about summary refs log tree commit diff stats
path: root/dwm.png
diff options
context:
space:
mode:
authorarg@10ksloc.org <unknown>2006-08-01 16:35:54 +0200
committerarg@10ksloc.org <unknown>2006-08-01 16:35:54 +0200
commitd8675f6f30f31aeb38680fe748d6a66fca0a8990 (patch)
tree2f54290efdcf327457fc2c091ad7ec552bb9f7bf /dwm.png
parenteff4478c2d231060f920e209cbdfd266d56334e2 (diff)
downloaddwm-d8675f6f30f31aeb38680fe748d6a66fca0a8990.tar.gz
small fixes to dwm.html
Diffstat (limited to 'dwm.png')
0 files changed, 0 insertions, 0 deletions
06' href='#n106'>106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
#
#
#           The Nim Compiler
#        (c) Copyright 2015 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

# this module folds constants; used by semantic checking phase
# and evaluation phase

import
  strutils, options, ast, astalgo, trees, treetab, nimsets, times,
  nversion, platform, math, msgs, os, condsyms, idents, renderer, types,
  commands, magicsys, modulegraphs, strtabs, lineinfos

proc newIntNodeT*(intVal: BiggestInt, n: PNode; g: ModuleGraph): PNode =
  case skipTypes(n.typ, abstractVarRange).kind
  of tyInt:
    result = newIntNode(nkIntLit, intVal)
    # See bug #6989. 'pred' et al only produce an int literal type if the
    # original type was 'int', not a distinct int etc.
    if n.typ.kind == tyInt:
      result.typ = getIntLitType(g, result)
    else:
      result.typ = n.typ
    # hrm, this is not correct: 1 + high(int) shouldn't produce tyInt64 ...
    #setIntLitType(result)
  of tyChar:
    result = newIntNode(nkCharLit, intVal)
    result.typ = n.typ
  else:
    result = newIntNode(nkIntLit, intVal)
    result.typ = n.typ
  result.info = n.info

proc newFloatNodeT*(floatVal: BiggestFloat, n: PNode; g: ModuleGraph): PNode =
  result = newFloatNode(nkFloatLit, floatVal)
  if skipTypes(n.typ, abstractVarRange).kind == tyFloat:
    result.typ = getFloatLitType(g, result)
  else:
    result.typ = n.typ
  result.info = n.info

proc newStrNodeT*(strVal: string, n: PNode; g: ModuleGraph): PNode =
  result = newStrNode(nkStrLit, strVal)
  result.typ = n.typ
  result.info = n.info

proc getConstExpr*(m: PSym, n: PNode; g: ModuleGraph): PNode
  # evaluates the constant expression or returns nil if it is no constant
  # expression
proc evalOp*(m: TMagic, n, a, b, c: PNode; g: ModuleGraph): PNode

proc checkInRange(conf: ConfigRef; n: PNode, res: BiggestInt): bool =
  if res in firstOrd(conf, n.typ)..lastOrd(conf, n.typ):
    result = true

proc foldAdd(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode =
  let res = a +% b
  if ((res xor a) >= 0'i64 or (res xor b) >= 0'i64) and
      checkInRange(g.config, n, res):
    result = newIntNodeT(res, n, g)

proc foldSub*(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode =
  let res = a -% b
  if ((res xor a) >= 0'i64 or (res xor not b) >= 0'i64) and
      checkInRange(g.config, n, res):
    result = newIntNodeT(res, n, g)

proc foldAbs*(a: BiggestInt, n: PNode; g: ModuleGraph): PNode =
  if a != firstOrd(g.config, n.typ):
    result = newIntNodeT(a, n, g)

proc foldMod*(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode =
  if b != 0'i64:
    result = newIntNodeT(a mod b, n, g)

proc foldModU*(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode =
  if b != 0'i64:
    result = newIntNodeT(a %% b, n, g)

proc foldDiv*(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode =
  if b != 0'i64 and (a != firstOrd(g.config, n.typ) or b != -1'i64):
    result = newIntNodeT(a div b, n, g)

proc foldDivU*(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode =
  if b != 0'i64:
    result = newIntNodeT(a /% b, n, g)

proc foldMul*(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode =
  let res = a *% b
  let floatProd = toBiggestFloat(a) * toBiggestFloat(b)
  let resAsFloat = toBiggestFloat(res)

  # Fast path for normal case: small multiplicands, and no info
  # is lost in either method.
  if resAsFloat == floatProd and checkInRange(g.config, n, res):
    return newIntNodeT(res, n, g)

  # Somebody somewhere lost info. Close enough, or way off? Note
  # that a != 0 and b != 0 (else resAsFloat == floatProd == 0).
  # The difference either is or isn't significant compared to the
  # true value (of which floatProd is a good approximation).

  # abs(diff)/abs(prod) <= 1/32 iff
  #   32 * abs(diff) <= abs(prod) -- 5 good bits is "close enough"
  if 32.0 * abs(resAsFloat - floatProd) <= abs(floatProd) and
      checkInRange(g.config, n, res):
    return newIntNodeT(res, n, g)

proc ordinalValToString*(a: PNode; g: ModuleGraph): string =
  # because $ has the param ordinal[T], `a` is not necessarily an enum, but an
  # ordinal
  var x = getInt(a)

  var t = skipTypes(a.typ, abstractRange)
  case t.kind
  of tyChar:
    result = $chr(int(x) and 0xff)
  of tyEnum:
    var n = t.n
    for i in countup(0, sonsLen(n) - 1):
      if n.sons[i].kind != nkSym: internalError(g.config, a.info, "ordinalValToString")
      var field = n.sons[i].sym
      if field.position == x:
        if field.ast == nil:
          return field.name.s
        else:
          return field.ast.strVal
    internalError(g.config, a.info, "no symbol for ordinal value: " & $x)
  else:
    result = $x

proc isFloatRange(t: PType): bool {.inline.} =
  result = t.kind == tyRange and t.sons[0].kind in {tyFloat..tyFloat128}

proc isIntRange(t: PType): bool {.inline.} =
  result = t.kind == tyRange and t.sons[0].kind in {
      tyInt..tyInt64, tyUInt8..tyUInt32}

proc pickIntRange(a, b: PType): PType =
  if isIntRange(a): result = a
  elif isIntRange(b): result = b
  else: result = a

proc isIntRangeOrLit(t: PType): bool =
  result = isIntRange(t) or isIntLit(t)

proc makeRange(typ: PType, first, last: BiggestInt; g: ModuleGraph): PType =
  let minA = min(first, last)
  let maxA = max(first, last)
  let lowerNode = newIntNode(nkIntLit, minA)
  if typ.kind == tyInt and minA == maxA:
    result = getIntLitType(g, lowerNode)
  elif typ.kind in {tyUint, tyUInt64}:
    # these are not ordinal types, so you get no subrange type for these:
    result = typ
  else:
    var n = newNode(nkRange)
    addSon(n, lowerNode)
    addSon(n, newIntNode(nkIntLit, maxA))
    result = newType(tyRange, typ.owner)
    result.n = n
    addSonSkipIntLit(result, skipTypes(typ, {tyRange}))

proc makeRangeF(typ: PType, first, last: BiggestFloat; g: ModuleGraph): PType =
  var n = newNode(nkRange)
  addSon(n, newFloatNode(nkFloatLit, min(first.float, last.float)))
  addSon(n, newFloatNode(nkFloatLit, max(first.float, last.float)))
  result = newType(tyRange, typ.owner)
  result.n = n
  addSonSkipIntLit(result, skipTypes(typ, {tyRange}))

proc evalIs(n, a: PNode): PNode =
  # XXX: This should use the standard isOpImpl
  #internalAssert a.kind == nkSym and a.sym.kind == skType
  #internalAssert n.sonsLen == 3 and
  #  n[2].kind in {nkStrLit..nkTripleStrLit, nkType}

  let t1 = a.sym.typ

  if n[2].kind in {nkStrLit..nkTripleStrLit}:
    case n[2].strVal.normalize
    of "closure":
      let t = skipTypes(t1, abstractRange)
      result = newIntNode(nkIntLit, ord(t.kind == tyProc and
                                        t.callConv == ccClosure and
                                        tfIterator notin t.flags))
    of "iterator":
      let t = skipTypes(t1, abstractRange)
      result = newIntNode(nkIntLit, ord(t.kind == tyProc and
                                        t.callConv == ccClosure and
                                        tfIterator in t.flags))
    else: discard
  else:
    # XXX semexprs.isOpImpl is slightly different and requires a context. yay.
    let t2 = n[2].typ
    var match = sameType(t1, t2)
    result = newIntNode(nkIntLit, ord(match))
  result.typ = n.typ

proc evalOp(m: TMagic, n, a, b, c: PNode; g: ModuleGraph): PNode =
  # b and c may be nil
  result = nil
  case m
  of mOrd: result = newIntNodeT(getOrdValue(a), n, g)
  of mChr: result = newIntNodeT(getInt(a), n, g)
  of mUnaryMinusI, mUnaryMinusI64: result = newIntNodeT(- getInt(a), n, g)
  of mUnaryMinusF64: result = newFloatNodeT(- getFloat(a), n, g)
  of mNot: result = newIntNodeT(1 - getInt(a), n, g)
  of mCard: result = newIntNodeT(nimsets.cardSet(g.config, a), n, g)
  of mBitnotI:
    case skipTypes(n.typ, abstractRange).kind
    of tyUInt..tyUInt64:
      result = newIntNodeT((not getInt(a)) and lastOrd(g.config, a.typ, fixedUnsigned=true), n, g)
    else:
      result = newIntNodeT(not getInt(a), n, g)
  of mLengthArray: result = newIntNodeT(lengthOrd(g.config, a.typ), n, g)
  of mLengthSeq, mLengthOpenArray, mXLenSeq, mLengthStr, mXLenStr:
    if a.kind == nkNilLit:
      result = newIntNodeT(0, n, g)
    elif a.kind in {nkStrLit..nkTripleStrLit}:
      result = newIntNodeT(len a.strVal, n, g)
    else:
      result = newIntNodeT(sonsLen(a), n, g)
  of mUnaryPlusI, mUnaryPlusF64: result = a # throw `+` away
  of mToFloat, mToBiggestFloat:
    result = newFloatNodeT(toFloat(int(getInt(a))), n, g)
  # XXX: Hides overflow/underflow
  of mToInt, mToBiggestInt: result = newIntNodeT(system.toInt(getFloat(a)), n, g)
  of mAbsF64: result = newFloatNodeT(abs(getFloat(a)), n, g)
  of mAbsI: result = foldAbs(getInt(a), n, g)
  of mZe8ToI, mZe8ToI64, mZe16ToI, mZe16ToI64, mZe32ToI64, mZeIToI64:
    # byte(-128) = 1...1..1000_0000'64 --> 0...0..1000_0000'64
    result = newIntNodeT(getInt(a) and (`shl`(1, getSize(g.config, a.typ) * 8) - 1), n, g)
  of mToU8: result = newIntNodeT(getInt(a) and 0x000000FF, n, g)
  of mToU16: result = newIntNodeT(getInt(a) and 0x0000FFFF, n, g)
  of mToU32: result = newIntNodeT(getInt(a) and 0x00000000FFFFFFFF'i64, n, g)
  of mUnaryLt: result = foldSub(getOrdValue(a), 1, n, g)
  of mSucc: result = foldAdd(getOrdValue(a), getInt(b), n, g)
  of mPred: result = foldSub(getOrdValue(a), getInt(b), n, g)
  of mAddI: result = foldAdd(getInt(a), getInt(b), n, g)
  of mSubI: result = foldSub(getInt(a), getInt(b), n, g)
  of mMulI: result = foldMul(getInt(a), getInt(b), n, g)
  of mMinI:
    if getInt(a) > getInt(b): result = newIntNodeT(getInt(b), n, g)
    else: result = newIntNodeT(getInt(a), n, g)
  of mMaxI:
    if getInt(a) > getInt(b): result = newIntNodeT(getInt(a), n, g)
    else: result = newIntNodeT(getInt(b), n, g)
  of mShlI:
    case skipTypes(n.typ, abstractRange).kind
    of tyInt8: result = newIntNodeT(int8(getInt(a)) shl int8(getInt(b)), n, g)
    of tyInt16: result = newIntNodeT(int16(getInt(a)) shl int16(getInt(b)), n, g)
    of tyInt32: result = newIntNodeT(int32(getInt(a)) shl int32(getInt(b)), n, g)
    of tyInt64, tyInt:
      result = newIntNodeT(`shl`(getInt(a), getInt(b)), n, g)
    of tyUInt..tyUInt64:
      result = newIntNodeT(`shl`(getInt(a), getInt(b)) and lastOrd(g.config, a.typ, fixedUnsigned=true), n, g)
    else: internalError(g.config, n.info, "constant folding for shl")
  of mShrI:
    case skipTypes(n.typ, abstractRange).kind
    of tyInt8: result = newIntNodeT(int8(getInt(a)) shr int8(getInt(b)), n, g)
    of tyInt16: result = newIntNodeT(int16(getInt(a)) shr int16(getInt(b)), n, g)
    of tyInt32: result = newIntNodeT(int32(getInt(a)) shr int32(getInt(b)), n, g)
    of tyInt64, tyInt, tyUInt..tyUInt64:
      result = newIntNodeT(`shr`(getInt(a), getInt(b)), n, g)
    else: internalError(g.config, n.info, "constant folding for shr")
  of mDivI: result = foldDiv(getInt(a), getInt(b), n, g)
  of mModI: result = foldMod(getInt(a), getInt(b), n, g)
  of mAddF64: result = newFloatNodeT(getFloat(a) + getFloat(b), n, g)
  of mSubF64: result = newFloatNodeT(getFloat(a) - getFloat(b), n, g)
  of mMulF64: result = newFloatNodeT(getFloat(a) * getFloat(b), n, g)
  of mDivF64:
    if getFloat(b) == 0.0:
      if getFloat(a) == 0.0: result = newFloatNodeT(NaN, n, g)
      elif getFloat(b).classify == fcNegZero: result = newFloatNodeT(-Inf, n, g)
      else: result = newFloatNodeT(Inf, n, g)
    else:
      result = newFloatNodeT(getFloat(a) / getFloat(b), n, g)
  of mMaxF64:
    if getFloat(a) > getFloat(b): result = newFloatNodeT(getFloat(a), n, g)
    else: result = newFloatNodeT(getFloat(b), n, g)
  of mMinF64:
    if getFloat(a) > getFloat(b): result = newFloatNodeT(getFloat(b), n, g)
    else: result = newFloatNodeT(getFloat(a), n, g)
  of mIsNil: result = newIntNodeT(ord(a.kind == nkNilLit), n, g)
  of mLtI, mLtB, mLtEnum, mLtCh:
    result = newIntNodeT(ord(getOrdValue(a) < getOrdValue(b)), n, g)
  of mLeI, mLeB, mLeEnum, mLeCh:
    result = newIntNodeT(ord(getOrdValue(a) <= getOrdValue(b)), n, g)
  of mEqI, mEqB, mEqEnum, mEqCh:
    result = newIntNodeT(ord(getOrdValue(a) == getOrdValue(b)), n, g)
  of mLtF64: result = newIntNodeT(ord(getFloat(a) < getFloat(b)), n, g)
  of mLeF64: result = newIntNodeT(ord(getFloat(a) <= getFloat(b)), n, g)
  of mEqF64: result = newIntNodeT(ord(getFloat(a) == getFloat(b)), n, g)
  of mLtStr: result = newIntNodeT(ord(getStr(a) < getStr(b)), n, g)
  of mLeStr: result = newIntNodeT(ord(getStr(a) <= getStr(b)), n, g)
  of mEqStr: result = newIntNodeT(ord(getStr(a) == getStr(b)), n, g)
  of mLtU, mLtU64:
    result = newIntNodeT(ord(`<%`(getOrdValue(a), getOrdValue(b))), n, g)
  of mLeU, mLeU64:
    result = newIntNodeT(ord(`<=%`(getOrdValue(a), getOrdValue(b))), n, g)
  of mBitandI, mAnd: result = newIntNodeT(a.getInt and b.getInt, n, g)
  of mBitorI, mOr: result = newIntNodeT(getInt(a) or getInt(b), n, g)
  of mBitxorI, mXor: result = newIntNodeT(a.getInt xor b.getInt, n, g)
  of mAddU: result = newIntNodeT(`+%`(getInt(a), getInt(b)), n, g)
  of mSubU: result = newIntNodeT(`-%`(getInt(a), getInt(b)), n, g)
  of mMulU: result = newIntNodeT(`*%`(getInt(a), getInt(b)), n, g)
  of mModU: result = foldModU(getInt(a), getInt(b), n, g)
  of mDivU: result = foldDivU(getInt(a), getInt(b), n, g)
  of mLeSet: result = newIntNodeT(ord(containsSets(g.config, a, b)), n, g)
  of mEqSet: result = newIntNodeT(ord(equalSets(g.config, a, b)), n, g)
  of mLtSet:
    result = newIntNodeT(ord(containsSets(g.config, a, b) and not equalSets(g.config, a, b)), n, g)
  of mMulSet:
    result = nimsets.intersectSets(g.config, a, b)
    result.info = n.info
  of mPlusSet:
    result = nimsets.unionSets(g.config, a, b)
    result.info = n.info
  of mMinusSet:
    result = nimsets.diffSets(g.config, a, b)
    result.info = n.info
  of mSymDiffSet:
    result = nimsets.symdiffSets(g.config, a, b)
    result.info = n.info
  of mConStrStr: result = newStrNodeT(getStrOrChar(a) & getStrOrChar(b), n, g)
  of mInSet: result = newIntNodeT(ord(inSet(a, b)), n, g)
  of mRepr:
    # BUGFIX: we cannot eval mRepr here for reasons that I forgot.
    discard
  of mIntToStr, mInt64ToStr: result = newStrNodeT($(getOrdValue(a)), n, g)
  of mBoolToStr:
    if getOrdValue(a) == 0: result = newStrNodeT("false", n, g)
    else: result = newStrNodeT("true", n, g)
  of mCopyStr: result = newStrNodeT(substr(getStr(a), int(getOrdValue(b))), n, g)
  of mCopyStrLast:
    result = newStrNodeT(substr(getStr(a), int(getOrdValue(b)),
                                           int(getOrdValue(c))), n, g)
  of mFloatToStr: result = newStrNodeT($getFloat(a), n, g)
  of mCStrToStr, mCharToStr:
    if a.kind == nkBracket:
      var s = ""
      for b in a.sons:
        s.add b.getStrOrChar
      result = newStrNodeT(s, n, g)
    else:
      result = newStrNodeT(getStrOrChar(a), n, g)
  of mStrToStr: result = a
  of mEnumToStr: result = newStrNodeT(ordinalValToString(a, g), n, g)
  of mArrToSeq:
    result = copyTree(a)
    result.typ = n.typ
  of mCompileOption:
    result = newIntNodeT(ord(commands.testCompileOption(g.config, a.getStr, n.info)), n, g)
  of mCompileOptionArg:
    result = newIntNodeT(ord(
      testCompileOptionArg(g.config, getStr(a), getStr(b), n.info)), n, g)
  of mEqProc:
    result = newIntNodeT(ord(
        exprStructuralEquivalent(a, b, strictSymEquality=true)), n, g)
  else: discard

proc getConstIfExpr(c: PSym, n: PNode; g: ModuleGraph): PNode =
  result = nil
  for i in countup(0, sonsLen(n) - 1):
    var it = n.sons[i]
    if it.len == 2:
      var e = getConstExpr(c, it.sons[0], g)
      if e == nil: return nil
      if getOrdValue(e) != 0:
        if result == nil:
          result = getConstExpr(c, it.sons[1], g)
          if result == nil: return
    elif it.len == 1:
      if result == nil: result = getConstExpr(c, it.sons[0], g)
    else: internalError(g.config, it.info, "getConstIfExpr()")

proc leValueConv*(a, b: PNode): bool =
  result = false
  case a.kind
  of nkCharLit..nkUInt64Lit:
    case b.kind
    of nkCharLit..nkUInt64Lit: result = a.intVal <= b.intVal
    of nkFloatLit..nkFloat128Lit: result = a.intVal <= round(b.floatVal).int
    else: result = false #internalError(a.info, "leValueConv")
  of nkFloatLit..nkFloat128Lit:
    case b.kind
    of nkFloatLit..nkFloat128Lit: result = a.floatVal <= b.floatVal
    of nkCharLit..nkUInt64Lit: result = a.floatVal <= toFloat(int(b.intVal))
    else: result = false # internalError(a.info, "leValueConv")
  else: result = false # internalError(a.info, "leValueConv")

proc magicCall(m: PSym, n: PNode; g: ModuleGraph): PNode =
  if sonsLen(n) <= 1: return

  var s = n.sons[0].sym
  var a = getConstExpr(m, n.sons[1], g)
  var b, c: PNode
  if a == nil: return
  if sonsLen(n) > 2:
    b = getConstExpr(m, n.sons[2], g)
    if b == nil: return
    if sonsLen(n) > 3:
      c = getConstExpr(m, n.sons[3], g)
      if c == nil: return
  result = evalOp(s.magic, n, a, b, c, g)

proc getAppType(n: PNode; g: ModuleGraph): PNode =
  if g.config.globalOptions.contains(optGenDynLib):
    result = newStrNodeT("lib", n, g)
  elif g.config.globalOptions.contains(optGenStaticLib):
    result = newStrNodeT("staticlib", n, g)
  elif g.config.globalOptions.contains(optGenGuiApp):
    result = newStrNodeT("gui", n, g)
  else:
    result = newStrNodeT("console", n, g)

proc rangeCheck(n: PNode, value: BiggestInt; g: ModuleGraph) =
  var err = false
  if n.typ.skipTypes({tyRange}).kind in {tyUInt..tyUInt64}:
    err = value <% firstOrd(g.config, n.typ) or value >% lastOrd(g.config, n.typ, fixedUnsigned=true)
  else:
    err = value < firstOrd(g.config, n.typ) or value > lastOrd(g.config, n.typ)
  if err:
    localError(g.config, n.info, "cannot convert " & $value &
                                     " to " & typeToString(n.typ))

proc foldConv*(n, a: PNode; g: ModuleGraph; check = false): PNode =
  # XXX range checks?
  case skipTypes(n.typ, abstractRange).kind
  of tyInt..tyInt64, tyUInt..tyUInt64:
    case skipTypes(a.typ, abstractRange).kind
    of tyFloat..tyFloat64:
      result = newIntNodeT(int(getFloat(a)), n, g)
    of tyChar: result = newIntNodeT(getOrdValue(a), n, g)
    else:
      result = a
      result.typ = n.typ
    if check and result.kind in {nkCharLit..nkUInt64Lit}:
      rangeCheck(n, result.intVal, g)
  of tyFloat..tyFloat64:
    case skipTypes(a.typ, abstractRange).kind
    of tyInt..tyInt64, tyEnum, tyBool, tyChar:
      result = newFloatNodeT(toBiggestFloat(getOrdValue(a)), n, g)
    else:
      result = a
      result.typ = n.typ
  of tyOpenArray, tyVarargs, tyProc:
    discard
  else:
    result = a
    result.typ = n.typ

proc getArrayConstr(m: PSym, n: PNode; g: ModuleGraph): PNode =
  if n.kind == nkBracket:
    result = n
  else:
    result = getConstExpr(m, n, g)
    if result == nil: result = n

proc foldArrayAccess(m: PSym, n: PNode; g: ModuleGraph): PNode =
  var x = getConstExpr(m, n.sons[0], g)
  if x == nil or x.typ.skipTypes({tyGenericInst, tyAlias, tySink}).kind == tyTypeDesc:
    return

  var y = getConstExpr(m, n.sons[1], g)
  if y == nil: return

  var idx = getOrdValue(y)
  case x.kind
  of nkPar, nkTupleConstr:
    if idx >= 0 and idx < sonsLen(x):
      result = x.sons[int(idx)]
      if result.kind == nkExprColonExpr: result = result.sons[1]
    else:
      localError(g.config, n.info, "index out of bounds: " & $n)
  of nkBracket:
    idx = idx - firstOrd(g.config, x.typ)
    if idx >= 0 and idx < x.len: result = x.sons[int(idx)]
    else: localError(g.config, n.info, "index out of bounds: " & $n)
  of nkStrLit..nkTripleStrLit:
    result = newNodeIT(nkCharLit, x.info, n.typ)
    if idx >= 0 and idx < len(x.strVal):
      result.intVal = ord(x.strVal[int(idx)])
    elif idx == len(x.strVal) and optLaxStrings in g.config.options:
      discard
    else:
      localError(g.config, n.info, "index out of bounds: " & $n)
  else: discard

proc foldFieldAccess(m: PSym, n: PNode; g: ModuleGraph): PNode =
  # a real field access; proc calls have already been transformed
  var x = getConstExpr(m, n.sons[0], g)
  if x == nil or x.kind notin {nkObjConstr, nkPar, nkTupleConstr}: return

  var field = n.sons[1].sym
  for i in countup(ord(x.kind == nkObjConstr), sonsLen(x) - 1):
    var it = x.sons[i]
    if it.kind != nkExprColonExpr:
      # lookup per index:
      result = x.sons[field.position]
      if result.kind == nkExprColonExpr: result = result.sons[1]
      return
    if it.sons[0].sym.name.id == field.name.id:
      result = x.sons[i].sons[1]
      return
  localError(g.config, n.info, "field not found: " & field.name.s)

proc foldConStrStr(m: PSym, n: PNode; g: ModuleGraph): PNode =
  result = newNodeIT(nkStrLit, n.info, n.typ)
  result.strVal = ""
  for i in countup(1, sonsLen(n) - 1):
    let a = getConstExpr(m, n.sons[i], g)
    if a == nil: return nil
    result.strVal.add(getStrOrChar(a))

proc newSymNodeTypeDesc*(s: PSym; info: TLineInfo): PNode =
  result = newSymNode(s, info)
  if s.typ.kind != tyTypeDesc:
    result.typ = newType(tyTypeDesc, s.owner)
    result.typ.addSonSkipIntLit(s.typ)
  else:
    result.typ = s.typ

proc getConstExpr(m: PSym, n: PNode; g: ModuleGraph): PNode =
  result = nil

  proc getSrcTimestamp(): DateTime =
    try:
      result = utc(fromUnix(parseInt(getEnv("SOURCE_DATE_EPOCH",
                                            "not a number"))))
    except ValueError:
      # Environment variable malformed.
      # https://reproducible-builds.org/specs/source-date-epoch/: "If the
      # value is malformed, the build process SHOULD exit with a non-zero
      # error code", which this doesn't do. This uses local time, because
      # that maintains compatibility with existing usage.
      result = local(getTime())

  case n.kind
  of nkSym:
    var s = n.sym
    case s.kind
    of skEnumField:
      result = newIntNodeT(s.position, n, g)
    of skConst:
      case s.magic
      of mIsMainModule: result = newIntNodeT(ord(sfMainModule in m.flags), n, g)
      of mCompileDate: result = newStrNodeT(format(getSrcTimestamp(),
                                                   "yyyy-MM-dd"), n, g)
      of mCompileTime: result = newStrNodeT(format(getSrcTimestamp(),
                                                   "HH:mm:ss"), n, g)
      of mCpuEndian: result = newIntNodeT(ord(CPU[g.config.target.targetCPU].endian), n, g)
      of mHostOS: result = newStrNodeT(toLowerAscii(platform.OS[g.config.target.targetOS].name), n, g)
      of mHostCPU: result = newStrNodeT(platform.CPU[g.config.target.targetCPU].name.toLowerAscii, n, g)
      of mBuildOS: result = newStrNodeT(toLowerAscii(platform.OS[g.config.target.hostOS].name), n, g)
      of mBuildCPU: result = newStrNodeT(platform.CPU[g.config.target.hostCPU].name.toLowerAscii, n, g)
      of mAppType: result = getAppType(n, g)
      of mNaN: result = newFloatNodeT(NaN, n, g)
      of mInf: result = newFloatNodeT(Inf, n, g)
      of mNegInf: result = newFloatNodeT(NegInf, n, g)
      of mIntDefine:
        if isDefined(g.config, s.name.s):
          try:
            result = newIntNodeT(g.config.symbols[s.name.s].parseInt, n, g)
          except ValueError:
            localError(g.config, n.info, "expression is not an integer literal")
      of mStrDefine:
        if isDefined(g.config, s.name.s):
          result = newStrNodeT(g.config.symbols[s.name.s], n, g)
      else:
        result = copyTree(s.ast)
    of skProc, skFunc, skMethod:
      result = n
    of skType:
      # XXX gensym'ed symbols can come here and cannot be resolved. This is
      # dirty, but correct.
      if s.typ != nil:
        result = newSymNodeTypeDesc(s, n.info)
    of skGenericParam:
      if s.typ.kind == tyStatic:
        if s.typ.n != nil and tfUnresolved notin s.typ.flags:
          result = s.typ.n
          result.typ = s.typ.base
      elif s.typ.isIntLit:
        result = s.typ.n
      else:
        result = newSymNodeTypeDesc(s, n.info)
    else: discard
  of nkCharLit..nkNilLit:
    result = copyNode(n)
  of nkIfExpr:
    result = getConstIfExpr(m, n, g)
  of nkCallKinds:
    if n.sons[0].kind != nkSym: return
    var s = n.sons[0].sym
    if s.kind != skProc and s.kind != skFunc: return
    try:
      case s.magic
      of mNone:
        # If it has no sideEffect, it should be evaluated. But not here.
        return
      of mSizeOf:
        var a = n.sons[1]
        if computeSize(g.config, a.typ) < 0:
          localError(g.config, a.info, "cannot evaluate 'sizeof' because its type is not defined completely")
          result = nil
        elif skipTypes(a.typ, typedescInst+{tyRange}).kind in
             IntegralTypes+NilableTypes+{tySet}:
          #{tyArray,tyObject,tyTuple}:
          result = newIntNodeT(getSize(g.config, a.typ), n, g)
        else:
          result = nil
          # XXX: size computation for complex types is still wrong
      of mLow:
        result = newIntNodeT(firstOrd(g.config, n.sons[1].typ), n, g)
      of mHigh:
        if skipTypes(n.sons[1].typ, abstractVar).kind notin
            {tySequence, tyString, tyCString, tyOpenArray, tyVarargs}:
          result = newIntNodeT(lastOrd(g.config, skipTypes(n[1].typ, abstractVar)), n, g)
        else:
          var a = getArrayConstr(m, n.sons[1], g)
          if a.kind == nkBracket:
            # we can optimize it away:
            result = newIntNodeT(sonsLen(a)-1, n, g)
      of mLengthOpenArray:
        var a = getArrayConstr(m, n.sons[1], g)
        if a.kind == nkBracket:
          # we can optimize it away! This fixes the bug ``len(134)``.
          result = newIntNodeT(sonsLen(a), n, g)
        else:
          result = magicCall(m, n, g)
      of mLengthArray:
        # It doesn't matter if the argument is const or not for mLengthArray.
        # This fixes bug #544.
        result = newIntNodeT(lengthOrd(g.config, n.sons[1].typ), n, g)
      of mAstToStr:
        result = newStrNodeT(renderTree(n[1], {renderNoComments}), n, g)
      of mConStrStr:
        result = foldConStrStr(m, n, g)
      of mIs:
        let a = getConstExpr(m, n[1], g)
        if a != nil and a.kind == nkSym and a.sym.kind == skType:
          result = evalIs(n, a)
      else:
        result = magicCall(m, n, g)
    except OverflowError:
      localError(g.config, n.info, "over- or underflow")
    except DivByZeroError:
      localError(g.config, n.info, "division by zero")
  of nkAddr:
    var a = getConstExpr(m, n.sons[0], g)
    if a != nil:
      result = n
      n.sons[0] = a
  of nkBracket:
    result = copyTree(n)
    for i in countup(0, sonsLen(n) - 1):
      var a = getConstExpr(m, n.sons[i], g)
      if a == nil: return nil
      result.sons[i] = a
    incl(result.flags, nfAllConst)
  of nkRange:
    var a = getConstExpr(m, n.sons[0], g)
    if a == nil: return
    var b = getConstExpr(m, n.sons[1], g)
    if b == nil: return
    result = copyNode(n)
    addSon(result, a)
    addSon(result, b)
  of nkCurly:
    result = copyTree(n)
    for i in countup(0, sonsLen(n) - 1):
      var a = getConstExpr(m, n.sons[i], g)
      if a == nil: return nil
      result.sons[i] = a
    incl(result.flags, nfAllConst)
  #of nkObjConstr:
  #  result = copyTree(n)
  #  for i in countup(1, sonsLen(n) - 1):
  #    var a = getConstExpr(m, n.sons[i].sons[1])
  #    if a == nil: return nil
  #    result.sons[i].sons[1] = a
  #  incl(result.flags, nfAllConst)
  of nkPar, nkTupleConstr:
    # tuple constructor
    result = copyTree(n)
    if (sonsLen(n) > 0) and (n.sons[0].kind == nkExprColonExpr):
      for i in countup(0, sonsLen(n) - 1):
        var a = getConstExpr(m, n.sons[i].sons[1], g)
        if a == nil: return nil
        result.sons[i].sons[1] = a
    else:
      for i in countup(0, sonsLen(n) - 1):
        var a = getConstExpr(m, n.sons[i], g)
        if a == nil: return nil
        result.sons[i] = a
    incl(result.flags, nfAllConst)
  of nkChckRangeF, nkChckRange64, nkChckRange:
    var a = getConstExpr(m, n.sons[0], g)
    if a == nil: return
    if leValueConv(n.sons[1], a) and leValueConv(a, n.sons[2]):
      result = a              # a <= x and x <= b
      result.typ = n.typ
    else:
      localError(g.config, n.info,
        "conversion from $1 to $2 is invalid" %
          [typeToString(n.sons[0].typ), typeToString(n.typ)])
  of nkStringToCString, nkCStringToString:
    var a = getConstExpr(m, n.sons[0], g)
    if a == nil: return
    result = a
    result.typ = n.typ
  of nkHiddenStdConv, nkHiddenSubConv, nkConv:
    var a = getConstExpr(m, n.sons[1], g)
    if a == nil: return
    result = foldConv(n, a, g, check=n.kind == nkHiddenStdConv)
  of nkCast:
    var a = getConstExpr(m, n.sons[1], g)
    if a == nil: return
    if n.typ != nil and n.typ.kind in NilableTypes:
      # we allow compile-time 'cast' for pointer types:
      result = a
      result.typ = n.typ
  of nkBracketExpr: result = foldArrayAccess(m, n, g)
  of nkDotExpr: result = foldFieldAccess(m, n, g)
  of nkStmtListExpr:
    if n.len == 2 and n[0].kind == nkComesFrom:
      result = getConstExpr(m, n[1], g)
  else:
    discard