedElementType = expected[0]
else: discard
rawAddSon(result.typ, nil) # index type
var
firstIndex, lastIndex: Int128 = Zero
indexType = getSysType(c.graph, n.info, tyInt)
lastValidIndex = lastOrd(c.config, indexType)
if n.len == 0:
rawAddSon(result.typ,
if expectedElementType != nil and
typeAllowed(expectedElementType, skLet, c) == nil:
expectedElementType
else:
newTypeS(tyEmpty, c)) # needs an empty basetype!
lastIndex = toInt128(-1)
else:
var x = n[0]
if x.kind == nkExprColonExpr and x.len == 2:
var idx = semConstExpr(c, x[0], expectedIndexType)
if not isOrdinalType(idx.typ):
localError(c.config, idx.info, "expected ordinal value for array " &
"index, got '$1'" % renderTree(idx))
else:
firstIndex = getOrdValue(idx)
lastIndex = firstIndex
indexType = idx.typ
lastValidIndex = lastOrd(c.config, indexType)
x = x[1]
let yy = semExprWithType(c, x, {efTypeAllowed}, expectedElementType)
var typ = yy.typ
if expectedElementType == nil:
expectedElementType = typ
result.add yy
#var typ = skipTypes(result[0].typ, {tyGenericInst, tyVar, tyLent, tyOrdinal})
for i in 1..<n.len:
if lastIndex == lastValidIndex:
let validIndex = makeRangeType(c, toInt64(firstIndex), toInt64(lastValidIndex), n.info,
indexType)
localError(c.config, n.info, "size of array exceeds range of index " &
"type '$1' by $2 elements" % [typeToString(validIndex), $(n.len-i)])
x = n[i]
if x.kind == nkExprColonExpr and x.len == 2:
var idx = semConstExpr(c, x[0], indexType)
idx = fitNode(c, indexType, idx, x.info)
if lastIndex+1 != getOrdValue(idx):
localError(c.config, x.info, "invalid order in array constructor")
x = x[1]
let xx = semExprWithType(c, x, {efTypeAllowed}, expectedElementType)
result.add xx
typ = commonType(c, typ, xx.typ)
#n[i] = semExprWithType(c, x, {})
#result.add fitNode(c, typ, n[i])
inc(lastIndex)
addSonSkipIntLit(result.typ, typ, c.idgen)
for i in 0..<result.len:
result[i] = fitNode(c, typ, result[i], result[i].info)
result.typ.setIndexType makeRangeType(c, toInt64(firstIndex), toInt64(lastIndex), n.info,
indexType)
proc fixAbstractType(c: PContext, n: PNode) =
for i in 1..<n.len:
let it = n[i]
if it == nil:
localError(c.config, n.info, "'$1' has nil child at index $2" % [renderTree(n, {renderNoComments}), $i])
return
# do not get rid of nkHiddenSubConv for OpenArrays, the codegen needs it:
if it.kind == nkHiddenSubConv and
skipTypes(it.typ, abstractVar).kind notin {tyOpenArray, tyVarargs}:
if skipTypes(it[1].typ, abstractVar).kind in
{tyNil, tyTuple, tySet} or it[1].isArrayConstr:
var s = skipTypes(it.typ, abstractVar + tyUserTypeClasses)
if s.kind != tyUntyped:
changeType(c, it[1], s, check=true)
n[i] = it[1]
proc isAssignable(c: PContext, n: PNode): TAssignableResult =
result = parampatterns.isAssignable(c.p.owner, n)
proc isUnresolvedSym(s: PSym): bool =
result = s.kind == skGenericParam
if not result and s.typ != nil:
result = tfInferrableStatic in s.typ.flags or
(s.kind == skParam and s.typ.isMetaType) or
(s.kind == skType and
s.typ.flags * {tfGenericTypeParam, tfImplicitTypeParam} != {})
proc hasUnresolvedArgs(c: PContext, n: PNode): bool =
# Checks whether an expression depends on generic parameters that
# don't have bound values yet. E.g. this could happen in situations
# such as:
# type Slot[T] = array[T.size, byte]
# proc foo[T](x: default(T))
#
# Both static parameter and type parameters can be unresolved.
case n.kind
of nkSym:
return isUnresolvedSym(n.sym)
of nkIdent, nkAccQuoted:
let ident = considerQuotedIdent(c, n)
var amb = false
let sym = searchInScopes(c, ident, amb)
if sym != nil:
return isUnresolvedSym(sym)
else:
return false
else:
for i in 0..<n.safeLen:
if hasUnresolvedArgs(c, n[i]): return true
return false
proc newHiddenAddrTaken(c: PContext, n: PNode, isOutParam: bool): PNode =
if n.kind == nkHiddenDeref and not (c.config.backend == backendCpp or
sfCompileToCpp in c.module.flags):
checkSonsLen(n, 1, c.config)
result = n[0]
else:
result = newNodeIT(nkHiddenAddr, n.info, makeVarType(c, n.typ))
result.add n
let aa = isAssignable(c, n)
let sym = getRoot(n)
if aa notin {arLValue, arLocalLValue}:
if aa == arDiscriminant and c.inUncheckedAssignSection > 0:
discard "allow access within a cast(unsafeAssign) section"
elif strictDefs in c.features and aa == arAddressableConst and
sym != nil and sym.kind == skLet and isOutParam:
discard "allow let varaibles to be passed to out parameters"
else:
localError(c.config, n.info, errVarForOutParamNeededX % renderNotLValue(n))
proc analyseIfAddressTaken(c: PContext, n: PNode, isOutParam: bool): PNode =
result = n
case n.kind
of nkSym:
# n.sym.typ can be nil in 'check' mode ...
if n.sym.typ != nil and
skipTypes(n.sym.typ, abstractInst-{tyTypeDesc}).kind notin {tyVar, tyLent}:
incl(n.sym.flags, sfAddrTaken)
result = newHiddenAddrTaken(c, n, isOutParam)
of nkDotExpr:
checkSonsLen(n, 2, c.config)
if n[1].kind != nkSym:
internalError(c.config, n.info, "analyseIfAddressTaken")
return
if skipTypes(n[1].sym.typ, abstractInst-{tyTypeDesc}).kind notin {tyVar, tyLent}:
incl(n[1].sym.flags, sfAddrTaken)
result = newHiddenAddrTaken(c, n, isOutParam)
of nkBracketExpr:
checkMinSonsLen(n, 1, c.config)
if skipTypes(n[0].typ, abstractInst-{tyTypeDesc}).kind notin {tyVar, tyLent}:
if n[0].kind == nkSym: incl(n[0].sym.flags, sfAddrTaken)
result = newHiddenAddrTaken(c, n, isOutParam)
else:
result = newHiddenAddrTaken(c, n, isOutParam)
proc analyseIfAddressTakenInCall(c: PContext, n: PNode, isConverter = false) =
checkMinSonsLen(n, 1, c.config)
const
FakeVarParams = {mNew, mNewFinalize, mInc, ast.mDec, mIncl, mExcl,
mSetLengthStr, mSetLengthSeq, mAppendStrCh, mAppendStrStr, mSwap,
mAppendSeqElem, mNewSeq, mShallowCopy, mDeepCopy, mMove,
mWasMoved}
template checkIfConverterCalled(c: PContext, n: PNode) =
## Checks if there is a converter call which wouldn't be checked otherwise
# Call can sometimes be wrapped in a deref
let node = if n.kind == nkHiddenDeref: n[0] else: n
if node.kind == nkHiddenCallConv:
analyseIfAddressTakenInCall(c, node, true)
# get the real type of the callee
# it may be a proc var with a generic alias type, so we skip over them
var t = n[0].typ.skipTypes({tyGenericInst, tyAlias, tySink})
if n[0].kind == nkSym and n[0].sym.magic in FakeVarParams:
# BUGFIX: check for L-Value still needs to be done for the arguments!
# note sometimes this is eval'ed twice so we check for nkHiddenAddr here:
for i in 1..<n.len:
if i < t.len and t[i] != nil and
skipTypes(t[i], abstractInst-{tyTypeDesc}).kind in {tyVar}:
let it = n[i]
let aa = isAssignable(c, it)
if aa notin {arLValue, arLocalLValue}:
if it.kind != nkHiddenAddr:
if aa == arDiscriminant and c.inUncheckedAssignSection > 0:
discard "allow access within a cast(unsafeAssign) section"
else:
localError(c.config, it.info, errVarForOutParamNeededX % $it)
# Make sure to still check arguments for converters
c.checkIfConverterCalled(n[i])
# bug #5113: disallow newSeq(result) where result is a 'var T':
if n[0].sym.magic in {mNew, mNewFinalize, mNewSeq}:
var arg = n[1] #.skipAddr
if arg.kind == nkHiddenDeref: arg = arg[0]
if arg.kind == nkSym and arg.sym.kind == skResult and
arg.typ.skipTypes(abstractInst).kind in {tyVar, tyLent}:
localError(c.config, n.info, errXStackEscape % renderTree(n[1], {renderNoComments}))
return
for i in 1..<n.len:
let n = if n.kind == nkHiddenDeref: n[0] else: n
c.checkIfConverterCalled(n[i])
if i < t.len and
skipTypes(t[i], abstractInst-{tyTypeDesc}).kind in {tyVar}:
# Converters wrap var parameters in nkHiddenAddr but they haven't been analysed yet.
# So we need to make sure we are checking them still when in a converter call
if n[i].kind != nkHiddenAddr or isConverter:
n[i] = analyseIfAddressTaken(c, n[i].skipAddr(), isOutParam(skipTypes(t[i], abstractInst-{tyTypeDesc})))
include semmagic
proc evalAtCompileTime(c: PContext, n: PNode): PNode =
result = n
if n.kind notin nkCallKinds or n[0].kind != nkSym: return
var callee = n[0].sym
# workaround for bug #537 (overly aggressive inlining leading to
# wrong NimNode semantics):
if n.typ != nil and tfTriggersCompileTime in n.typ.flags: return
# constant folding that is necessary for correctness of semantic pass:
if callee.magic != mNone and callee.magic in ctfeWhitelist and n.typ != nil:
var call = newNodeIT(nkCall, n.info, n.typ)
call.add(n[0])
var allConst = true
for i in 1..<n.len:
var a = getConstExpr(c.module, n[i], c.idgen, c.graph)
if a == nil:
allConst = false
a = n[i]
if a.kind == nkHiddenStdConv: a = a[1]
call.add(a)
if allConst:
result = semfold.getConstExpr(c.module, call, c.idgen, c.graph)
if result.isNil: result = n
else: return result
block maybeLabelAsStatic:
# XXX: temporary work-around needed for tlateboundstatic.
# This is certainly not correct, but it will get the job
# done until we have a more robust infrastructure for
# implicit statics.
if n.len > 1:
for i in 1..<n.len:
# see bug #2113, it's possible that n[i].typ for errornous code:
if n[i].typ.isNil or n[i].typ.kind != tyStatic or
tfUnresolved notin n[i].typ.flags:
break maybeLabelAsStatic
n.typ = newTypeS(tyStatic, c, n.typ)
n.typ.flags.incl tfUnresolved
# optimization pass: not necessary for correctness of the semantic pass
if callee.kind == skConst or
{sfNoSideEffect, sfCompileTime} * callee.flags != {} and
{sfForward, sfImportc} * callee.flags == {} and n.typ != nil:
if callee.kind != skConst and
sfCompileTime notin callee.flags and
optImplicitStatic notin c.config.options: return
if callee.magic notin ctfeWhitelist: return
if callee.kind notin {skProc, skFunc, skConverter, skConst} or
callee.isGenericRoutineStrict:
return
if n.typ != nil and typeAllowed(n.typ, skConst, c) != nil: return
var call = newNodeIT(nkCall, n.info, n.typ)
call.add(n[0])
for i in 1..<n.len:
let a = getConstExpr(c.module, n[i], c.idgen, c.graph)
if a == nil: return n
call.add(a)
#echo "NOW evaluating at compile time: ", call.renderTree
if c.inStaticContext == 0 or sfNoSideEffect in callee.flags:
if sfCompileTime in callee.flags:
result = evalStaticExpr(c.module, c.idgen, c.graph, call, c.p.owner)
if result.isNil:
localError(c.config, n.info, errCannotInterpretNodeX % renderTree(call))
else: result = fixupTypeAfterEval(c, result, n)
else:
result = evalConstExpr(c.module, c.idgen, c.graph, call)
if result.isNil: result = n
else: result = fixupTypeAfterEval(c, result, n)
else:
result = n
#if result != n:
# echo "SUCCESS evaluated at compile time: ", call.renderTree
proc semStaticExpr(c: PContext, n: PNode; expectedType: PType = nil): PNode =
inc c.inStaticContext
openScope(c)
let a = semExprWithType(c, n, expectedType = expectedType)
closeScope(c)
dec c.inStaticContext
if a.findUnresolvedStatic != nil: return a
result = evalStaticExpr(c.module, c.idgen, c.graph, a, c.p.owner)
if result.isNil:
localError(c.config, n.info, errCannotInterpretNodeX % renderTree(n))
result = c.graph.emptyNode
else:
result = fixupTypeAfterEval(c, result, a)
proc semOverloadedCallAnalyseEffects(c: PContext, n: PNode, nOrig: PNode,
flags: TExprFlags; expectedType: PType = nil): PNode =
if flags*{efInTypeof, efWantIterator, efWantIterable} != {}:
# consider: 'for x in pReturningArray()' --> we don't want the restriction
# to 'skIterator' anymore; skIterator is preferred in sigmatch already
# for typeof support.
# for ``typeof(countup(1,3))``, see ``tests/ttoseq``.
result = semOverloadedCall(c, n, nOrig,
{skProc, skFunc, skMethod, skConverter, skMacro, skTemplate, skIterator}, flags, expectedType)
else:
result = semOverloadedCall(c, n, nOrig,
{skProc, skFunc, skMethod, skConverter, skMacro, skTemplate}, flags, expectedType)
if result != nil:
if result[0].kind != nkSym:
if not (c.inGenericContext > 0): # see generic context check in semOverloadedCall
internalError(c.config, "semOverloadedCallAnalyseEffects")
return
let callee = result[0].sym
case callee.kind
of skMacro, skTemplate: discard
else:
if callee.kind == skIterator and callee.id == c.p.owner.id and
not isClosureIterator(c.p.owner.typ):
localError(c.config, n.info, errRecursiveDependencyIteratorX % callee.name.s)
# error correction, prevents endless for loop elimination in transf.
# See bug #2051:
result[0] = newSymNode(errorSym(c, n))
elif callee.kind == skIterator:
if efWantIterable in flags:
let typ = newTypeS(tyIterable, c)
rawAddSon(typ, result.typ)
result.typ = typ
proc resolveIndirectCall(c: PContext; n, nOrig: PNode;
t: PType): TCandidate =
result = initCandidate(c, t)
matches(c, n, nOrig, result)
proc finishOperand(c: PContext, a: PNode): PNode =
if a.typ.isNil:
result = c.semOperand(c, a, {efDetermineType})
else:
result = a
# XXX tyGenericInst here?
if result.typ.kind == tyProc and hasUnresolvedParams(result, {efOperand}):
#and tfUnresolved in result.typ.flags:
let owner = result.typ.owner
let err =
# consistent error message with evaltempl/semMacroExpr
if owner != nil and owner.kind in {skTemplate, skMacro}:
errMissingGenericParamsForTemplate % a.renderTree
else:
errProcHasNoConcreteType % a.renderTree
localError(c.config, a.info, err)
considerGenSyms(c, result)
proc semFinishOperands(c: PContext; n: PNode; isBracketExpr = false) =
# this needs to be called to ensure that after overloading resolution every
# argument has been sem'checked
# skip the first argument for operands of `[]` since it may be an unresolved
# generic proc, which is handled in semMagic
let start = 1 + ord(isBracketExpr)
for i in start..<n.len:
n[i] = finishOperand(c, n[i])
proc afterCallActions(c: PContext; n, orig: PNode, flags: TExprFlags; expectedType: PType = nil): PNode =
if efNoSemCheck notin flags and n.typ != nil and n.typ.kind == tyError:
return errorNode(c, n)
if n.typ != nil and n.typ.kind == tyFromExpr and c.inGenericContext > 0:
return n
result = n
when defined(nimsuggest):
if c.config.expandProgress:
if c.config.expandLevels == 0:
return n
else:
c.config.expandLevels -= 1
let callee = result[0].sym
case callee.kind
of skMacro: result = semMacroExpr(c, result, orig, callee, flags, expectedType)
of skTemplate: result = semTemplateExpr(c, result, callee, flags, expectedType)
else:
semFinishOperands(c, result, isBracketExpr = callee.magic in {mArrGet, mArrPut})
activate(c, result)
fixAbstractType(c, result)
analyseIfAddressTakenInCall(c, result)
if callee.magic != mNone:
result = magicsAfterOverloadResolution(c, result, flags, expectedType)
when false:
if result.typ != nil and
not (result.typ.kind == tySequence and result.elementType.kind == tyEmpty):
liftTypeBoundOps(c, result.typ, n.info)
#result = patchResolvedTypeBoundOp(c, result)
if c.matchedConcept == nil and (c.inTypeofContext == 0 or callee.magic != mNone):
# don't fold calls in concepts and typeof
result = evalAtCompileTime(c, result)
proc semIndirectOp(c: PContext, n: PNode, flags: TExprFlags; expectedType: PType = nil): PNode =
result = nil
checkMinSonsLen(n, 1, c.config)
var prc = n[0]
if n[0].kind == nkDotExpr:
checkSonsLen(n[0], 2, c.config)
let n0 = semFieldAccess(c, n[0], {efIsDotCall})
if n0.kind == nkDotCall:
# it is a static call!
result = n0
result.transitionSonsKind(nkCall)
result.flags.incl nfExplicitCall
for i in 1..<n.len: result.add n[i]
return semExpr(c, result, flags, expectedType)
elif n0.typ.kind == tyFromExpr and c.inGenericContext > 0:
# don't make assumptions, entire expression needs to be tyFromExpr
result = semGenericStmt(c, n)
result.typ = makeTypeFromExpr(c, result.copyTree)
return
else:
n[0] = n0
else:
n[0] = semExpr(c, n[0], {efInCall, efAllowSymChoice})
let t = n[0].typ
if t != nil and t.kind in {tyVar, tyLent}:
n[0] = newDeref(n[0])
elif isSymChoice(n[0]) and nfDotField notin n.flags:
# overloaded generic procs e.g. newSeq[int] can end up here
return semDirectOp(c, n, flags, expectedType)
var t: PType = nil
if n[0].typ != nil:
t = skipTypes(n[0].typ, abstractInst+{tyOwned}-{tyTypeDesc, tyDistinct})
if t != nil and t.kind == tyTypeDesc:
if n.len == 1: return semObjConstr(c, n, flags, expectedType)
return semConv(c, n, flags)
let nOrig = n.copyTree
semOpAux(c, n)
if t != nil and t.kind == tyProc:
# This is a proc variable, apply normal overload resolution
let m = resolveIndirectCall(c, n, nOrig, t)
if m.state != csMatch:
if c.config.m.errorOutputs == {}:
# speed up error generation:
globalError(c.config, n.info, "type mismatch")
return c.graph.emptyNode
else:
var hasErrorType = false
var msg = "type mismatch: got <"
for i in 1..<n.len:
if i > 1: msg.add(", ")
let nt = n[i].typ
msg.add(typeToString(nt))
if nt.kind == tyError:
hasErrorType = true
break
if not hasErrorType:
let typ = n[0].typ
msg.add(">\nbut expected one of:\n" &
typeToString(typ))
# prefer notin preferToResolveSymbols
# t.sym != nil
# sfAnon notin t.sym.flags
# t.kind != tySequence(It is tyProc)
if typ.sym != nil and sfAnon notin typ.sym.flags and
typ.kind == tyProc:
# when can `typ.sym != nil` ever happen?
msg.add(" = " & typeToString(typ, preferDesc))
msg.addDeclaredLocMaybe(c.config, typ)
localError(c.config, n.info, msg)
return errorNode(c, n)
else:
result = m.call
instGenericConvertersSons(c, result, m)
else:
result = overloadedCallOpr(c, n) # this uses efNoUndeclared
# Now that nkSym does not imply an iteration over the proc/iterator space,
# the old ``prc`` (which is likely an nkIdent) has to be restored:
if result == nil or result.kind == nkEmpty:
# XXX: hmm, what kind of symbols will end up here?
# do we really need to try the overload resolution?
n[0] = prc
nOrig[0] = prc
n.flags.incl nfExprCall
result = semOverloadedCallAnalyseEffects(c, n, nOrig, flags)
if result == nil: return errorNode(c, n)
elif result.kind notin nkCallKinds:
# the semExpr() in overloadedCallOpr can even break this condition!
# See bug #904 of how to trigger it:
return result
#result = afterCallActions(c, result, nOrig, flags)
if result[0].kind == nkSym:
result = afterCallActions(c, result, nOrig, flags, expectedType)
else:
fixAbstractType(c, result)
analyseIfAddressTakenInCall(c, result)
proc semDirectOp(c: PContext, n: PNode, flags: TExprFlags; expectedType: PType = nil): PNode =
# this seems to be a hotspot in the compiler!
let nOrig = n.copyTree
#semLazyOpAux(c, n)
result = semOverloadedCallAnalyseEffects(c, n, nOrig, flags, expectedType)
if result != nil: result = afterCallActions(c, result, nOrig, flags, expectedType)
else: result = errorNode(c, n)
proc buildEchoStmt(c: PContext, n: PNode): PNode =
# we MUST not check 'n' for semantics again here! But for now we give up:
result = newNodeI(nkCall, n.info)
let e = systemModuleSym(c.graph, getIdent(c.cache, "echo"))
if e != nil:
result.add(newSymNode(e))
else:
result.add localErrorNode(c, n, "system needs: echo")
result.add(n)
result.add(newStrNode(nkStrLit, ": " & n.typ.typeToString))
result = semExpr(c, result)
proc semExprNoType(c: PContext, n: PNode): PNode =
let isPush = c.config.hasHint(hintExtendedContext)
if isPush: pushInfoContext(c.config, n.info)
result = semExpr(c, n, {efWantStmt})
discardCheck(c, result, {})
if isPush: popInfoContext(c.config)
proc isTypeExpr(n: PNode): bool =
case n.kind
of nkType, nkTypeOfExpr: result = true
of nkSym: result = n.sym.kind == skType
else: result = false
proc createSetType(c: PContext; baseType: PType): PType =
assert baseType != nil
result = newTypeS(tySet, c)
rawAddSon(result, baseType)
proc lookupInRecordAndBuildCheck(c: PContext, n, r: PNode, field: PIdent,
check: var PNode): PSym =
# transform in a node that contains the runtime check for the
# field, if it is in a case-part...
result = nil
case r.kind
of nkRecList:
for i in 0..<r.len:
result = lookupInRecordAndBuildCheck(c, n, r[i], field, check)
if result != nil: return
of nkRecCase:
checkMinSonsLen(r, 2, c.config)
if (r[0].kind != nkSym): illFormedAst(r, c.config)
result = lookupInRecordAndBuildCheck(c, n, r[0], field, check)
if result != nil: return
let setType = createSetType(c, r[0].typ)
var s = newNodeIT(nkCurly, r.info, setType)
for i in 1..<r.len:
var it = r[i]
case it.kind
of nkOfBranch:
result = lookupInRecordAndBuildCheck(c, n, lastSon(it), field, check)
if result == nil:
for j in 0..<it.len-1: s.add copyTree(it[j])
else:
if check == nil:
check = newNodeI(nkCheckedFieldExpr, n.info)
check.add c.graph.emptyNode # make space for access node
s = newNodeIT(nkCurly, n.info, setType)
for j in 0..<it.len - 1: s.add copyTree(it[j])
var inExpr = newNodeIT(nkCall, n.info, getSysType(c.graph, n.info, tyBool))
inExpr.add newSymNode(getSysMagic(c.graph, n.info, "contains", mInSet), n.info)
inExpr.add s
inExpr.add copyTree(r[0])
check.add inExpr
#check.add semExpr(c, inExpr)
return
of nkElse:
result = lookupInRecordAndBuildCheck(c, n, lastSon(it), field, check)
if result != nil:
if check == nil:
check = newNodeI(nkCheckedFieldExpr, n.info)
check.add c.graph.emptyNode # make space for access node
var inExpr = newNodeIT(nkCall, n.info, getSysType(c.graph, n.info, tyBool))
inExpr.add newSymNode(getSysMagic(c.graph, n.info, "contains", mInSet), n.info)
inExpr.add s
inExpr.add copyTree(r[0])
var notExpr = newNodeIT(nkCall, n.info, getSysType(c.graph, n.info, tyBool))
notExpr.add newSymNode(getSysMagic(c.graph, n.info, "not", mNot), n.info)
notExpr.add inExpr
check.add notExpr
return
else: illFormedAst(it, c.config)
of nkSym:
if r.sym.name.id == field.id: result = r.sym
else: illFormedAst(n, c.config)
const
tyTypeParamsHolders = {tyGenericInst, tyCompositeTypeClass}
tyDotOpTransparent = {tyVar, tyLent, tyPtr, tyRef, tyOwned, tyAlias, tySink}
proc readTypeParameter(c: PContext, typ: PType,
paramName: PIdent, info: TLineInfo): PNode =
# Note: This function will return emptyNode when attempting to read
# a static type parameter that is not yet resolved (e.g. this may
# happen in proc signatures such as `proc(x: T): array[T.sizeParam, U]`
if typ.kind in {tyUserTypeClass, tyUserTypeClassInst}:
for statement in typ.n:
case statement.kind
of nkTypeSection:
for def in statement:
if def[0].sym.name.id == paramName.id:
# XXX: Instead of lifting the section type to a typedesc
# here, we could try doing it earlier in semTypeSection.
# This seems semantically correct and then we'll be able
# to return the section symbol directly here
let foundType = makeTypeDesc(c, def[2].typ)
return newSymNode(copySym(def[0].sym, c.idgen).linkTo(foundType), info)
of nkConstSection:
for def in statement:
if def[0].sym.name.id == paramName.id:
return def[2]
else:
discard
if typ.kind != tyUserTypeClass:
let ty = if typ.kind == tyCompositeTypeClass: typ.firstGenericParam.skipGenericAlias
else: typ.skipGenericAlias
let tbody = ty[0]
for s in 0..<tbody.len-1:
let tParam = tbody[s]
if tParam.sym.name.id == paramName.id:
let rawTyp = ty[s + 1]
if rawTyp.kind == tyStatic:
if rawTyp.n != nil:
return rawTyp.n
else:
return c.graph.emptyNode
else:
let foundTyp = makeTypeDesc(c, rawTyp)
return newSymNode(copySym(tParam.sym, c.idgen).linkTo(foundTyp), info)
return nil
proc semSym(c: PContext, n: PNode, sym: PSym, flags: TExprFlags): PNode =
result = nil
assert n.kind in nkIdentKinds + {nkDotExpr}
let s = getGenSym(c, sym)
case s.kind
of skConst:
if n.kind != nkDotExpr: # dotExpr is already checked by builtinFieldAccess
markUsed(c, n.info, s)
onUse(n.info, s)
let typ = skipTypes(s.typ, abstractInst-{tyTypeDesc})
case typ.kind
of tyNil, tyChar, tyInt..tyInt64, tyFloat..tyFloat128,
tyTuple, tySet, tyUInt..tyUInt64:
if s.magic == mNone: result = inlineConst(c, n, s)
else: result = newSymNode(s, n.info)
of tyArray, tySequence:
# Consider::
# const x = []
# proc p(a: openarray[int])
# proc q(a: openarray[char])
# p(x)
# q(x)
#
# It is clear that ``[]`` means two totally different things. Thus, we
# copy `x`'s AST into each context, so that the type fixup phase can
# deal with two different ``[]``.
if s.astdef.safeLen == 0: result = inlineConst(c, n, s)
else: result = newSymNode(s, n.info)
of tyStatic:
if typ.n != nil:
result = typ.n
result.typ = typ.base
else:
result = newSymNode(s, n.info)
else:
result = newSymNode(s, n.info)
of skMacro, skTemplate:
# check if we cannot use alias syntax (no required args or generic params)
if sfNoalias in s.flags:
let info = getCallLineInfo(n)
markUsed(c, info, s)
onUse(info, s)
result = symChoice(c, n, s, scClosed)
else:
case s.kind
of skMacro: result = semMacroExpr(c, n, n, s, flags)
of skTemplate: result = semTemplateExpr(c, n, s, flags)
else: discard # unreachable
of skParam:
markUsed(c, n.info, s)
onUse(n.info, s)
if s.typ != nil and s.typ.kind == tyStatic and s.typ.n != nil:
# XXX see the hack in sigmatch.nim ...
return s.typ.n
elif sfGenSym in s.flags:
# the owner should have been set by now by addParamOrResult
internalAssert c.config, s.owner != nil
result = newSymNode(s, n.info)
of skVar, skLet, skResult, skForVar:
if s.magic == mNimvm:
localError(c.config, n.info, "illegal context for 'nimvm' magic")
if n.kind != nkDotExpr: # dotExpr is already checked by builtinFieldAccess
markUsed(c, n.info, s)
onUse(n.info, s)
result = newSymNode(s, n.info)
# We cannot check for access to outer vars for example because it's still
# not sure the symbol really ends up being used:
# var len = 0 # but won't be called
# genericThatUsesLen(x) # marked as taking a closure?
if hasWarn(c.config, warnResultUsed):
message(c.config, n.info, warnResultUsed)
of skGenericParam:
onUse(n.info, s)
if s.typ.kind == tyStatic:
result = newSymNode(s, n.info)
result.typ = s.typ
elif s.ast != nil:
result = semExpr(c, s.ast)
else:
n.typ = s.typ
return n
of skType:
if n.kind != nkDotExpr: # dotExpr is already checked by builtinFieldAccess
markUsed(c, n.info, s)
onUse(n.info, s)
if s.typ.kind == tyStatic and s.typ.base.kind != tyNone and s.typ.n != nil:
return s.typ.n
result = newSymNode(s, n.info)
result.typ = makeTypeDesc(c, s.typ)
of skField:
# old code, not sure if it's live code:
markUsed(c, n.info, s)
onUse(n.info, s)
result = newSymNode(s, n.info)
of skModule:
# make sure type is None and not nil for discard checking
if efWantStmt in flags: s.typ = newTypeS(tyNone, c)
markUsed(c, n.info, s)
onUse(n.info, s)
result = newSymNode(s, n.info)
else:
let info = getCallLineInfo(n)
#if efInCall notin flags:
markUsed(c, info, s)
onUse(info, s)
result = newSymNode(s, info)
proc tryReadingGenericParam(c: PContext, n: PNode, i: PIdent, t: PType): PNode =
case t.kind
of tyGenericInst:
result = readTypeParameter(c, t, i, n.info)
if result == c.graph.emptyNode:
if c.inGenericContext > 0:
result = semGenericStmt(c, n)
result.typ = makeTypeFromExpr(c, result.copyTree)
else:
result = nil
of tyUserTypeClasses:
if t.isResolvedUserTypeClass:
result = readTypeParameter(c, t, i, n.info)
elif c.inGenericContext > 0:
result = semGenericStmt(c, n)
result.typ = makeTypeFromExpr(c, copyTree(result))
else:
result = nil
elif c.inGenericContext > 0 and t.containsGenericType:
result = semGenericStmt(c, n)
result.typ = makeTypeFromExpr(c, copyTree(result))
else:
result = nil
proc tryReadingTypeField(c: PContext, n: PNode, i: PIdent, ty: PType): PNode =
result = nil
var ty = ty.skipTypes(tyDotOpTransparent)
case ty.kind
of tyEnum:
# look up if the identifier belongs to the enum:
var f = PSym(nil)
while ty != nil:
f = getSymFromList(ty.n, i)
if f != nil: break
ty = ty[0] # enum inheritance
if f != nil:
result = newSymNode(f)
result.info = n.info
result.typ = ty
markUsed(c, n.info, f)
onUse(n.info, f)
of tyObject, tyTuple:
if ty.n != nil and ty.n.kind == nkRecList:
let field = lookupInRecord(ty.n, i)
if field != nil:
n.typ = makeTypeDesc(c, field.typ)
result = n
of tyGenericInst:
result = tryReadingTypeField(c, n, i, ty.skipModifier)
if result == nil:
result = tryReadingGenericParam(c, n, i, ty)
else:
result = tryReadingGenericParam(c, n, i, ty)
proc builtinFieldAccess(c: PContext; n: PNode; flags: var TExprFlags): PNode =
## returns nil if it's not a built-in field access
checkSonsLen(n, 2, c.config)
# tests/bind/tbindoverload.nim wants an early exit here, but seems to
# work without now. template/tsymchoicefield doesn't like an early exit
# here at all!
#if isSymChoice(n[1]): return
when defined(nimsuggest):
if c.config.cmd == cmdIdeTools:
suggestExpr(c, n)
if exactEquals(c.config.m.trackPos, n[1].info): suggestExprNoCheck(c, n)
var s = qualifiedLookUp(c, n, {checkAmbiguity, checkUndeclared, checkModule})
if s != nil:
if s.kind in OverloadableSyms:
result = symChoice(c, n, s, scClosed)
if result.kind == nkSym: result = semSym(c, n, s, flags)
else:
markUsed(c, n[1].info, s)
result = semSym(c, n, s, flags)
onUse(n[1].info, s)
return
# extra flags since LHS may become a call operand:
n[0] = semExprWithType(c, n[0], flags+{efDetermineType, efWantIterable, efAllowSymChoice})
#restoreOldStyleType(n[0])
var i = considerQuotedIdent(c, n[1], n)
var ty = n[0].typ
var f: PSym = nil
result = nil
if ty.kind == tyTypeDesc:
if ty.base.kind == tyNone:
# This is a still unresolved typedesc parameter.
# If this is a regular proc, then all bets are off and we must return
# tyFromExpr, but when this happen in a macro this is not a built-in
# field access and we leave the compiler to compile a normal call:
if getCurrOwner(c).kind != skMacro:
n.typ = makeTypeFromExpr(c, n.copyTree)
flags.incl efCannotBeDotCall
return n
else:
return nil
else:
flags.incl efCannotBeDotCall
return tryReadingTypeField(c, n, i, ty.base)
elif isTypeExpr(n.sons[0]):
flags.incl efCannotBeDotCall
return tryReadingTypeField(c, n, i, ty)
elif ty.kind == tyError:
# a type error doesn't have any builtin fields
return nil
if ty.kind in tyUserTypeClasses and ty.isResolvedUserTypeClass:
ty = ty.last
ty = skipTypes(ty, {tyGenericInst, tyVar, tyLent, tyPtr, tyRef, tyOwned, tyAlias, tySink, tyStatic})
while tfBorrowDot in ty.flags: ty = ty.skipTypes({tyDistinct, tyGenericInst, tyAlias})
var check: PNode = nil
if ty.kind == tyObject:
while true:
check = nil
f = lookupInRecordAndBuildCheck(c, n, ty.n, i, check)
if f != nil: break
if ty[0] == nil: break
ty = skipTypes(ty[0], skipPtrs)
if f != nil:
let visibilityCheckNeeded =
if n[1].kind == nkSym and n[1].sym == f:
false # field lookup was done already, likely by hygienic template or bindSym
else: true
if not visibilityCheckNeeded or fieldVisible(c, f):
# is the access to a public field or in the same module or in a friend?
markUsed(c, n[1].info, f)
onUse(n[1].info, f)
let info = n[1].info
n[0] = makeDeref(n[0])
n[1] = newSymNode(f) # we now have the correct field
n[1].info = info # preserve the original info
n.typ = f.typ
if check == nil:
result = n
else:
check[0] = n
check.typ = n.typ
result = check
elif ty.kind == tyTuple and ty.n != nil:
f = getSymFromList(ty.n, i)
if f != nil:
markUsed(c, n[1].info, f)
onUse(n[1].info, f)
n[0] = makeDeref(n[0])
n[1] = newSymNode(f)
n.typ = f.typ
result = n
# we didn't find any field, let's look for a generic param
if result == nil:
let t = n[0].typ.skipTypes(tyDotOpTransparent)
result = tryReadingGenericParam(c, n, i, t)
flags.incl efCannotBeDotCall
proc dotTransformation(c: PContext, n: PNode): PNode =
if isSymChoice(n[1]) or
# generics usually leave field names as symchoices, but not types
(n[1].kind == nkSym and n[1].sym.kind == skType):
result = newNodeI(nkDotCall, n.info)
result.add n[1]
result.add copyTree(n[0])
else:
var i = considerQuotedIdent(c, n[1], n)
result = newNodeI(nkDotCall, n.info)
result.flags.incl nfDotField
result.add newIdentNode(i, n[1].info)
result.add copyTree(n[0])
proc semFieldAccess(c: PContext, n: PNode, flags: TExprFlags): PNode =
# this is difficult, because the '.' is used in many different contexts
# in Nim. We first allow types in the semantic checking.
var f = flags - {efIsDotCall}
result = builtinFieldAccess(c, n, f)
if result == nil or ((result.typ == nil or result.typ.skipTypes(abstractInst).kind != tyProc) and
efIsDotCall in flags and callOperator notin c.features and
efCannotBeDotCall notin f):
result = dotTransformation(c, n)
proc buildOverloadedSubscripts(n: PNode, ident: PIdent): PNode =
result = newNodeI(nkCall, n.info)
result.add(newIdentNode(ident, n.info))
for s in n: result.add s
proc semDeref(c: PContext, n: PNode, flags: TExprFlags): PNode =
checkSonsLen(n, 1, c.config)
n[0] = semExprWithType(c, n[0])
let a = getConstExpr(c.module, n[0], c.idgen, c.graph)
if a != nil:
if a.kind == nkNilLit and efInTypeof notin flags:
localError(c.config, n.info, "nil dereference is not allowed")
n[0] = a
result = n
var t = skipTypes(n[0].typ, {tyGenericInst, tyVar, tyLent, tyAlias, tySink, tyOwned})
case t.kind
of tyRef, tyPtr: n.typ = t.elementType
of tyMetaTypes, tyFromExpr:
n.typ = makeTypeFromExpr(c, n.copyTree)
else: result = nil
#GlobalError(n[0].info, errCircumNeedsPointer)
proc maybeInstantiateGeneric(c: PContext, n: PNode, s: PSym): PNode =
## Instantiates generic if not lacking implicit generics,
## otherwise returns n.
let
neededGenParams = s.ast[genericParamsPos].len
heldGenParams = n.len - 1
var implicitParams = 0
for x in s.ast[genericParamsPos]:
if tfImplicitTypeParam in x.typ.flags:
inc implicitParams
if heldGenParams != neededGenParams and implicitParams + heldGenParams == neededGenParams:
# This is an implicit + explicit generic procedure without all args passed,
# kicking back the sem'd symbol fixes #17212
# Uncertain the hackiness of this solution.
result = n
else:
result = explicitGenericInstantiation(c, n, s)
if result == n:
n[0] = copyTree(result[0])
proc semSubscript(c: PContext, n: PNode, flags: TExprFlags): PNode =
## returns nil if not a built-in subscript operator; also called for the
## checking of assignments
result = nil
if n.len == 1:
let x = semDeref(c, n, flags)
if x == nil: return nil
if x.typ.kind == tyFromExpr:
# depends on generic type
return x
result = newNodeIT(nkDerefExpr, x.info, x.typ)
result.add(x[0])
return
checkMinSonsLen(n, 2, c.config)
# signal that generic parameters may be applied after
n[0] = semExprWithType(c, n[0], {efNoEvaluateGeneric, efAllowSymChoice})
var arr = skipTypes(n[0].typ, {tyGenericInst, tyUserTypeClassInst, tyOwned,
tyVar, tyLent, tyPtr, tyRef, tyAlias, tySink})
if arr.kind == tyStatic:
if arr.base.kind == tyNone:
result = n
result.typ = semStaticType(c, n[1], nil)
return
elif arr.n != nil:
return semSubscript(c, arr.n, flags)
else:
arr = arr.base
case arr.kind
of tyArray, tyOpenArray, tyVarargs, tySequence, tyString, tyCstring,
tyUncheckedArray:
if n.len != 2: return nil
n[0] = makeDeref(n[0])
for i in 1..<n.len:
n[i] = semExprWithType(c, n[i],
flags*{efInTypeof, efDetermineType})
# Arrays index type is dictated by the range's type
if arr.kind == tyArray:
var indexType = arr[0]
var arg = indexTypesMatch(c, indexType, n[1].typ, n[1])
if arg != nil:
n[1] = arg
result = n
result.typ = elemType(arr)
# Other types have a bit more of leeway
elif n[1].typ.skipTypes(abstractRange-{tyDistinct}).kind in
{tyInt..tyInt64, tyUInt..tyUInt64}:
result = n
result.typ = elemType(arr)
of tyTypeDesc:
# The result so far is a tyTypeDesc bound
# a tyGenericBody. The line below will substitute
# it with the instantiated type.
result = n
result.typ = makeTypeDesc(c, semTypeNode(c, n, nil))
#result = symNodeFromType(c, semTypeNode(c, n, nil), n.info)
of tyTuple:
if n.len != 2: return nil
n[0] = makeDeref(n[0])
# [] operator for tuples requires constant expression:
n[1] = semConstExpr(c, n[1])
if skipTypes(n[1].typ, {tyGenericInst, tyRange, tyOrdinal, tyAlias, tySink}).kind in
{tyInt..tyInt64}:
let idx = getOrdValue(n[1])
if idx >= 0 and idx < arr.len: n.typ = arr[toInt(idx)]
else:
localError(c.config, n.info,
"invalid index $1 in subscript for tuple of length $2" %
[$idx, $arr.len])
result = n
else:
result = nil
else:
let s = if n[0].kind == nkSym: n[0].sym
elif n[0].kind in nkSymChoices + {nkOpenSym}: n[0][0].sym
else: nil
if s != nil:
case s.kind
of skProc, skFunc, skMethod, skConverter, skIterator:
# type parameters: partial generic specialization
n[0] = semSymGenericInstantiation(c, n[0], s)
result = maybeInstantiateGeneric(c, n, s)
of skMacro, skTemplate:
if efInCall in flags:
# We are processing macroOrTmpl[] in macroOrTmpl[](...) call.
# Return as is, so it can be transformed into complete macro or
# template call in semIndirectOp caller.
result = n
else:
# We are processing macroOrTmpl[] not in call. Transform it to the
# macro or template call with generic arguments here.
n.transitionSonsKind(nkCall)
case s.kind
of skMacro: result = semMacroExpr(c, n, n, s, flags)
of skTemplate: result = semTemplateExpr(c, n, s, flags)
else: discard
of skType:
result = symNodeFromType(c, semTypeNode(c, n, nil), n.info)
else:
discard
proc semArrayAccess(c: PContext, n: PNode, flags: TExprFlags; expectedType: PType = nil): PNode =
result = semSubscript(c, n, flags)
if result == nil:
# overloaded [] operator:
result = semExpr(c, buildOverloadedSubscripts(n, getIdent(c.cache, "[]")), flags, expectedType)
proc propertyWriteAccess(c: PContext, n, nOrig, a: PNode): PNode =
var id = considerQuotedIdent(c, a[1], a)
var setterId = newIdentNode(getIdent(c.cache, id.s & '='), n.info)
# a[0] is already checked for semantics, that does ``builtinFieldAccess``
# this is ugly. XXX Semantic checking should use the ``nfSem`` flag for
# nodes?
let aOrig = nOrig[0]
result = newTreeI(nkCall, n.info, setterId, a[0], n[1])
result.flags.incl nfDotSetter
let orig = newTreeI(nkCall, n.info, setterId, aOrig[0], nOrig[1])
result = semOverloadedCallAnalyseEffects(c, result, orig, {})
if result != nil:
result = afterCallActions(c, result, nOrig, {})
#fixAbstractType(c, result)
#analyseIfAddressTakenInCall(c, result)
proc takeImplicitAddr(c: PContext, n: PNode; isLent: bool): PNode =
# See RFC #7373, calls returning 'var T' are assumed to
# return a view into the first argument (if there is one):
let root = exprRoot(n)
if root != nil and root.owner == c.p.owner:
template url: string = "var_t_return.html".createDocLink
if root.kind in {skLet, skVar, skTemp} and sfGlobal notin root.flags:
localError(c.config, n.info, "'$1' escapes its stack frame; context: '$2'; see $3" % [
root.name.s, renderTree(n, {renderNoComments}), url])
elif root.kind == skParam and root.position != 0:
localError(c.config, n.info, "'$1' is not the first parameter; context: '$2'; see $3" % [
root.name.s, renderTree(n, {renderNoComments}), url])
case n.kind
of nkHiddenAddr, nkAddr: return n
of nkDerefExpr: return n[0]
of nkBracketExpr:
if n.len == 1: return n[0]
of nkHiddenDeref:
# issue #13848
# `proc fun(a: var int): var int = a`
discard
else: discard
let valid = isAssignable(c, n)
if valid != arLValue:
if valid in {arAddressableConst, arLentValue} and isLent:
discard "ok"
elif valid == arLocalLValue:
localError(c.config, n.info, errXStackEscape % renderTree(n, {renderNoComments}))
else:
localError(c.config, n.info, errExprHasNoAddress)
result = newNodeIT(nkHiddenAddr, n.info, if n.typ.kind in {tyVar, tyLent}: n.typ else: makePtrType(c, n.typ))
if n.typ.kind in {tyVar, tyLent}:
n.typ = n.typ.elementType
result.add(n)
proc asgnToResultVar(c: PContext, n, le, ri: PNode) {.inline.} =
if le.kind == nkHiddenDeref:
var x = le[0]
if x.kind == nkSym:
if x.sym.kind == skResult and (x.typ.kind in {tyVar, tyLent} or classifyViewType(x.typ) != noView):
n[0] = x # 'result[]' --> 'result'
n[1] = takeImplicitAddr(c, ri, x.typ.kind == tyLent)
x.typ.flags.incl tfVarIsPtr
#echo x.info, " setting it for this type ", typeToString(x.typ), " ", n.info
elif sfGlobal in x.sym.flags:
x.typ.flags.incl tfVarIsPtr
proc borrowCheck(c: PContext, n, le, ri: PNode) =
const
PathKinds0 = {nkDotExpr, nkCheckedFieldExpr,
nkBracketExpr, nkAddr, nkHiddenAddr,
nkObjDownConv, nkObjUpConv}
PathKinds1 = {nkHiddenStdConv, nkHiddenSubConv}
proc getRoot(n: PNode; followDeref: bool): PNode =
result = n
while true:
case result.kind
of nkDerefExpr, nkHiddenDeref:
if followDeref: result = result[0]
else: break
of PathKinds0:
result = result[0]
of PathKinds1:
result = result[1]
else: break
proc scopedLifetime(c: PContext; ri: PNode): bool {.inline.} =
let n = getRoot(ri, followDeref = false)
result = (ri.kind in nkCallKinds+{nkObjConstr}) or
(n.kind == nkSym and n.sym.owner == c.p.owner and n.sym.kind != skResult)
proc escapes(c: PContext; le: PNode): bool {.inline.} =
# param[].foo[] = self definitely escapes, we don't need to
# care about pointer derefs:
let n = getRoot(le, followDeref = true)
result = n.kind == nkSym and n.sym.kind == skParam
# Special typing rule: do not allow to pass 'owned T' to 'T' in 'result = x':
const absInst = abstractInst - {tyOwned}
if ri.typ != nil and ri.typ.skipTypes(absInst).kind == tyOwned and
le.typ != nil and le.typ.skipTypes(absInst).kind != tyOwned and
scopedLifetime(c, ri):
if le.kind == nkSym and le.sym.kind == skResult:
localError(c.config, n.info, "cannot return an owned pointer as an unowned pointer; " &
"use 'owned(" & typeToString(le.typ) & ")' as the return type")
elif escapes(c, le):
localError(c.config, n.info,
"assignment produces a dangling ref: the unowned ref lives longer than the owned ref")
template resultTypeIsInferrable(typ: PType): untyped =
typ.isMetaType and typ.kind != tyTypeDesc
proc goodLineInfo(arg: PNode): TLineInfo =
if arg.kind == nkStmtListExpr and arg.len > 0:
goodLineInfo(arg[^1])
else:
arg.info
proc makeTupleAssignments(c: PContext; n: PNode): PNode =
## expand tuple unpacking assignment into series of assignments
##
## mirrored with semstmts.makeVarTupleSection
let lhs = n[0]
let value = semExprWithType(c, n[1], {efTypeAllowed})
if value.typ.kind != tyTuple:
localError(c.config, n[1].info, errTupleUnpackingTupleExpected %
[typeToString(value.typ, preferDesc)])
elif lhs.len != value.typ.len:
localError(c.config, n.info, errTupleUnpackingDifferentLengths %
[$lhs.len, typeToString(value.typ, preferDesc), $value.typ.len])
result = newNodeI(nkStmtList, n.info)
let temp = newSym(skTemp, getIdent(c.cache, "tmpTupleAsgn"), c.idgen, getCurrOwner(c), n.info)
temp.typ = value.typ
temp.flags.incl(sfGenSym)
var v = newNodeI(nkLetSection, value.info)
let tempNode = newSymNode(temp) #newIdentNode(getIdent(genPrefix & $temp.id), value.info)
var vpart = newNodeI(nkIdentDefs, v.info, 3)
vpart[0] = tempNode
vpart[1] = c.graph.emptyNode
vpart[2] = value
v.add vpart
result.add(v)
for i in 0..<lhs.len:
if lhs[i].kind == nkIdent and lhs[i].ident.id == ord(wUnderscore):
# skip _ assignments if we are using a temp as they are already evaluated
discard
else:
result.add newAsgnStmt(lhs[i], newTupleAccessRaw(tempNode, i))
proc semAsgn(c: PContext, n: PNode; mode=asgnNormal): PNode =
checkSonsLen(n, 2, c.config)
var a = n[0]
case a.kind
of nkDotExpr:
# r.f = x
# --> `f=` (r, x)
let nOrig = n.copyTree
var flags = {efLValue}
a = builtinFieldAccess(c, a, flags)
if a == nil:
a = propertyWriteAccess(c, n, nOrig, n[0])
if a != nil: return a
# we try without the '='; proc that return 'var' or macros are still
# possible:
a = dotTransformation(c, n[0])
if a.kind == nkDotCall:
a.transitionSonsKind(nkCall)
a = semExprWithType(c, a, {efLValue})
of nkBracketExpr:
# a[i] = x
# --> `[]=`(a, i, x)
a = semSubscript(c, a, {efLValue})
if a == nil:
result = buildOverloadedSubscripts(n[0], getIdent(c.cache, "[]="))
result.add(n[1])
if mode == noOverloadedSubscript:
bracketNotFoundError(c, result, {})
return errorNode(c, n)
else:
result = semExprNoType(c, result)
return result
of nkCurlyExpr:
# a{i} = x --> `{}=`(a, i, x)
result = buildOverloadedSubscripts(n[0], getIdent(c.cache, "{}="))
result.add(n[1])
return semExprNoType(c, result)
of nkPar, nkTupleConstr:
if a.len >= 2 or a.kind == nkTupleConstr:
# unfortunately we need to rewrite ``(x, y) = foo()`` already here so
# that overloading of the assignment operator still works. Usually we
# prefer to do these rewritings in transf.nim:
return semStmt(c, makeTupleAssignments(c, n), {})
else:
a = semExprWithType(c, a, {efLValue})
else:
a = semExprWithType(c, a, {efLValue})
n[0] = a
# a = b # both are vars, means: a[] = b[]
# a = b # b no 'var T' means: a = addr(b)
var le = a.typ
let assignable = isAssignable(c, a)
let root = getRoot(a)
let useStrictDefLet = root != nil and root.kind == skLet and
assignable == arAddressableConst and
strictDefs in c.features and isLocalSym(root)
if le == nil:
localError(c.config, a.info, "expression has no type")
elif (skipTypes(le, {tyGenericInst, tyAlias, tySink}).kind notin {tyVar} and
assignable in {arNone, arLentValue, arAddressableConst} and not useStrictDefLet
) or (skipTypes(le, abstractVar).kind in {tyOpenArray, tyVarargs} and views notin c.features):
# Direct assignment to a discriminant is allowed!
localError(c.config, a.info, errXCannotBeAssignedTo %
renderTree(a, {renderNoComments}))
else:
let lhs = n[0]
let rhs = semExprWithType(c, n[1], {efTypeAllowed}, le)
if lhs.kind == nkSym and lhs.sym.kind == skResult:
n.typ = c.enforceVoidContext
if c.p.owner.kind != skMacro and resultTypeIsInferrable(lhs.sym.typ):
var rhsTyp = rhs.typ
if rhsTyp.kind in tyUserTypeClasses and rhsTyp.isResolvedUserTypeClass:
rhsTyp = rhsTyp.last
if lhs.sym.typ.kind == tyAnything:
rhsTyp = rhsTyp.skipTypes({tySink}).skipIntLit(c.idgen)
if cmpTypes(c, lhs.typ, rhsTyp) in {isGeneric, isEqual}:
internalAssert c.config, c.p.resultSym != nil
# Make sure the type is valid for the result variable
typeAllowedCheck(c, n.info, rhsTyp, skResult)
lhs.typ = rhsTyp
c.p.resultSym.typ = rhsTyp
c.p.owner.typ.setReturnType rhsTyp
else:
typeMismatch(c.config, n.info, lhs.typ, rhsTyp, rhs)
borrowCheck(c, n, lhs, rhs)
n[1] = fitNode(c, le, rhs, goodLineInfo(n[1]))
when false: liftTypeBoundOps(c, lhs.typ, lhs.info)
fixAbstractType(c, n)
asgnToResultVar(c, n, n[0], n[1])
result = n
proc semReturn(c: PContext, n: PNode): PNode =
result = n
checkSonsLen(n, 1, c.config)
if c.p.owner.kind in {skConverter, skMethod, skProc, skFunc, skMacro} or
(not c.p.owner.typ.isNil and isClosureIterator(c.p.owner.typ)):
if n[0].kind != nkEmpty:
if n[0].kind == nkAsgn and n[0][0].kind == nkSym and c.p.resultSym == n[0][0].sym:
discard "return is already transformed"
elif c.p.resultSym != nil:
# transform ``return expr`` to ``result = expr; return``
var a = newNodeI(nkAsgn, n[0].info)
a.add newSymNode(c.p.resultSym)
a.add n[0]
n[0] = a
else:
localError(c.config, n.info, errNoReturnTypeDeclared)
return
result[0] = semAsgn(c, n[0])
# optimize away ``result = result``:
if result[0][1].kind == nkSym and result[0][1].sym == c.p.resultSym:
result[0] = c.graph.emptyNode
else:
localError(c.config, n.info, "'return' not allowed here")
proc semProcBody(c: PContext, n: PNode; expectedType: PType = nil): PNode =
when defined(nimsuggest):
if c.graph.config.expandDone():
return n
openScope(c)
result = semExpr(c, n, expectedType = expectedType)
if c.p.resultSym != nil and not isEmptyType(result.typ):
if result.kind == nkNilLit:
# or ImplicitlyDiscardable(result):
# new semantic: 'result = x' triggers the void context
result.typ = nil
elif result.kind == nkStmtListExpr and result.typ.kind == tyNil:
# to keep backwards compatibility bodies like:
# nil
# # comment
# are not expressions:
fixNilType(c, result)
else:
var a = newNodeI(nkAsgn, n.info, 2)
a[0] = newSymNode(c.p.resultSym)
a[1] = result
result = semAsgn(c, a)
else:
discardCheck(c, result, {})
if c.p.owner.kind notin {skMacro, skTemplate} and
c.p.resultSym != nil and c.p.resultSym.typ.isMetaType:
if isEmptyType(result.typ):
# we inferred a 'void' return type:
c.p.resultSym.typ = errorType(c)
c.p.owner.typ.setReturnType nil
else:
localError(c.config, c.p.resultSym.info, errCannotInferReturnType %
c.p.owner.name.s)
if isIterator(c.p.owner.typ) and c.p.owner.typ.returnType != nil and
c.p.owner.typ.returnType.kind == tyAnything:
localError(c.config, c.p.owner.info, errCannotInferReturnType %
c.p.owner.name.s)
closeScope(c)
proc semYieldVarResult(c: PContext, n: PNode, restype: PType) =
var t = skipTypes(restype, {tyGenericInst, tyAlias, tySink})
case t.kind
of tyVar, tyLent:
t.flags.incl tfVarIsPtr # bugfix for #4048, #4910, #6892
if n[0].kind in {nkHiddenStdConv, nkHiddenSubConv}:
n[0] = n[0][1]
n[0] = takeImplicitAddr(c, n[0], t.kind == tyLent)
of tyTuple:
for i in 0..<t.len:
let e = skipTypes(t[i], {tyGenericInst, tyAlias, tySink})
if e.kind in {tyVar, tyLent}:
e.flags.incl tfVarIsPtr # bugfix for #4048, #4910, #6892
let tupleConstr = if n[0].kind in {nkHiddenStdConv, nkHiddenSubConv}: n[0][1] else: n[0]
if tupleConstr.kind in {nkPar, nkTupleConstr}:
if tupleConstr[i].kind == nkExprColonExpr:
tupleConstr[i][1] = takeImplicitAddr(c, tupleConstr[i][1], e.kind == tyLent)
else:
tupleConstr[i] = takeImplicitAddr(c, tupleConstr[i], e.kind == tyLent)
else:
localError(c.config, n[0].info, errXExpected, "tuple constructor")
elif e.kind == tyEmpty:
localError(c.config, n[0].info, errTypeExpected)
else:
when false:
# XXX investigate what we really need here.
if isViewType(t):
n[0] = takeImplicitAddr(c, n[0], false)
proc semYield(c: PContext, n: PNode): PNode =
result = n
checkSonsLen(n, 1, c.config)
if c.p.owner == nil or c.p.owner.kind != skIterator:
localError(c.config, n.info, errYieldNotAllowedHere)
elif n[0].kind != nkEmpty:
var iterType = c.p.owner.typ
let restype = iterType[0]
n[0] = semExprWithType(c, n[0], {}, restype) # check for type compatibility:
if restype != nil:
if n[0].typ == nil: internalError(c.config, n.info, "semYield")
if resultTypeIsInferrable(restype):
let inferred = n[0].typ
iterType[0] = inferred
if c.p.resultSym != nil:
c.p.resultSym.typ = inferred
else:
n[0] = fitNode(c, restype, n[0], n.info)
semYieldVarResult(c, n, restype)
else:
localError(c.config, n.info, errCannotReturnExpr)
elif c.p.owner.typ.returnType != nil:
localError(c.config, n.info, errGenerated, "yield statement must yield a value")
proc considerQuotedIdentOrDot(c: PContext, n: PNode, origin: PNode = nil): PIdent =
if n.kind == nkDotExpr:
let a = considerQuotedIdentOrDot(c, n[0], origin).s
let b = considerQuotedIdentOrDot(c, n[1], origin).s
var s = newStringOfCap(a.len + b.len + 1)
s.add(a)
s.add('.')
s.add(b)
result = getIdent(c.cache, s)
else:
result = considerQuotedIdent(c, n, origin)
proc semDefined(c: PContext, n: PNode): PNode =
checkSonsLen(n, 2, c.config)
# we replace this node by a 'true' or 'false' node:
result = newIntNode(nkIntLit, 0)
result.intVal = ord isDefined(c.config, considerQuotedIdentOrDot(c, n[1], n).s)
result.info = n.info
result.typ = getSysType(c.graph, n.info, tyBool)
proc lookUpForDeclared(c: PContext, n: PNode, onlyCurrentScope: bool): PSym =
case n.kind
of nkIdent, nkAccQuoted:
var amb = false
let ident = considerQuotedIdent(c, n)
result = if onlyCurrentScope:
localSearchInScope(c, ident)
else:
searchInScopes(c, ident, amb)
of nkDotExpr:
result = nil
if onlyCurrentScope: return
checkSonsLen(n, 2, c.config)
var m = lookUpForDeclared(c, n[0], onlyCurrentScope)
if m != nil and m.kind == skModule:
let ident = considerQuotedIdent(c, n[1], n)
if m == c.module:
result = strTableGet(c.topLevelScope.symbols, ident)
else:
result = someSym(c.graph, m, ident)
of nkSym:
result = n.sym
of nkOpenSymChoice, nkClosedSymChoice:
result = n[0].sym
of nkOpenSym:
result = lookUpForDeclared(c, n[0], onlyCurrentScope)
else:
localError(c.config, n.info, "identifier expected, but got: " & renderTree(n))
result = nil
proc semDeclared(c: PContext, n: PNode, onlyCurrentScope: bool): PNode =
checkSonsLen(n, 2, c.config)
# we replace this node by a 'true' or 'false' node:
result = newIntNode(nkIntLit, 0)
result.intVal = ord lookUpForDeclared(c, n[1], onlyCurrentScope) != nil
result.info = n.info
result.typ = getSysType(c.graph, n.info, tyBool)
proc expectMacroOrTemplateCall(c: PContext, n: PNode): PSym =
## The argument to the proc should be nkCall(...) or similar
## Returns the macro/template symbol
if isCallExpr(n):
var expandedSym = qualifiedLookUp(c, n[0], {checkUndeclared})
if expandedSym == nil:
errorUndeclaredIdentifier(c, n.info, n[0].renderTree)
return errorSym(c, n[0])
if expandedSym.kind notin {skMacro, skTemplate}:
localError(c.config, n.info, "'$1' is not a macro or template" % expandedSym.name.s)
return errorSym(c, n[0])
result = expandedSym
else:
localError(c.config, n.info, "'$1' is not a macro or template" % n.renderTree)
result = errorSym(c, n)
proc expectString(c: PContext, n: PNode): string =
var n = semConstExpr(c, n)
if n.kind in nkStrKinds:
return n.strVal
else:
result = ""
localError(c.config, n.info, errStringLiteralExpected)
proc newAnonSym(c: PContext; kind: TSymKind, info: TLineInfo): PSym =
result = newSym(kind, c.cache.idAnon, c.idgen, getCurrOwner(c), info)
proc semExpandToAst(c: PContext, n: PNode): PNode =
let macroCall = n[1]
when false:
let expandedSym = expectMacroOrTemplateCall(c, macroCall)
if expandedSym.kind == skError: return n
macroCall[0] = newSymNode(expandedSym, macroCall.info)
markUsed(c, n.info, expandedSym)
onUse(n.info, expandedSym)
if isCallExpr(macroCall):
for i in 1..<macroCall.len:
#if macroCall[0].typ[i].kind != tyUntyped:
macroCall[i] = semExprWithType(c, macroCall[i], {})
# performing overloading resolution here produces too serious regressions:
let headSymbol = macroCall[0]
var cands = 0
var cand: PSym = nil
var o: TOverloadIter = default(TOverloadIter)
var symx = initOverloadIter(o, c, headSymbol)
while symx != nil:
if symx.kind in {skTemplate, skMacro} and symx.typ.len == macroCall.len:
cand = symx
inc cands
symx = nextOverloadIter(o, c, headSymbol)
if cands == 0:
localError(c.config, n.info, "expected a template that takes " & $(macroCall.len-1) & " arguments")
elif cands >= 2:
localError(c.config, n.info, "ambiguous symbol in 'getAst' context: " & $macroCall)
else:
let info = macroCall[0].info
macroCall[0] = newSymNode(cand, info)
markUsed(c, info, cand)
onUse(info, cand)
# we just perform overloading resolution here:
#n[1] = semOverloadedCall(c, macroCall, macroCall, {skTemplate, skMacro})
else:
localError(c.config, n.info, "getAst takes a call, but got " & n.renderTree)
# Preserve the magic symbol in order to be handled in evals.nim
internalAssert c.config, n[0].sym.magic == mExpandToAst
#n.typ = getSysSym("NimNode").typ # expandedSym.getReturnType
if n.kind == nkStmtList and n.len == 1: result = n[0]
else: result = n
result.typ = sysTypeFromName(c.graph, n.info, "NimNode")
proc semExpandToAst(c: PContext, n: PNode, magicSym: PSym,
flags: TExprFlags = {}): PNode =
if n.len == 2:
n[0] = newSymNode(magicSym, n.info)
result = semExpandToAst(c, n)
else:
result = semDirectOp(c, n, flags)
proc processQuotations(c: PContext; n: var PNode, op: string,
quotes: var seq[PNode],
ids: var seq[PNode]) =
template returnQuote(q) =
quotes.add q
n = newIdentNode(getIdent(c.cache, $quotes.len), n.info)
ids.add n
return
template handlePrefixOp(prefixed) =
if prefixed[0].kind == nkIdent:
let examinedOp = prefixed[0].ident.s
if examinedOp == op:
returnQuote prefixed[1]
elif examinedOp.startsWith(op):
prefixed[0] = newIdentNode(getIdent(c.cache, examinedOp.substr(op.len)), prefixed.info)
if n.kind == nkPrefix:
checkSonsLen(n, 2, c.config)
handlePrefixOp(n)
elif n.kind == nkAccQuoted:
if op == "``":
returnQuote n[0]
else: # [bug #7589](https://github.com/nim-lang/Nim/issues/7589)
if n.len == 2 and n[0].ident.s == op:
var tempNode = nkPrefix.newTree()
tempNode.newSons(2)
tempNode[0] = n[0]
tempNode[1] = n[1]
handlePrefixOp(tempNode)
elif n.kind == nkIdent:
if n.ident.s == "result":
n = ids[0]
for i in 0..<n.safeLen:
processQuotations(c, n[i], op, quotes, ids)
proc semQuoteAst(c: PContext, n: PNode): PNode =
if n.len != 2 and n.len != 3:
localError(c.config, n.info, "'quote' expects 1 or 2 arguments")
return n
# We transform the do block into a template with a param for
# each interpolation. We'll pass this template to getAst.
var
quotedBlock = n[^1]
op = if n.len == 3: expectString(c, n[1]) else: "``"
quotes = newSeq[PNode](2)
# the quotes will be added to a nkCall statement
# leave some room for the callee symbol and the result symbol
ids = newSeq[PNode](1)
# this will store the generated param names
# leave some room for the result symbol
if quotedBlock.kind != nkStmtList:
localError(c.config, n.info, errXExpected, "block")
# This adds a default first field to pass the result symbol
ids[0] = newAnonSym(c, skParam, n.info).newSymNode
processQuotations(c, quotedBlock, op, quotes, ids)
let dummyTemplateSym = newAnonSym(c, skTemplate, n.info)
incl(dummyTemplateSym.flags, sfTemplateRedefinition)
var dummyTemplate = newProcNode(
nkTemplateDef, quotedBlock.info, body = quotedBlock,
params = c.graph.emptyNode,
name = dummyTemplateSym.newSymNode,
pattern = c.graph.emptyNode, genericParams = c.graph.emptyNode,
pragmas = c.graph.emptyNode, exceptions = c.graph.emptyNode)
if ids.len > 0:
dummyTemplate[paramsPos] = newNodeI(nkFormalParams, n.info)
dummyTemplate[paramsPos].add getSysSym(c.graph, n.info, "untyped").newSymNode # return type
dummyTemplate[paramsPos].add newTreeI(nkIdentDefs, n.info, ids[0], getSysSym(c.graph, n.info, "typed").newSymNode, c.graph.emptyNode)
for i in 1..<ids.len:
let exp = semExprWithType(c, quotes[i+1], {})
let typ = exp.typ
if tfTriggersCompileTime notin typ.flags and typ.kind != tyStatic and exp.kind == nkSym and exp.sym.kind notin routineKinds + {skType}:
dummyTemplate[paramsPos].add newTreeI(nkIdentDefs, n.info, ids[i], newNodeIT(nkType, n.info, typ), c.graph.emptyNode)
else:
dummyTemplate[paramsPos].add newTreeI(nkIdentDefs, n.info, ids[i], getSysSym(c.graph, n.info, "typed").newSymNode, c.graph.emptyNode)
var tmpl = semTemplateDef(c, dummyTemplate)
quotes[0] = tmpl[namePos]
# This adds a call to newIdentNode("result") as the first argument to the template call
let identNodeSym = getCompilerProc(c.graph, "newIdentNode")
# so that new Nim compilers can compile old macros.nim versions, we check for 'nil'
# here and provide the old fallback solution:
let identNode = if identNodeSym == nil:
newIdentNode(getIdent(c.cache, "newIdentNode"), n.info)
else:
identNodeSym.newSymNode
quotes[1] = newTreeI(nkCall, n.info, identNode, newStrNode(nkStrLit, "result"))
result = newTreeI(nkCall, n.info,
createMagic(c.graph, c.idgen, "getAst", mExpandToAst).newSymNode,
newTreeI(nkCall, n.info, quotes))
result = semExpandToAst(c, result)
proc tryExpr(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
# watch out, hacks ahead:
when defined(nimsuggest):
# Remove the error hook so nimsuggest doesn't report errors there
let tempHook = c.graph.config.structuredErrorHook
c.graph.config.structuredErrorHook = nil
let oldErrorCount = c.config.errorCounter
let oldErrorMax = c.config.errorMax
let oldCompilesId = c.compilesContextId
# if this is a nested 'when compiles', do not increase the ID so that
# generic instantiations can still be cached for this level.
if c.compilesContextId == 0:
inc c.compilesContextIdGenerator
c.compilesContextId = c.compilesContextIdGenerator
c.config.errorMax = high(int) # `setErrorMaxHighMaybe` not appropriate here
# open a scope for temporary symbol inclusions:
let oldScope = c.currentScope
openScope(c)
let oldOwnerLen = c.graph.owners.len
let oldGenerics = c.generics
let oldErrorOutputs = c.config.m.errorOutputs
if efExplain notin flags: c.config.m.errorOutputs = {}
let oldContextLen = msgs.getInfoContextLen(c.config)
let oldInGenericContext = c.inGenericContext
let oldInUnrolledContext = c.inUnrolledContext
let oldInGenericInst = c.inGenericInst
let oldInStaticContext = c.inStaticContext
let oldProcCon = c.p
c.generics = @[]
var err: string
try:
result = semExpr(c, n, flags)
if result != nil and efNoSem2Check notin flags:
trackStmt(c, c.module, result, isTopLevel = false)
if c.config.errorCounter != oldErrorCount:
result = nil
except ERecoverableError:
result = nil
# undo symbol table changes (as far as it's possible):
c.compilesContextId = oldCompilesId
c.generics = oldGenerics
c.inGenericContext = oldInGenericContext
c.inUnrolledContext = oldInUnrolledContext
c.inGenericInst = oldInGenericInst
c.inStaticContext = oldInStaticContext
c.p = oldProcCon
msgs.setInfoContextLen(c.config, oldContextLen)
setLen(c.graph.owners, oldOwnerLen)
c.currentScope = oldScope
c.config.m.errorOutputs = oldErrorOutputs
c.config.errorCounter = oldErrorCount
c.config.errorMax = oldErrorMax
when defined(nimsuggest):
# Restore the error hook
c.graph.config.structuredErrorHook = tempHook
proc semCompiles(c: PContext, n: PNode, flags: TExprFlags): PNode =
# we replace this node by a 'true' or 'false' node:
if n.len != 2: return semDirectOp(c, n, flags)
result = newIntNode(nkIntLit, ord(tryExpr(c, n[1], flags) != nil))
result.info = n.info
result.typ = getSysType(c.graph, n.info, tyBool)
proc semShallowCopy(c: PContext, n: PNode, flags: TExprFlags): PNode =
if n.len == 3:
# XXX ugh this is really a hack: shallowCopy() can be overloaded only
# with procs that take not 2 parameters:
result = newNodeI(nkFastAsgn, n.info)
result.add(n[1])
result.add(n[2])
result = semAsgn(c, result)
else:
result = semDirectOp(c, n, flags)
proc createFlowVar(c: PContext; t: PType; info: TLineInfo): PType =
result = newType(tyGenericInvocation, c.idgen, c.module)
addSonSkipIntLit(result, magicsys.getCompilerProc(c.graph, "FlowVar").typ, c.idgen)
addSonSkipIntLit(result, t, c.idgen)
result = instGenericContainer(c, info, result, allowMetaTypes = false)
proc instantiateCreateFlowVarCall(c: PContext; t: PType;
info: TLineInfo): PSym =
let sym = magicsys.getCompilerProc(c.graph, "nimCreateFlowVar")
if sym == nil:
localError(c.config, info, "system needs: nimCreateFlowVar")
var bindings = initTypeMapping()
bindings.idTablePut(sym.ast[genericParamsPos][0].typ, t)
result = c.semGenerateInstance(c, sym, bindings, info)
# since it's an instantiation, we unmark it as a compilerproc. Otherwise
# codegen would fail:
if sfCompilerProc in result.flags:
result.flags.excl {sfCompilerProc, sfExportc, sfImportc}
result.loc.snippet = ""
proc setMs(n: PNode, s: PSym): PNode =
result = n
n[0] = newSymNode(s)
n[0].info = n.info
proc semSizeof(c: PContext, n: PNode): PNode =
if n.len != 2:
localError(c.config, n.info, errXExpectsTypeOrValue % "sizeof")
else:
n[1] = semExprWithType(c, n[1], {efDetermineType})
#restoreOldStyleType(n[1])
n.typ = getSysType(c.graph, n.info, tyInt)
result = foldSizeOf(c.config, n, n)
proc semMagic(c: PContext, n: PNode, s: PSym, flags: TExprFlags; expectedType: PType = nil): PNode =
# this is a hotspot in the compiler!
result = n
case s.magic # magics that need special treatment
of mAddr:
markUsed(c, n.info, s)
checkSonsLen(n, 2, c.config)
result = semAddr(c, n[1])
of mTypeOf:
markUsed(c, n.info, s)
result = semTypeOf(c, n)
of mDefined:
markUsed(c, n.info, s)
result = semDefined(c, setMs(n, s))
of mDeclared:
markUsed(c, n.info, s)
result = semDeclared(c, setMs(n, s), false)
of mDeclaredInScope:
markUsed(c, n.info, s)
result = semDeclared(c, setMs(n, s), true)
of mCompiles:
markUsed(c, n.info, s)
result = semCompiles(c, setMs(n, s), flags)
of mIs:
markUsed(c, n.info, s)
result = semIs(c, setMs(n, s), flags)
of mShallowCopy:
markUsed(c, n.info, s)
result = semShallowCopy(c, n, flags)
of mExpandToAst:
markUsed(c, n.info, s)
result = semExpandToAst(c, n, s, flags)
of mQuoteAst:
markUsed(c, n.info, s)
result = semQuoteAst(c, n)
of mAstToStr:
markUsed(c, n.info, s)
checkSonsLen(n, 2, c.config)
result = newStrNodeT(renderTree(n[1], {renderNoComments}), n, c.graph)
result.typ = getSysType(c.graph, n.info, tyString)
of mParallel:
markUsed(c, n.info, s)
if parallel notin c.features:
localError(c.config, n.info, "use the {.experimental.} pragma to enable 'parallel'")
result = setMs(n, s)
var x = n.lastSon
if x.kind == nkDo: x = x[bodyPos]
inc c.inParallelStmt
result[1] = semStmt(c, x, {})
dec c.inParallelStmt
of mSpawn:
markUsed(c, n.info, s)
when defined(leanCompiler):
result = localErrorNode(c, n, "compiler was built without 'spawn' support")
else:
result = setMs(n, s)
for i in 1..<n.len:
result[i] = semExpr(c, n[i])
if n.len > 1 and n[1].kind notin nkCallKinds:
return localErrorNode(c, n, n[1].info, "'spawn' takes a call expression; got: " & $n[1])
let typ = result[^1].typ
if not typ.isEmptyType:
if spawnResult(typ, c.inParallelStmt > 0) == srFlowVar:
result.typ = createFlowVar(c, typ, n.info)
else:
result.typ = typ
result.add instantiateCreateFlowVarCall(c, typ, n.info).newSymNode
else:
result.add c.graph.emptyNode
of mProcCall:
markUsed(c, n.info, s)
result = setMs(n, s)
result[1] = semExpr(c, n[1])
result.typ = n[1].typ
of mPlugin:
markUsed(c, n.info, s)
# semDirectOp with conditional 'afterCallActions':
let nOrig = n.copyTree
#semLazyOpAux(c, n)
result = semOverloadedCallAnalyseEffects(c, n, nOrig, flags)
if result == nil:
result = errorNode(c, n)
else:
let callee = result[0].sym
if callee.magic == mNone:
semFinishOperands(c, result)
activate(c, result)
fixAbstractType(c, result)
analyseIfAddressTakenInCall(c, result)
if callee.magic != mNone:
result = magicsAfterOverloadResolution(c, result, flags)
of mRunnableExamples:
markUsed(c, n.info, s)
if c.config.cmd in cmdDocLike and n.len >= 2 and n.lastSon.kind == nkStmtList:
when false:
# some of this dead code was moved to `prepareExamples`
if sfMainModule in c.module.flags:
let inp = toFullPath(c.config, c.module.info)
if c.runnableExamples == nil:
c.runnableExamples = newTree(nkStmtList,
newTree(nkImportStmt, newStrNode(nkStrLit, expandFilename(inp))))
let imports = newTree(nkStmtList)
var savedLastSon = copyTree n.lastSon
extractImports(savedLastSon, imports)
for imp in imports: c.runnableExamples.add imp
c.runnableExamples.add newTree(nkBlockStmt, c.graph.emptyNode, copyTree savedLastSon)
result = setMs(n, s)
else:
result = c.graph.emptyNode
of mSizeOf:
markUsed(c, n.info, s)
result = semSizeof(c, setMs(n, s))
of mArrToSeq, mOpenArrayToSeq:
if expectedType != nil and (
let expected = expectedType.skipTypes(abstractRange-{tyDistinct});
expected.kind in {tySequence, tyOpenArray}):
# seq type inference
var arrayType = newType(tyOpenArray, c.idgen, expected.owner)
arrayType.rawAddSon(expected[0])
if n[0].kind == nkSym and sfFromGeneric in n[0].sym.flags:
# may have been resolved to `@`[empty] at some point,
# reset to `@` to deal with this
n[0] = newSymNode(n[0].sym.instantiatedFrom, n[0].info)
n[1] = semExpr(c, n[1], flags, arrayType)
result = semDirectOp(c, n, flags, expectedType)
else:
result = semDirectOp(c, n, flags, expectedType)
proc semWhen(c: PContext, n: PNode, semCheck = true): PNode =
# If semCheck is set to false, ``when`` will return the verbatim AST of
# the correct branch. Otherwise the AST will be passed through semStmt.
result = nil
let flags = if semCheck: {efWantStmt} else: {}
template setResult(e: untyped) =
if semCheck: result = semExpr(c, e, flags) # do not open a new scope!
else: result = e
# Check if the node is "when nimvm"
# when nimvm:
# ...
# else:
# ...
var whenNimvm = false
var typ = commonTypeBegin
if n.len in 1..2 and n[0].kind == nkElifBranch and (
n.len == 1 or n[1].kind == nkElse):
var exprNode = n[0][0]
if exprNode.kind == nkOpenSym:
exprNode = exprNode[0]
if exprNode.kind == nkIdent:
whenNimvm = lookUp(c, exprNode).magic == mNimvm
elif exprNode.kind == nkSym:
whenNimvm = exprNode.sym.magic == mNimvm
if whenNimvm: n.flags.incl nfLL
var cannotResolve = false
for i in 0..<n.len:
var it = n[i]
case it.kind
of nkElifBranch, nkElifExpr:
checkSonsLen(it, 2, c.config)
if whenNimvm:
if semCheck:
it[1] = semExpr(c, it[1], flags)
typ = commonType(c, typ, it[1].typ)
result = n # when nimvm is not elimited until codegen
elif c.inGenericContext > 0:
let e = semExprWithType(c, it[0])
if e.typ.kind == tyFromExpr:
it[0] = makeStaticExpr(c, e)
cannotResolve = true
else:
it[0] = forceBool(c, e)
let val = getConstExpr(c.module, it[0], c.idgen, c.graph)
if val == nil or val.kind != nkIntLit:
cannotResolve = true
elif not cannotResolve and val.intVal != 0 and result == nil:
setResult(it[1])
return # we're not in nimvm and we already have a result
it[1] = semGenericStmt(c, it[1])
else:
let e = forceBool(c, semConstExpr(c, it[0]))
if e.kind != nkIntLit:
# can happen for cascading errors, assume false
# InternalError(n.info, "semWhen")
discard
elif e.intVal != 0 and result == nil:
setResult(it[1])
return # we're not in nimvm and we already have a result
of nkElse, nkElseExpr:
checkSonsLen(it, 1, c.config)
if cannotResolve:
it[0] = semGenericStmt(c, it[0])
elif result == nil or whenNimvm:
if semCheck:
it[0] = semExpr(c, it[0], flags)
typ = commonType(c, typ, it[0].typ)
if typ != nil and typ.kind != tyUntyped:
it[0] = fitNode(c, typ, it[0], it[0].info)
if result == nil:
result = it[0]
else: illFormedAst(n, c.config)
if cannotResolve:
result = n
result.typ = makeTypeFromExpr(c, result.copyTree)
return
if result == nil:
result = newNodeI(nkEmpty, n.info)
if whenNimvm:
result.typ = typ
if n.len == 1:
result.add(newTree(nkElse, newNode(nkStmtList)))
proc semSetConstr(c: PContext, n: PNode, expectedType: PType = nil): PNode =
result = newNodeI(nkCurly, n.info)
result.typ = newTypeS(tySet, c)
result.typ.flags.incl tfIsConstructor
var expectedElementType: PType = nil
if expectedType != nil and (
let expected = expectedType.skipTypes(abstractRange-{tyDistinct});
expected.kind == tySet):
expectedElementType = expected[0]
if n.len == 0:
rawAddSon(result.typ,
if expectedElementType != nil and
typeAllowed(expectedElementType, skLet, c) == nil:
expectedElementType
else:
newTypeS(tyEmpty, c))
else:
# only semantic checking for all elements, later type checking:
var typ: PType = nil
for i in 0..<n.len:
let doSetType = typ == nil
if isRange(n[i]):
checkSonsLen(n[i], 3, c.config)
n[i][1] = semExprWithType(c, n[i][1], {efTypeAllowed}, expectedElementType)
n[i][2] = semExprWithType(c, n[i][2], {efTypeAllowed}, expectedElementType)
if doSetType:
typ = skipTypes(n[i][1].typ,
{tyGenericInst, tyVar, tyLent, tyOrdinal, tyAlias, tySink})
n[i].typ = n[i][2].typ # range node needs type too
elif n[i].kind == nkRange:
# already semchecked
if doSetType:
typ = skipTypes(n[i][0].typ,
{tyGenericInst, tyVar, tyLent, tyOrdinal, tyAlias, tySink})
else:
n[i] = semExprWithType(c, n[i], {efTypeAllowed}, expectedElementType)
if doSetType:
typ = skipTypes(n[i].typ, {tyGenericInst, tyVar, tyLent, tyOrdinal, tyAlias, tySink})
if doSetType:
if not isOrdinalType(typ, allowEnumWithHoles=true):
localError(c.config, n.info, errOrdinalTypeExpected % typeToString(typ, preferDesc))
typ = makeRangeType(c, 0, MaxSetElements-1, n.info)
elif isIntLit(typ):
# set of int literal, use a default range smaller than the max range
typ = makeRangeType(c, 0, DefaultSetElements-1, n.info)
elif lengthOrd(c.config, typ) > MaxSetElements:
message(c.config, n.info, warnAboveMaxSizeSet, "type '" &
typeToString(typ, preferDesc) & "' is too big to be a `set` element, " &
"assuming a range of 0.." & $(MaxSetElements - 1) &
", explicitly write this range to get rid of warning")
typ = makeRangeType(c, 0, MaxSetElements-1, n.info)
if expectedElementType == nil:
expectedElementType = typ
addSonSkipIntLit(result.typ, typ, c.idgen)
for i in 0..<n.len:
var m: PNode
let info = n[i].info
if isRange(n[i]):
m = newNodeI(nkRange, info)
m.add fitNode(c, typ, n[i][1], info)
m.add fitNode(c, typ, n[i][2], info)
elif n[i].kind == nkRange: m = n[i] # already semchecked
else:
m = fitNode(c, typ, n[i], info)
result.add m
proc semTableConstr(c: PContext, n: PNode; expectedType: PType = nil): PNode =
# we simply transform ``{key: value, key2, key3: value}`` to
# ``[(key, value), (key2, value2), (key3, value2)]``
result = newNodeI(nkBracket, n.info)
var lastKey = 0
for i in 0..<n.len:
var x = n[i]
if x.kind == nkExprColonExpr and x.len == 2:
for j in lastKey..<i:
var pair = newNodeI(nkTupleConstr, x.info)
pair.add(n[j])
pair.add(x[1])
result.add(pair)
var pair = newNodeI(nkTupleConstr, x.info)
pair.add(x[0])
pair.add(x[1])
result.add(pair)
lastKey = i+1
if lastKey != n.len: illFormedAst(n, c.config)
result = semExpr(c, result, expectedType = expectedType)
type
TParKind = enum
paNone, paSingle, paTupleFields, paTuplePositions
proc checkPar(c: PContext; n: PNode): TParKind =
if n.len == 0:
result = paTuplePositions # ()
elif n.len == 1:
if n[0].kind == nkExprColonExpr: result = paTupleFields
elif n.kind == nkTupleConstr: result = paTuplePositions
else: result = paSingle # (expr)
else:
if n[0].kind == nkExprColonExpr: result = paTupleFields
else: result = paTuplePositions
for i in 0..<n.len:
if result == paTupleFields:
if (n[i].kind != nkExprColonExpr) or
n[i][0].kind notin {nkSym, nkIdent, nkAccQuoted}:
localError(c.config, n[i].info, errNamedExprExpected)
return paNone
else:
if n[i].kind == nkExprColonExpr:
localError(c.config, n[i].info, errNamedExprNotAllowed)
return paNone
proc semTupleFieldsConstr(c: PContext, n: PNode, flags: TExprFlags; expectedType: PType = nil): PNode =
result = newNodeI(nkTupleConstr, n.info)
var expected: PType = nil
if expectedType != nil:
expected = expectedType.skipTypes(abstractRange-{tyDistinct})
if not (expected.kind == tyTuple and expected.len == n.len):
expected = nil
var typ = newTypeS(tyTuple, c)
typ.n = newNodeI(nkRecList, n.info) # nkIdentDefs
var ids = initIntSet()
for i in 0..<n.len:
if n[i].kind != nkExprColonExpr:
illFormedAst(n[i], c.config)
let id = considerQuotedIdent(c, n[i][0])
if containsOrIncl(ids, id.id):
localError(c.config, n[i].info, errFieldInitTwice % id.s)
# can check if field name matches expected type here
let expectedElemType = if expected != nil: expected[i] else: nil
n[i][1] = semExprWithType(c, n[i][1], {}, expectedElemType)
if expectedElemType != nil and
(expectedElemType.kind != tyNil and not hasEmpty(expectedElemType)):
# hasEmpty/nil check is to not break existing code like
# `const foo = [(1, {}), (2, {false})]`,
# `const foo = if true: (0, nil) else: (1, new(int))`
n[i][1] = fitNode(c, expectedElemType, n[i][1], n[i][1].info)
if n[i][1].typ.kind == tyTypeDesc:
localError(c.config, n[i][1].info, "typedesc not allowed as tuple field.")
n[i][1].typ = errorType(c)
var f = newSymS(skField, n[i][0], c)
f.typ = skipIntLit(n[i][1].typ.skipTypes({tySink}), c.idgen)
f.position = i
rawAddSon(typ, f.typ)
typ.n.add newSymNode(f)
n[i][0] = newSymNode(f)
result.add n[i]
result.typ = typ
proc semTuplePositionsConstr(c: PContext, n: PNode, flags: TExprFlags; expectedType: PType = nil): PNode =
result = n # we don't modify n, but compute the type:
result.transitionSonsKind(nkTupleConstr)
var expected: PType = nil
if expectedType != nil:
expected = expectedType.skipTypes(abstractRange-{tyDistinct})
if not (expected.kind == tyTuple and expected.len == n.len):
expected = nil
var typ = newTypeS(tyTuple, c) # leave typ.n nil!
for i in 0..<n.len:
let expectedElemType = if expected != nil: expected[i] else: nil
n[i] = semExprWithType(c, n[i], {}, expectedElemType)
if expectedElemType != nil and
(expectedElemType.kind != tyNil and not hasEmpty(expectedElemType)):
# hasEmpty/nil check is to not break existing code like
# `const foo = [(1, {}), (2, {false})]`,
# `const foo = if true: (0, nil) else: (1, new(int))`
n[i] = fitNode(c, expectedElemType, n[i], n[i].info)
addSonSkipIntLit(typ, n[i].typ.skipTypes({tySink}), c.idgen)
result.typ = typ
include semobjconstr
proc semBlock(c: PContext, n: PNode; flags: TExprFlags; expectedType: PType = nil): PNode =
result = n
inc(c.p.nestedBlockCounter)
let oldBreakInLoop = c.p.breakInLoop
c.p.breakInLoop = false
checkSonsLen(n, 2, c.config)
openScope(c) # BUGFIX: label is in the scope of block!
if n[0].kind != nkEmpty:
var labl = newSymG(skLabel, n[0], c)
if sfGenSym notin labl.flags:
addDecl(c, labl)
elif labl.owner == nil:
labl.owner = c.p.owner
n[0] = newSymNode(labl, n[0].info)
suggestSym(c.graph, n[0].info, labl, c.graph.usageSym)
styleCheckDef(c, labl)
onDef(n[0].info, labl)
n[1] = semExpr(c, n[1], flags, expectedType)
n.typ = n[1].typ
if isEmptyType(n.typ): n.transitionSonsKind(nkBlockStmt)
else: n.transitionSonsKind(nkBlockExpr)
closeScope(c)
c.p.breakInLoop = oldBreakInLoop
dec(c.p.nestedBlockCounter)
proc semExportExcept(c: PContext, n: PNode): PNode =
let moduleName = semExpr(c, n[0])
if moduleName.kind != nkSym or moduleName.sym.kind != skModule:
localError(c.config, n.info, "The export/except syntax expects a module name")
return n
let exceptSet = readExceptSet(c, n)
let exported = moduleName.sym
result = newNodeI(nkExportStmt, n.info)
reexportSym(c, exported)
for s in allSyms(c.graph, exported):
if s.kind in ExportableSymKinds+{skModule} and
s.name.id notin exceptSet and sfError notin s.flags:
reexportSym(c, s)
result.add newSymNode(s, n.info)
markUsed(c, n.info, exported)
proc semExport(c: PContext, n: PNode): PNode =
proc specialSyms(c: PContext; s: PSym) {.inline.} =
if s.kind == skConverter: addConverter(c, LazySym(sym: s))
elif s.kind == skType and s.typ != nil and s.typ.kind == tyEnum and sfPure in s.flags:
addPureEnum(c, LazySym(sym: s))
result = newNodeI(nkExportStmt, n.info)
for i in 0..<n.len:
let a = n[i]
var o: TOverloadIter = default(TOverloadIter)
var s = initOverloadIter(o, c, a)
if s == nil:
localError(c.config, a.info, errGenerated, "cannot export: " & renderTree(a))
elif s.kind == skModule:
# forward everything from that module:
reexportSym(c, s)
for it in allSyms(c.graph, s):
if it.kind in ExportableSymKinds+{skModule}:
reexportSym(c, it)
result.add newSymNode(it, a.info)
specialSyms(c, it)
markUsed(c, n.info, s)
else:
while s != nil:
if s.kind == skEnumField:
localError(c.config, a.info, errGenerated, "cannot export: " & renderTree(a) &
"; enum field cannot be exported individually")
if s.kind in ExportableSymKinds+{skModule} and sfError notin s.flags:
result.add(newSymNode(s, a.info))
reexportSym(c, s)
markUsed(c, n.info, s)
specialSyms(c, s)
if s.kind == skType and sfPure notin s.flags:
var etyp = s.typ
if etyp.kind in {tyBool, tyEnum}:
for j in 0..<etyp.n.len:
var e = etyp.n[j].sym
if e.kind != skEnumField:
internalError(c.config, s.info, "rawImportSymbol")
reexportSym(c, e)
s = nextOverloadIter(o, c, a)
proc semTupleConstr(c: PContext, n: PNode, flags: TExprFlags; expectedType: PType = nil): PNode =
var tupexp = semTuplePositionsConstr(c, n, flags, expectedType)
var isTupleType: bool = false
if tupexp.len > 0: # don't interpret () as type
isTupleType = tupexp[0].typ.kind == tyTypeDesc
# check if either everything or nothing is tyTypeDesc
for i in 1..<tupexp.len:
if isTupleType != (tupexp[i].typ.kind == tyTypeDesc):
return localErrorNode(c, n, tupexp[i].info, "Mixing types and values in tuples is not allowed.")
if isTupleType: # expressions as ``(int, string)`` are reinterpret as type expressions
result = n
var typ = semTypeNode(c, n, nil).skipTypes({tyTypeDesc})
result.typ = makeTypeDesc(c, typ)
else:
result = tupexp
proc isExplicitGenericCall(c: PContext, n: PNode): bool =
## checks if a call node `n` is a routine call with explicit generic params
##
## the callee node needs to be either an nkBracketExpr or a call to a
## symchoice of `[]` in which case it will be transformed into nkBracketExpr
##
## the LHS of the bracket expr has to either be a symchoice or resolve to
## a routine symbol
template checkCallee(n: PNode) =
# check subscript LHS, `n` must be mutable
if isSymChoice(n):
result = true
else:
let s = qualifiedLookUp(c, n, {})
if s != nil and s.kind in routineKinds:
result = true
n = semSymGenericInstantiation(c, n, s)
assert n.kind in nkCallKinds
result = false
let a = n[0]
case a.kind
of nkBracketExpr:
checkCallee(a[0])
of nkCallKinds:
let b = a[0]
if b.kind in nkSymChoices:
let name = b.getPIdent
if name != nil and name.s == "[]":
checkCallee(a[1])
if result:
# transform callee into normal bracket expr, only on success
let be = newNodeI(nkBracketExpr, a.info)
for i in 1..<a.len: be.add(a[i])
n[0] = be
else:
result = false
proc asBracketExpr(c: PContext; n: PNode): PNode =
proc isGeneric(c: PContext; n: PNode): bool =
if n.kind in {nkIdent, nkAccQuoted}:
let s = qualifiedLookUp(c, n, {})
result = s != nil and isGenericRoutineStrict(s)
else:
result = false
assert n.kind in nkCallKinds
if n.len > 1 and isGeneric(c, n[1]):
let b = n[0]
if b.kind in nkSymChoices:
for i in 0..<b.len:
if b[i].kind == nkSym and b[i].sym.magic == mArrGet:
result = newNodeI(nkBracketExpr, n.info)
for i in 1..<n.len: result.add(n[i])
return result
return nil
proc isOpenArraySym(x: PNode): bool =
var x = x
while true:
case x.kind
of {nkAddr, nkHiddenAddr}:
x = x[0]
of {nkHiddenStdConv, nkHiddenDeref}:
x = x[1]
else:
break
result = x.kind == nkSym
proc hoistParamsUsedInDefault(c: PContext, call, letSection, defExpr: var PNode) =
# This takes care of complicated signatures such as:
# proc foo(a: int, b = a)
# proc bar(a: int, b: int, c = a + b)
#
# The recursion may confuse you. It performs two duties:
#
# 1) extracting all referenced params from default expressions
# into a let section preceding the call
#
# 2) replacing the "references" within the default expression
# with these extracted skLet symbols.
#
# The first duty is carried out directly in the code here, while the second
# duty is activated by returning a non-nil value. The caller is responsible
# for replacing the input to the function with the returned non-nil value.
# (which is the hoisted symbol)
if defExpr.kind == nkSym and defExpr.sym.kind == skParam and
(defExpr.sym.owner == call[0].sym or
# symbol was resolved before proc was instantiated:
(sfFromGeneric in call[0].sym.flags and
defExpr.sym.owner == call[0].sym.instantiatedFrom)):
let paramPos = defExpr.sym.position + 1
if call[paramPos].skipAddr.kind != nkSym and not (
skipTypes(call[paramPos].typ, abstractVar).kind in {tyOpenArray, tyVarargs} and
isOpenArraySym(call[paramPos])
):
let hoistedVarSym = newSym(skLet, getIdent(c.graph.cache, genPrefix), c.idgen,
c.p.owner, letSection.info, c.p.owner.options)
hoistedVarSym.typ = call[paramPos].typ
letSection.add newTreeI(nkIdentDefs, letSection.info,
newSymNode(hoistedVarSym),
newNodeI(nkEmpty, letSection.info),
call[paramPos])
call[paramPos] = newSymNode(hoistedVarSym) # Refer the original arg to its hoisted sym
# arg we refer to is a sym, whether introduced by hoisting or not doesn't matter, we simply reuse it
defExpr = call[paramPos]
else:
for i in 0..<defExpr.safeLen:
hoistParamsUsedInDefault(c, call, letSection, defExpr[i])
proc getNilType(c: PContext): PType =
result = c.nilTypeCache
if result == nil:
result = newTypeS(tyNil, c)
result.size = c.config.target.ptrSize
result.align = c.config.target.ptrSize.int16
c.nilTypeCache = result
proc enumFieldSymChoice(c: PContext, n: PNode, s: PSym; flags: TExprFlags): PNode =
var o: TOverloadIter = default(TOverloadIter)
var i = 0
var a = initOverloadIter(o, c, n)
while a != nil:
if a.kind == skEnumField:
inc(i)
if i > 1: break
a = nextOverloadIter(o, c, n)
let info = getCallLineInfo(n)
if i <= 1:
if sfGenSym notin s.flags:
result = newSymNode(s, info)
markUsed(c, info, s, efInCall notin flags)
onUse(info, s)
else:
result = n
else:
result = newNodeIT(nkClosedSymChoice, info, newTypeS(tyNone, c))
a = initOverloadIter(o, c, n)
while a != nil:
if a.kind == skEnumField:
incl(a.flags, sfUsed)
markOwnerModuleAsUsed(c, a)
result.add newSymNode(a, info)
onUse(info, a)
a = nextOverloadIter(o, c, n)
proc semPragmaStmt(c: PContext; n: PNode) =
if c.p.owner.kind == skModule:
pragma(c, c.p.owner, n, stmtPragmas+stmtPragmasTopLevel, true)
else:
pragma(c, c.p.owner, n, stmtPragmas, true)
proc resolveIdentToSym(c: PContext, n: PNode, resultNode: var PNode,
flags: TExprFlags, expectedType: PType): PSym =
# result is nil on error or if a node that can't produce a sym is resolved
let ident = considerQuotedIdent(c, n)
var filter = {low(TSymKind)..high(TSymKind)}
if efNoEvaluateGeneric in flags or expectedType != nil:
# `a[...]` where `a` is a module or package is not possible
filter.excl {skModule, skPackage}
let includePureEnum = expectedType != nil and
expectedType.skipTypes(abstractRange-{tyDistinct}).kind == tyEnum
let candidates = lookUpCandidates(c, ident, filter,
includePureEnum = includePureEnum)
if candidates.len == 0:
result = errorUndeclaredIdentifierHint(c, ident, n.info)
elif candidates.len == 1 or {efNoEvaluateGeneric, efInCall} * flags != {}:
# unambiguous, or we don't care about ambiguity
result = candidates[0]
else:
# ambiguous symbols have 1 last chance as a symchoice
var choice = newNodeIT(nkClosedSymChoice, n.info, newTypeS(tyNone, c))
for cand in candidates:
case cand.kind
of skModule, skPackage:
discard
of skType:
choice.add newSymNodeTypeDesc(cand, c.idgen, n.info)
else:
choice.add newSymNode(cand, n.info)
if choice.len == 0:
# we know candidates.len > 1, we just couldn't put any in a symchoice
errorUseQualifier(c, n.info, candidates)
return nil
resolveSymChoice(c, choice, flags, expectedType)
# choice.len == 1 can be true here but as long as it's a symchoice
# it's still not resolved
if isSymChoice(choice):
result = nil
if efAllowSymChoice in flags:
resultNode = choice
else:
errorUseQualifier(c, n.info, candidates)
else:
if choice.kind == nkSym:
result = choice.sym
else:
# resolution could have generated nkHiddenStdConv etc
resultNode = semExpr(c, choice, flags, expectedType)
result = nil
proc semExpr(c: PContext, n: PNode, flags: TExprFlags = {}, expectedType: PType = nil): PNode =
when defined(nimCompilerStacktraceHints):
setFrameMsg c.config$n.info & " " & $n.kind
when false: # see `tdebugutils`
if isCompilerDebug():
echo (">", c.config$n.info, n, flags, n.kind)
defer:
if isCompilerDebug():
echo ("<", c.config$n.info, n, ?.result.typ)
template directLiteral(typeKind: TTypeKind) =
if result.typ == nil:
if expectedType != nil and (
let expected = expectedType.skipTypes(abstractRange-{tyDistinct});
expected.kind == typeKind):
result.typ = expected
changeType(c, result, expectedType, check=true)
else:
result.typ = getSysType(c.graph, n.info, typeKind)
result = n
when defined(nimsuggest):
var expandStarted = false
if c.config.ideCmd == ideExpand and not c.config.expandProgress and
((n.kind in {nkFuncDef, nkProcDef, nkIteratorDef, nkTemplateDef, nkMethodDef, nkConverterDef} and
n.info.exactEquals(c.config.expandPosition)) or
(n.kind in {nkCall, nkCommand} and
n[0].info.exactEquals(c.config.expandPosition))):
expandStarted = true
c.config.expandProgress = true
if c.config.expandLevels == 0:
c.config.expandNodeResult = $n
suggestQuit()
if c.config.cmd == cmdIdeTools: suggestExpr(c, n)
if nfSem in n.flags: return
case n.kind
of nkIdent, nkAccQuoted:
let s = resolveIdentToSym(c, n, result, flags, expectedType)
if s == nil:
# resolveIdentToSym either errored or gave a result node
return
if c.matchedConcept == nil: semCaptureSym(s, c.p.owner)
case s.kind
of skProc, skFunc, skMethod, skConverter, skIterator:
#performProcvarCheck(c, n, s)
result = symChoice(c, n, s, scClosed)
if result.kind == nkSym:
markIndirect(c, result.sym)
# if isGenericRoutine(result.sym):
# localError(c.config, n.info, errInstantiateXExplicitly, s.name.s)
# "procs literals" are 'owned'
if optOwnedRefs in c.config.globalOptions:
result.typ = makeVarType(c, result.typ, tyOwned)
of skEnumField:
result = enumFieldSymChoice(c, n, s, flags)
else:
result = semSym(c, n, s, flags)
if isSymChoice(result):
result = semSymChoice(c, result, flags, expectedType)
of nkClosedSymChoice, nkOpenSymChoice:
result = semSymChoice(c, n, flags, expectedType)
of nkSym:
let s = n.sym
if nfDisabledOpenSym in n.flags:
let res = semOpenSym(c, n, flags, expectedType, warnDisabled = true)
assert res == nil
# because of the changed symbol binding, this does not mean that we
# don't have to check the symbol for semantics here again!
result = semSym(c, n, s, flags)
of nkOpenSym:
assert n.len == 1
let inner = n[0]
result = semOpenSym(c, inner, flags, expectedType)
of nkEmpty, nkNone, nkCommentStmt, nkType:
discard
of nkNilLit:
if result.typ == nil:
result.typ = getNilType(c)
if expectedType != nil:
var m = newCandidate(c, result.typ)
if typeRel(m, expectedType, result.typ) >= isSubtype:
result.typ = expectedType
# or: result = fitNode(c, expectedType, result, n.info)
of nkIntLit:
if result.typ == nil:
if expectedType != nil and (
let expected = expectedType.skipTypes(abstractRange-{tyDistinct});
expected.kind in {tyInt..tyInt64,
tyUInt..tyUInt64,
tyFloat..tyFloat128}):
if expected.kind in {tyFloat..tyFloat128}:
n.transitionIntToFloatKind(nkFloatLit)
changeType(c, result, expectedType, check=true)
else:
setIntLitType(c, result)
of nkInt8Lit: directLiteral(tyInt8)
of nkInt16Lit: directLiteral(tyInt16)
of nkInt32Lit: directLiteral(tyInt32)
of nkInt64Lit: directLiteral(tyInt64)
of nkUIntLit: directLiteral(tyUInt)
of nkUInt8Lit: directLiteral(tyUInt8)
of nkUInt16Lit: directLiteral(tyUInt16)
of nkUInt32Lit: directLiteral(tyUInt32)
of nkUInt64Lit: directLiteral(tyUInt64)
of nkFloatLit:
if result.typ == nil:
if expectedType != nil and (
let expected = expectedType.skipTypes(abstractRange-{tyDistinct});
expected.kind in {tyFloat..tyFloat128}):
result.typ = expected
changeType(c, result, expectedType, check=true)
else:
result.typ = getSysType(c.graph, n.info, tyFloat64)
of nkFloat32Lit: directLiteral(tyFloat32)
of nkFloat64Lit: directLiteral(tyFloat64)
of nkFloat128Lit: directLiteral(tyFloat128)
of nkStrLit..nkTripleStrLit:
if result.typ == nil:
if expectedType != nil and (
let expected = expectedType.skipTypes(abstractRange-{tyDistinct});
expected.kind in {tyString, tyCstring}):
result.typ = expectedType
else:
result.typ = getSysType(c.graph, n.info, tyString)
of nkCharLit: directLiteral(tyChar)
of nkDotExpr:
result = semFieldAccess(c, n, flags)
if result.kind == nkDotCall:
result.transitionSonsKind(nkCall)
result = semExpr(c, result, flags, expectedType)
of nkBind:
message(c.config, n.info, warnDeprecated, "bind is deprecated")
result = semExpr(c, n[0], flags, expectedType)
of nkTypeOfExpr..nkTupleClassTy, nkStaticTy, nkRefTy..nkEnumTy:
if c.matchedConcept != nil and n.len == 1:
let modifier = n.modifierTypeKindOfNode
if modifier != tyNone:
var baseType = semExpr(c, n[0]).typ.skipTypes({tyTypeDesc})
result.typ = c.makeTypeDesc(newTypeS(modifier, c, baseType))
return
var typ = semTypeNode(c, n, nil).skipTypes({tyTypeDesc})
result.typ = makeTypeDesc(c, typ)
of nkStmtListType:
let typ = semTypeNode(c, n, nil)
result.typ = makeTypeDesc(c, typ)
of nkCall, nkInfix, nkPrefix, nkPostfix, nkCommand, nkCallStrLit:
# check if it is an expression macro:
checkMinSonsLen(n, 1, c.config)
#when defined(nimsuggest):
# if gIdeCmd == ideCon and c.config.m.trackPos == n.info: suggestExprNoCheck(c, n)
let mode = if nfDotField in n.flags: {} else: {checkUndeclared}
c.isAmbiguous = false
var s = qualifiedLookUp(c, n[0], mode)
if s != nil:
case s.kind
of skMacro, skTemplate:
result = semDirectOp(c, n, flags, expectedType)
of skType:
# XXX think about this more (``set`` procs)
let ambig = c.isAmbiguous
if not (n[0].kind in nkSymChoices + {nkIdent, nkDotExpr} and ambig) and n.len == 2:
result = semConv(c, n, flags, expectedType)
elif n.len == 1:
if ambig:
errorUseQualifier(c, n.info, s)
else:
result = semObjConstr(c, n, flags, expectedType)
elif s.magic == mNone: result = semDirectOp(c, n, flags, expectedType)
else: result = semMagic(c, n, s, flags, expectedType)
of skProc, skFunc, skMethod, skConverter, skIterator:
if s.magic == mNone: result = semDirectOp(c, n, flags, expectedType)
else: result = semMagic(c, n, s, flags, expectedType)
else:
#liMessage(n.info, warnUser, renderTree(n));
result = semIndirectOp(c, n, flags, expectedType)
elif isExplicitGenericCall(c, n): # this modifies `n` if true
result = semDirectOp(c, n, flags, expectedType)
elif nfDotField in n.flags:
result = semDirectOp(c, n, flags, expectedType)
elif isSymChoice(n[0]):
let b = asBracketExpr(c, n)
if b != nil:
result = semExpr(c, b, flags, expectedType)
else:
result = semDirectOp(c, n, flags, expectedType)
else:
result = semIndirectOp(c, n, flags, expectedType)
if nfDefaultRefsParam in result.flags:
result = result.copyTree #XXX: Figure out what causes default param nodes to be shared.. (sigmatch bug?)
# We've found a default value that references another param.
# See the notes in `hoistParamsUsedInDefault` for more details.
var hoistedParams = newNodeI(nkLetSection, result.info)
for i in 1..<result.len:
hoistParamsUsedInDefault(c, result, hoistedParams, result[i])
result = newTreeIT(nkStmtListExpr, result.info, result.typ, hoistedParams, result)
of nkWhen:
if efWantStmt in flags:
result = semWhen(c, n, true)
else:
result = semWhen(c, n, false)
if result == n:
# This is a "when nimvm" stmt.
result = semWhen(c, n, true)
else:
result = semExpr(c, result, flags, expectedType)
of nkBracketExpr:
checkMinSonsLen(n, 1, c.config)
result = semArrayAccess(c, n, flags, expectedType)
of nkCurlyExpr:
result = semExpr(c, buildOverloadedSubscripts(n, getIdent(c.cache, "{}")), flags, expectedType)
of nkPragmaExpr:
var
pragma = n[1]
pragmaName = considerQuotedIdent(c, pragma[0])
flags = flags
finalNodeFlags: TNodeFlags = {}
case whichKeyword(pragmaName)
of wExplain:
flags.incl efExplain
of wExecuteOnReload:
finalNodeFlags.incl nfExecuteOnReload
else:
# what other pragmas are allowed for expressions? `likely`, `unlikely`
invalidPragma(c, n)
result = semExpr(c, n[0], flags)
result.flags.incl finalNodeFlags
of nkPar, nkTupleConstr:
case checkPar(c, n)
of paNone: result = errorNode(c, n)
of paTuplePositions: result = semTupleConstr(c, n, flags, expectedType)
of paTupleFields: result = semTupleFieldsConstr(c, n, flags, expectedType)
of paSingle: result = semExpr(c, n[0], flags, expectedType)
of nkCurly: result = semSetConstr(c, n, expectedType)
of nkBracket:
result = semArrayConstr(c, n, flags, expectedType)
of nkObjConstr: result = semObjConstr(c, n, flags, expectedType)
of nkLambdaKinds: result = semProcAux(c, n, skProc, lambdaPragmas, flags)
of nkDerefExpr: result = semDeref(c, n, flags)
of nkAddr:
result = n
checkSonsLen(n, 1, c.config)
result = semAddr(c, n[0])
of nkHiddenAddr, nkHiddenDeref:
checkSonsLen(n, 1, c.config)
n[0] = semExpr(c, n[0], flags, expectedType)
of nkCast: result = semCast(c, n)
of nkIfExpr, nkIfStmt: result = semIf(c, n, flags, expectedType)
of nkHiddenStdConv, nkHiddenSubConv, nkConv, nkHiddenCallConv:
checkSonsLen(n, 2, c.config)
considerGenSyms(c, n)
of nkStringToCString, nkCStringToString, nkObjDownConv, nkObjUpConv:
checkSonsLen(n, 1, c.config)
considerGenSyms(c, n)
of nkChckRangeF, nkChckRange64, nkChckRange:
checkSonsLen(n, 3, c.config)
considerGenSyms(c, n)
of nkCheckedFieldExpr:
checkMinSonsLen(n, 2, c.config)
considerGenSyms(c, n)
of nkTableConstr:
result = semTableConstr(c, n, expectedType)
of nkStaticExpr: result = semStaticExpr(c, n[0], expectedType)
of nkAsgn, nkFastAsgn: result = semAsgn(c, n)
of nkBlockStmt, nkBlockExpr: result = semBlock(c, n, flags, expectedType)
of nkStmtList, nkStmtListExpr: result = semStmtList(c, n, flags, expectedType)
of nkRaiseStmt: result = semRaise(c, n)
of nkVarSection: result = semVarOrLet(c, n, skVar)
of nkLetSection: result = semVarOrLet(c, n, skLet)
of nkConstSection: result = semConst(c, n)
of nkTypeSection: result = semTypeSection(c, n)
of nkDiscardStmt: result = semDiscard(c, n)
of nkWhileStmt: result = semWhile(c, n, flags)
of nkTryStmt, nkHiddenTryStmt: result = semTry(c, n, flags, expectedType)
of nkBreakStmt, nkContinueStmt: result = semBreakOrContinue(c, n)
of nkForStmt, nkParForStmt: result = semFor(c, n, flags)
of nkCaseStmt: result = semCase(c, n, flags, expectedType)
of nkReturnStmt: result = semReturn(c, n)
of nkUsingStmt: result = semUsing(c, n)
of nkAsmStmt: result = semAsm(c, n)
of nkYieldStmt: result = semYield(c, n)
of nkPragma: semPragmaStmt(c, n)
of nkIteratorDef: result = semIterator(c, n)
of nkProcDef: result = semProc(c, n)
of nkFuncDef: result = semFunc(c, n)
of nkMethodDef: result = semMethod(c, n)
of nkConverterDef: result = semConverterDef(c, n)
of nkMacroDef: result = semMacroDef(c, n)
of nkTemplateDef: result = semTemplateDef(c, n)
of nkImportStmt:
# this particular way allows 'import' in a 'compiles' context so that
# template canImport(x): bool =
# compiles:
# import x
#
# works:
if c.currentScope.depthLevel > 2 + c.compilesContextId:
localError(c.config, n.info, errXOnlyAtModuleScope % "import")
result = evalImport(c, n)
of nkImportExceptStmt:
if not isTopLevel(c): localError(c.config, n.info, errXOnlyAtModuleScope % "import")
result = evalImportExcept(c, n)
of nkFromStmt:
if not isTopLevel(c): localError(c.config, n.info, errXOnlyAtModuleScope % "from")
result = evalFrom(c, n)
of nkIncludeStmt:
#if not isTopLevel(c): localError(c.config, n.info, errXOnlyAtModuleScope % "include")
result = evalInclude(c, n)
of nkExportStmt:
if not isTopLevel(c): localError(c.config, n.info, errXOnlyAtModuleScope % "export")
result = semExport(c, n)
of nkExportExceptStmt:
if not isTopLevel(c): localError(c.config, n.info, errXOnlyAtModuleScope % "export")
result = semExportExcept(c, n)
of nkPragmaBlock:
result = semPragmaBlock(c, n, expectedType)
of nkStaticStmt:
result = semStaticStmt(c, n)
of nkDefer:
if c.currentScope == c.topLevelScope:
localError(c.config, n.info, "defer statement not supported at top level")
openScope(c)
n[0] = semExpr(c, n[0])
closeScope(c)
if not n[0].typ.isEmptyType and not implicitlyDiscardable(n[0]):
localError(c.config, n.info, "'defer' takes a 'void' expression")
#localError(c.config, n.info, errGenerated, "'defer' not allowed in this context")
of nkGotoState, nkState:
if n.len != 1 and n.len != 2: illFormedAst(n, c.config)
for i in 0..<n.len:
n[i] = semExpr(c, n[i])
of nkComesFrom: discard "ignore the comes from information for now"
of nkMixinStmt: discard
of nkBindStmt:
if c.p != nil:
if n.len > 0 and n[0].kind == nkSym:
c.p.localBindStmts.add n
else:
localError(c.config, n.info, "invalid context for 'bind' statement: " &
renderTree(n, {renderNoComments}))
else:
localError(c.config, n.info, "invalid expression: " &
renderTree(n, {renderNoComments}))
if result != nil: incl(result.flags, nfSem)
when defined(nimsuggest):
if expandStarted:
c.config.expandNodeResult = $result
suggestQuit()