1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
|
#
#
# The Nim Compiler
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# this module folds constants; used by semantic checking phase
# and evaluation phase
import
strutils, options, ast, astalgo, trees, treetab, nimsets, times,
nversion, platform, math, msgs, os, condsyms, idents, renderer, types,
commands, magicsys, modulegraphs, strtabs
proc newIntNodeT*(intVal: BiggestInt, n: PNode; g: ModuleGraph): PNode =
case skipTypes(n.typ, abstractVarRange).kind
of tyInt:
result = newIntNode(nkIntLit, intVal)
# See bug #6989. 'pred' et al only produce an int literal type if the
# original type was 'int', not a distinct int etc.
if n.typ.kind == tyInt:
result.typ = getIntLitType(g, result)
else:
result.typ = n.typ
# hrm, this is not correct: 1 + high(int) shouldn't produce tyInt64 ...
#setIntLitType(result)
of tyChar:
result = newIntNode(nkCharLit, intVal)
result.typ = n.typ
else:
result = newIntNode(nkIntLit, intVal)
result.typ = n.typ
result.info = n.info
proc newFloatNodeT*(floatVal: BiggestFloat, n: PNode; g: ModuleGraph): PNode =
result = newFloatNode(nkFloatLit, floatVal)
if skipTypes(n.typ, abstractVarRange).kind == tyFloat:
result.typ = getFloatLitType(g, result)
else:
result.typ = n.typ
result.info = n.info
proc newStrNodeT*(strVal: string, n: PNode; g: ModuleGraph): PNode =
result = newStrNode(nkStrLit, strVal)
result.typ = n.typ
result.info = n.info
proc getConstExpr*(m: PSym, n: PNode; g: ModuleGraph): PNode
# evaluates the constant expression or returns nil if it is no constant
# expression
proc evalOp*(m: TMagic, n, a, b, c: PNode; g: ModuleGraph): PNode
proc checkInRange(n: PNode, res: BiggestInt): bool =
if res in firstOrd(n.typ)..lastOrd(n.typ):
result = true
proc foldAdd(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode =
let res = a +% b
if ((res xor a) >= 0'i64 or (res xor b) >= 0'i64) and
checkInRange(n, res):
result = newIntNodeT(res, n, g)
proc foldSub*(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode =
let res = a -% b
if ((res xor a) >= 0'i64 or (res xor not b) >= 0'i64) and
checkInRange(n, res):
result = newIntNodeT(res, n, g)
proc foldAbs*(a: BiggestInt, n: PNode; g: ModuleGraph): PNode =
if a != firstOrd(n.typ):
result = newIntNodeT(a, n, g)
proc foldMod*(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode =
if b != 0'i64:
result = newIntNodeT(a mod b, n, g)
proc foldModU*(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode =
if b != 0'i64:
result = newIntNodeT(a %% b, n, g)
proc foldDiv*(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode =
if b != 0'i64 and (a != firstOrd(n.typ) or b != -1'i64):
result = newIntNodeT(a div b, n, g)
proc foldDivU*(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode =
if b != 0'i64:
result = newIntNodeT(a /% b, n, g)
proc foldMul*(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode =
let res = a *% b
let floatProd = toBiggestFloat(a) * toBiggestFloat(b)
let resAsFloat = toBiggestFloat(res)
# Fast path for normal case: small multiplicands, and no info
# is lost in either method.
if resAsFloat == floatProd and checkInRange(n, res):
return newIntNodeT(res, n, g)
# Somebody somewhere lost info. Close enough, or way off? Note
# that a != 0 and b != 0 (else resAsFloat == floatProd == 0).
# The difference either is or isn't significant compared to the
# true value (of which floatProd is a good approximation).
# abs(diff)/abs(prod) <= 1/32 iff
# 32 * abs(diff) <= abs(prod) -- 5 good bits is "close enough"
if 32.0 * abs(resAsFloat - floatProd) <= abs(floatProd) and
checkInRange(n, res):
return newIntNodeT(res, n, g)
proc ordinalValToString*(a: PNode; g: ModuleGraph): string =
# because $ has the param ordinal[T], `a` is not necessarily an enum, but an
# ordinal
var x = getInt(a)
var t = skipTypes(a.typ, abstractRange)
case t.kind
of tyChar:
result = $chr(int(x) and 0xff)
of tyEnum:
var n = t.n
for i in countup(0, sonsLen(n) - 1):
if n.sons[i].kind != nkSym: internalError(g.config, a.info, "ordinalValToString")
var field = n.sons[i].sym
if field.position == x:
if field.ast == nil:
return field.name.s
else:
return field.ast.strVal
internalError(g.config, a.info, "no symbol for ordinal value: " & $x)
else:
result = $x
proc isFloatRange(t: PType): bool {.inline.} =
result = t.kind == tyRange and t.sons[0].kind in {tyFloat..tyFloat128}
proc isIntRange(t: PType): bool {.inline.} =
result = t.kind == tyRange and t.sons[0].kind in {
tyInt..tyInt64, tyUInt8..tyUInt32}
proc pickIntRange(a, b: PType): PType =
if isIntRange(a): result = a
elif isIntRange(b): result = b
else: result = a
proc isIntRangeOrLit(t: PType): bool =
result = isIntRange(t) or isIntLit(t)
proc makeRange(typ: PType, first, last: BiggestInt; g: ModuleGraph): PType =
let minA = min(first, last)
let maxA = max(first, last)
let lowerNode = newIntNode(nkIntLit, minA)
if typ.kind == tyInt and minA == maxA:
result = getIntLitType(g, lowerNode)
elif typ.kind in {tyUint, tyUInt64}:
# these are not ordinal types, so you get no subrange type for these:
result = typ
else:
var n = newNode(nkRange)
addSon(n, lowerNode)
addSon(n, newIntNode(nkIntLit, maxA))
result = newType(tyRange, typ.owner)
result.n = n
addSonSkipIntLit(result, skipTypes(typ, {tyRange}))
proc makeRangeF(typ: PType, first, last: BiggestFloat; g: ModuleGraph): PType =
var n = newNode(nkRange)
addSon(n, newFloatNode(nkFloatLit, min(first.float, last.float)))
addSon(n, newFloatNode(nkFloatLit, max(first.float, last.float)))
result = newType(tyRange, typ.owner)
result.n = n
addSonSkipIntLit(result, skipTypes(typ, {tyRange}))
proc evalIs(n, a: PNode): PNode =
# XXX: This should use the standard isOpImpl
#internalAssert a.kind == nkSym and a.sym.kind == skType
#internalAssert n.sonsLen == 3 and
# n[2].kind in {nkStrLit..nkTripleStrLit, nkType}
let t1 = a.sym.typ
if n[2].kind in {nkStrLit..nkTripleStrLit}:
case n[2].strVal.normalize
of "closure":
let t = skipTypes(t1, abstractRange)
result = newIntNode(nkIntLit, ord(t.kind == tyProc and
t.callConv == ccClosure and
tfIterator notin t.flags))
of "iterator":
let t = skipTypes(t1, abstractRange)
result = newIntNode(nkIntLit, ord(t.kind == tyProc and
t.callConv == ccClosure and
tfIterator in t.flags))
else: discard
else:
# XXX semexprs.isOpImpl is slightly different and requires a context. yay.
let t2 = n[2].typ
var match = sameType(t1, t2)
result = newIntNode(nkIntLit, ord(match))
result.typ = n.typ
proc evalOp(m: TMagic, n, a, b, c: PNode; g: ModuleGraph): PNode =
# b and c may be nil
result = nil
case m
of mOrd: result = newIntNodeT(getOrdValue(a), n, g)
of mChr: result = newIntNodeT(getInt(a), n, g)
of mUnaryMinusI, mUnaryMinusI64: result = newIntNodeT(- getInt(a), n, g)
of mUnaryMinusF64: result = newFloatNodeT(- getFloat(a), n, g)
of mNot: result = newIntNodeT(1 - getInt(a), n, g)
of mCard: result = newIntNodeT(nimsets.cardSet(a), n, g)
of mBitnotI: result = newIntNodeT(not getInt(a), n, g)
of mLengthArray: result = newIntNodeT(lengthOrd(a.typ), n, g)
of mLengthSeq, mLengthOpenArray, mXLenSeq, mLengthStr, mXLenStr:
if a.kind == nkNilLit:
result = newIntNodeT(0, n, g)
elif a.kind in {nkStrLit..nkTripleStrLit}:
result = newIntNodeT(len a.strVal, n, g)
else:
result = newIntNodeT(sonsLen(a), n, g)
of mUnaryPlusI, mUnaryPlusF64: result = a # throw `+` away
of mToFloat, mToBiggestFloat:
result = newFloatNodeT(toFloat(int(getInt(a))), n, g)
# XXX: Hides overflow/underflow
of mToInt, mToBiggestInt: result = newIntNodeT(system.toInt(getFloat(a)), n, g)
of mAbsF64: result = newFloatNodeT(abs(getFloat(a)), n, g)
of mAbsI: result = foldAbs(getInt(a), n, g)
of mZe8ToI, mZe8ToI64, mZe16ToI, mZe16ToI64, mZe32ToI64, mZeIToI64:
# byte(-128) = 1...1..1000_0000'64 --> 0...0..1000_0000'64
result = newIntNodeT(getInt(a) and (`shl`(1, getSize(a.typ) * 8) - 1), n, g)
of mToU8: result = newIntNodeT(getInt(a) and 0x000000FF, n, g)
of mToU16: result = newIntNodeT(getInt(a) and 0x0000FFFF, n, g)
of mToU32: result = newIntNodeT(getInt(a) and 0x00000000FFFFFFFF'i64, n, g)
of mUnaryLt: result = foldSub(getOrdValue(a), 1, n, g)
of mSucc: result = foldAdd(getOrdValue(a), getInt(b), n, g)
of mPred: result = foldSub(getOrdValue(a), getInt(b), n, g)
of mAddI: result = foldAdd(getInt(a), getInt(b), n, g)
of mSubI: result = foldSub(getInt(a), getInt(b), n, g)
of mMulI: result = foldMul(getInt(a), getInt(b), n, g)
of mMinI:
if getInt(a) > getInt(b): result = newIntNodeT(getInt(b), n, g)
else: result = newIntNodeT(getInt(a), n, g)
of mMaxI:
if getInt(a) > getInt(b): result = newIntNodeT(getInt(a), n, g)
else: result = newIntNodeT(getInt(b), n, g)
of mShlI:
case skipTypes(n.typ, abstractRange).kind
of tyInt8: result = newIntNodeT(int8(getInt(a)) shl int8(getInt(b)), n, g)
of tyInt16: result = newIntNodeT(int16(getInt(a)) shl int16(getInt(b)), n, g)
of tyInt32: result = newIntNodeT(int32(getInt(a)) shl int32(getInt(b)), n, g)
of tyInt64, tyInt, tyUInt..tyUInt64:
result = newIntNodeT(`shl`(getInt(a), getInt(b)), n, g)
else: internalError(g.config, n.info, "constant folding for shl")
of mShrI:
case skipTypes(n.typ, abstractRange).kind
of tyInt8: result = newIntNodeT(int8(getInt(a)) shr int8(getInt(b)), n, g)
of tyInt16: result = newIntNodeT(int16(getInt(a)) shr int16(getInt(b)), n, g)
of tyInt32: result = newIntNodeT(int32(getInt(a)) shr int32(getInt(b)), n, g)
of tyInt64, tyInt, tyUInt..tyUInt64:
result = newIntNodeT(`shr`(getInt(a), getInt(b)), n, g)
else: internalError(g.config, n.info, "constant folding for shr")
of mDivI: result = foldDiv(getInt(a), getInt(b), n, g)
of mModI: result = foldMod(getInt(a), getInt(b), n, g)
of mAddF64: result = newFloatNodeT(getFloat(a) + getFloat(b), n, g)
of mSubF64: result = newFloatNodeT(getFloat(a) - getFloat(b), n, g)
of mMulF64: result = newFloatNodeT(getFloat(a) * getFloat(b), n, g)
of mDivF64:
if getFloat(b) == 0.0:
if getFloat(a) == 0.0: result = newFloatNodeT(NaN, n, g)
elif getFloat(b).classify == fcNegZero: result = newFloatNodeT(-Inf, n, g)
else: result = newFloatNodeT(Inf, n, g)
else:
result = newFloatNodeT(getFloat(a) / getFloat(b), n, g)
of mMaxF64:
if getFloat(a) > getFloat(b): result = newFloatNodeT(getFloat(a), n, g)
else: result = newFloatNodeT(getFloat(b), n, g)
of mMinF64:
if getFloat(a) > getFloat(b): result = newFloatNodeT(getFloat(b), n, g)
else: result = newFloatNodeT(getFloat(a), n, g)
of mIsNil: result = newIntNodeT(ord(a.kind == nkNilLit), n, g)
of mLtI, mLtB, mLtEnum, mLtCh:
result = newIntNodeT(ord(getOrdValue(a) < getOrdValue(b)), n, g)
of mLeI, mLeB, mLeEnum, mLeCh:
result = newIntNodeT(ord(getOrdValue(a) <= getOrdValue(b)), n, g)
of mEqI, mEqB, mEqEnum, mEqCh:
result = newIntNodeT(ord(getOrdValue(a) == getOrdValue(b)), n, g)
of mLtF64: result = newIntNodeT(ord(getFloat(a) < getFloat(b)), n, g)
of mLeF64: result = newIntNodeT(ord(getFloat(a) <= getFloat(b)), n, g)
of mEqF64: result = newIntNodeT(ord(getFloat(a) == getFloat(b)), n, g)
of mLtStr: result = newIntNodeT(ord(getStr(a) < getStr(b)), n, g)
of mLeStr: result = newIntNodeT(ord(getStr(a) <= getStr(b)), n, g)
of mEqStr: result = newIntNodeT(ord(getStr(a) == getStr(b)), n, g)
of mLtU, mLtU64:
result = newIntNodeT(ord(`<%`(getOrdValue(a), getOrdValue(b))), n, g)
of mLeU, mLeU64:
result = newIntNodeT(ord(`<=%`(getOrdValue(a), getOrdValue(b))), n, g)
of mBitandI, mAnd: result = newIntNodeT(a.getInt and b.getInt, n, g)
of mBitorI, mOr: result = newIntNodeT(getInt(a) or getInt(b), n, g)
of mBitxorI, mXor: result = newIntNodeT(a.getInt xor b.getInt, n, g)
of mAddU: result = newIntNodeT(`+%`(getInt(a), getInt(b)), n, g)
of mSubU: result = newIntNodeT(`-%`(getInt(a), getInt(b)), n, g)
of mMulU: result = newIntNodeT(`*%`(getInt(a), getInt(b)), n, g)
of mModU: result = foldModU(getInt(a), getInt(b), n, g)
of mDivU: result = foldDivU(getInt(a), getInt(b), n, g)
of mLeSet: result = newIntNodeT(ord(containsSets(a, b)), n, g)
of mEqSet: result = newIntNodeT(ord(equalSets(a, b)), n, g)
of mLtSet:
result = newIntNodeT(ord(containsSets(a, b) and not equalSets(a, b)), n, g)
of mMulSet:
result = nimsets.intersectSets(a, b)
result.info = n.info
of mPlusSet:
result = nimsets.unionSets(a, b)
result.info = n.info
of mMinusSet:
result = nimsets.diffSets(a, b)
result.info = n.info
of mSymDiffSet:
result = nimsets.symdiffSets(a, b)
result.info = n.info
of mConStrStr: result = newStrNodeT(getStrOrChar(a) & getStrOrChar(b), n, g)
of mInSet: result = newIntNodeT(ord(inSet(a, b)), n, g)
of mRepr:
# BUGFIX: we cannot eval mRepr here for reasons that I forgot.
discard
of mIntToStr, mInt64ToStr: result = newStrNodeT($(getOrdValue(a)), n, g)
of mBoolToStr:
if getOrdValue(a) == 0: result = newStrNodeT("false", n, g)
else: result = newStrNodeT("true", n, g)
of mCopyStr: result = newStrNodeT(substr(getStr(a), int(getOrdValue(b))), n, g)
of mCopyStrLast:
result = newStrNodeT(substr(getStr(a), int(getOrdValue(b)),
int(getOrdValue(c))), n, g)
of mFloatToStr: result = newStrNodeT($getFloat(a), n, g)
of mCStrToStr, mCharToStr:
if a.kind == nkBracket:
var s = ""
for b in a.sons:
s.add b.getStrOrChar
result = newStrNodeT(s, n, g)
else:
result = newStrNodeT(getStrOrChar(a), n, g)
of mStrToStr: result = a
of mEnumToStr: result = newStrNodeT(ordinalValToString(a, g), n, g)
of mArrToSeq:
result = copyTree(a)
result.typ = n.typ
of mCompileOption:
result = newIntNodeT(ord(commands.testCompileOption(g.config, a.getStr, n.info)), n, g)
of mCompileOptionArg:
result = newIntNodeT(ord(
testCompileOptionArg(g.config, getStr(a), getStr(b), n.info)), n, g)
of mEqProc:
result = newIntNodeT(ord(
exprStructuralEquivalent(a, b, strictSymEquality=true)), n, g)
else: discard
proc getConstIfExpr(c: PSym, n: PNode; g: ModuleGraph): PNode =
result = nil
for i in countup(0, sonsLen(n) - 1):
var it = n.sons[i]
if it.len == 2:
var e = getConstExpr(c, it.sons[0], g)
if e == nil: return nil
if getOrdValue(e) != 0:
if result == nil:
result = getConstExpr(c, it.sons[1], g)
if result == nil: return
elif it.len == 1:
if result == nil: result = getConstExpr(c, it.sons[0], g)
else: internalError(g.config, it.info, "getConstIfExpr()")
proc leValueConv*(a, b: PNode): bool =
result = false
case a.kind
of nkCharLit..nkUInt64Lit:
case b.kind
of nkCharLit..nkUInt64Lit: result = a.intVal <= b.intVal
of nkFloatLit..nkFloat128Lit: result = a.intVal <= round(b.floatVal).int
else: result = false #internalError(a.info, "leValueConv")
of nkFloatLit..nkFloat128Lit:
case b.kind
of nkFloatLit..nkFloat128Lit: result = a.floatVal <= b.floatVal
of nkCharLit..nkUInt64Lit: result = a.floatVal <= toFloat(int(b.intVal))
else: result = false # internalError(a.info, "leValueConv")
else: result = false # internalError(a.info, "leValueConv")
proc magicCall(m: PSym, n: PNode; g: ModuleGraph): PNode =
if sonsLen(n) <= 1: return
var s = n.sons[0].sym
var a = getConstExpr(m, n.sons[1], g)
var b, c: PNode
if a == nil: return
if sonsLen(n) > 2:
b = getConstExpr(m, n.sons[2], g)
if b == nil: return
if sonsLen(n) > 3:
c = getConstExpr(m, n.sons[3], g)
if c == nil: return
result = evalOp(s.magic, n, a, b, c, g)
proc getAppType(n: PNode; g: ModuleGraph): PNode =
if gGlobalOptions.contains(optGenDynLib):
result = newStrNodeT("lib", n, g)
elif gGlobalOptions.contains(optGenStaticLib):
result = newStrNodeT("staticlib", n, g)
elif gGlobalOptions.contains(optGenGuiApp):
result = newStrNodeT("gui", n, g)
else:
result = newStrNodeT("console", n, g)
proc rangeCheck(n: PNode, value: BiggestInt; g: ModuleGraph) =
var err = false
if n.typ.skipTypes({tyRange}).kind in {tyUInt..tyUInt64}:
err = value <% firstOrd(n.typ) or value >% lastOrd(n.typ, fixedUnsigned=true)
else:
err = value < firstOrd(n.typ) or value > lastOrd(n.typ)
if err:
localError(g.config, n.info, "cannot convert " & $value &
" to " & typeToString(n.typ))
proc foldConv*(n, a: PNode; g: ModuleGraph; check = false): PNode =
# XXX range checks?
case skipTypes(n.typ, abstractRange).kind
of tyInt..tyInt64, tyUInt..tyUInt64:
case skipTypes(a.typ, abstractRange).kind
of tyFloat..tyFloat64:
result = newIntNodeT(int(getFloat(a)), n, g)
of tyChar: result = newIntNodeT(getOrdValue(a), n, g)
else:
result = a
result.typ = n.typ
if check and result.kind in {nkCharLit..nkUInt64Lit}:
rangeCheck(n, result.intVal, g)
of tyFloat..tyFloat64:
case skipTypes(a.typ, abstractRange).kind
of tyInt..tyInt64, tyEnum, tyBool, tyChar:
result = newFloatNodeT(toBiggestFloat(getOrdValue(a)), n, g)
else:
result = a
result.typ = n.typ
of tyOpenArray, tyVarargs, tyProc:
discard
else:
result = a
result.typ = n.typ
proc getArrayConstr(m: PSym, n: PNode; g: ModuleGraph): PNode =
if n.kind == nkBracket:
result = n
else:
result = getConstExpr(m, n, g)
if result == nil: result = n
proc foldArrayAccess(m: PSym, n: PNode; g: ModuleGraph): PNode =
var x = getConstExpr(m, n.sons[0], g)
if x == nil or x.typ.skipTypes({tyGenericInst, tyAlias, tySink}).kind == tyTypeDesc:
return
var y = getConstExpr(m, n.sons[1], g)
if y == nil: return
var idx = getOrdValue(y)
case x.kind
of nkPar, nkTupleConstr:
if idx >= 0 and idx < sonsLen(x):
result = x.sons[int(idx)]
if result.kind == nkExprColonExpr: result = result.sons[1]
else:
localError(g.config, n.info, "index out of bounds: " & $n)
of nkBracket:
idx = idx - x.typ.firstOrd
if idx >= 0 and idx < x.len: result = x.sons[int(idx)]
else: localError(g.config, n.info, "index out of bounds: " & $n)
of nkStrLit..nkTripleStrLit:
result = newNodeIT(nkCharLit, x.info, n.typ)
if idx >= 0 and idx < len(x.strVal):
result.intVal = ord(x.strVal[int(idx)])
elif idx == len(x.strVal) and optLaxStrings in gOptions:
discard
else:
localError(g.config, n.info, "index out of bounds: " & $n)
else: discard
proc foldFieldAccess(m: PSym, n: PNode; g: ModuleGraph): PNode =
# a real field access; proc calls have already been transformed
var x = getConstExpr(m, n.sons[0], g)
if x == nil or x.kind notin {nkObjConstr, nkPar, nkTupleConstr}: return
var field = n.sons[1].sym
for i in countup(ord(x.kind == nkObjConstr), sonsLen(x) - 1):
var it = x.sons[i]
if it.kind != nkExprColonExpr:
# lookup per index:
result = x.sons[field.position]
if result.kind == nkExprColonExpr: result = result.sons[1]
return
if it.sons[0].sym.name.id == field.name.id:
result = x.sons[i].sons[1]
return
localError(g.config, n.info, "field not found: " & field.name.s)
proc foldConStrStr(m: PSym, n: PNode; g: ModuleGraph): PNode =
result = newNodeIT(nkStrLit, n.info, n.typ)
result.strVal = ""
for i in countup(1, sonsLen(n) - 1):
let a = getConstExpr(m, n.sons[i], g)
if a == nil: return nil
result.strVal.add(getStrOrChar(a))
proc newSymNodeTypeDesc*(s: PSym; info: TLineInfo): PNode =
result = newSymNode(s, info)
if s.typ.kind != tyTypeDesc:
result.typ = newType(tyTypeDesc, s.owner)
result.typ.addSonSkipIntLit(s.typ)
else:
result.typ = s.typ
proc getConstExpr(m: PSym, n: PNode; g: ModuleGraph): PNode =
result = nil
proc getSrcTimestamp(): DateTime =
try:
result = utc(fromUnix(parseInt(getEnv("SOURCE_DATE_EPOCH",
"not a number"))))
except ValueError:
# Environment variable malformed.
# https://reproducible-builds.org/specs/source-date-epoch/: "If the
# value is malformed, the build process SHOULD exit with a non-zero
# error code", which this doesn't do. This uses local time, because
# that maintains compatibility with existing usage.
result = local(getTime())
case n.kind
of nkSym:
var s = n.sym
case s.kind
of skEnumField:
result = newIntNodeT(s.position, n, g)
of skConst:
case s.magic
of mIsMainModule: result = newIntNodeT(ord(sfMainModule in m.flags), n, g)
of mCompileDate: result = newStrNodeT(format(getSrcTimestamp(),
"yyyy-MM-dd"), n, g)
of mCompileTime: result = newStrNodeT(format(getSrcTimestamp(),
"HH:mm:ss"), n, g)
of mCpuEndian: result = newIntNodeT(ord(CPU[targetCPU].endian), n, g)
of mHostOS: result = newStrNodeT(toLowerAscii(platform.OS[targetOS].name), n, g)
of mHostCPU: result = newStrNodeT(platform.CPU[targetCPU].name.toLowerAscii, n, g)
of mBuildOS: result = newStrNodeT(toLowerAscii(platform.OS[platform.hostOS].name), n, g)
of mBuildCPU: result = newStrNodeT(platform.CPU[platform.hostCPU].name.toLowerAscii, n, g)
of mAppType: result = getAppType(n, g)
of mNaN: result = newFloatNodeT(NaN, n, g)
of mInf: result = newFloatNodeT(Inf, n, g)
of mNegInf: result = newFloatNodeT(NegInf, n, g)
of mIntDefine:
if isDefined(g.config, s.name.s):
try:
result = newIntNodeT(g.config.symbols[s.name.s].parseInt, n, g)
except ValueError:
localError(g.config, n.info, "expression is not an integer literal")
of mStrDefine:
if isDefined(g.config, s.name.s):
result = newStrNodeT(g.config.symbols[s.name.s], n, g)
else:
result = copyTree(s.ast)
of skProc, skFunc, skMethod:
result = n
of skType:
# XXX gensym'ed symbols can come here and cannot be resolved. This is
# dirty, but correct.
if s.typ != nil:
result = newSymNodeTypeDesc(s, n.info)
of skGenericParam:
if s.typ.kind == tyStatic:
if s.typ.n != nil and tfUnresolved notin s.typ.flags:
result = s.typ.n
result.typ = s.typ.base
elif s.typ.isIntLit:
result = s.typ.n
else:
result = newSymNodeTypeDesc(s, n.info)
else: discard
of nkCharLit..nkNilLit:
result = copyNode(n)
of nkIfExpr:
result = getConstIfExpr(m, n, g)
of nkCallKinds:
if n.sons[0].kind != nkSym: return
var s = n.sons[0].sym
if s.kind != skProc and s.kind != skFunc: return
try:
case s.magic
of mNone:
# If it has no sideEffect, it should be evaluated. But not here.
return
of mSizeOf:
var a = n.sons[1]
if computeSize(a.typ) < 0:
localError(g.config, a.info, "cannot evaluate 'sizeof' because its type is not defined completely")
result = nil
elif skipTypes(a.typ, typedescInst+{tyRange}).kind in
IntegralTypes+NilableTypes+{tySet}:
#{tyArray,tyObject,tyTuple}:
result = newIntNodeT(getSize(a.typ), n, g)
else:
result = nil
# XXX: size computation for complex types is still wrong
of mLow:
result = newIntNodeT(firstOrd(n.sons[1].typ), n, g)
of mHigh:
if skipTypes(n.sons[1].typ, abstractVar).kind notin
{tySequence, tyString, tyCString, tyOpenArray, tyVarargs}:
result = newIntNodeT(lastOrd(skipTypes(n[1].typ, abstractVar)), n, g)
else:
var a = getArrayConstr(m, n.sons[1], g)
if a.kind == nkBracket:
# we can optimize it away:
result = newIntNodeT(sonsLen(a)-1, n, g)
of mLengthOpenArray:
var a = getArrayConstr(m, n.sons[1], g)
if a.kind == nkBracket:
# we can optimize it away! This fixes the bug ``len(134)``.
result = newIntNodeT(sonsLen(a), n, g)
else:
result = magicCall(m, n, g)
of mLengthArray:
# It doesn't matter if the argument is const or not for mLengthArray.
# This fixes bug #544.
result = newIntNodeT(lengthOrd(n.sons[1].typ), n, g)
of mAstToStr:
result = newStrNodeT(renderTree(n[1], {renderNoComments}), n, g)
of mConStrStr:
result = foldConStrStr(m, n, g)
of mIs:
let a = getConstExpr(m, n[1], g)
if a != nil and a.kind == nkSym and a.sym.kind == skType:
result = evalIs(n, a)
else:
result = magicCall(m, n, g)
except OverflowError:
localError(g.config, n.info, "over- or underflow")
except DivByZeroError:
localError(g.config, n.info, "division by zero")
of nkAddr:
var a = getConstExpr(m, n.sons[0], g)
if a != nil:
result = n
n.sons[0] = a
of nkBracket:
result = copyTree(n)
for i in countup(0, sonsLen(n) - 1):
var a = getConstExpr(m, n.sons[i], g)
if a == nil: return nil
result.sons[i] = a
incl(result.flags, nfAllConst)
of nkRange:
var a = getConstExpr(m, n.sons[0], g)
if a == nil: return
var b = getConstExpr(m, n.sons[1], g)
if b == nil: return
result = copyNode(n)
addSon(result, a)
addSon(result, b)
of nkCurly:
result = copyTree(n)
for i in countup(0, sonsLen(n) - 1):
var a = getConstExpr(m, n.sons[i], g)
if a == nil: return nil
result.sons[i] = a
incl(result.flags, nfAllConst)
#of nkObjConstr:
# result = copyTree(n)
# for i in countup(1, sonsLen(n) - 1):
# var a = getConstExpr(m, n.sons[i].sons[1])
# if a == nil: return nil
# result.sons[i].sons[1] = a
# incl(result.flags, nfAllConst)
of nkPar, nkTupleConstr:
# tuple constructor
result = copyTree(n)
if (sonsLen(n) > 0) and (n.sons[0].kind == nkExprColonExpr):
for i in countup(0, sonsLen(n) - 1):
var a = getConstExpr(m, n.sons[i].sons[1], g)
if a == nil: return nil
result.sons[i].sons[1] = a
else:
for i in countup(0, sonsLen(n) - 1):
var a = getConstExpr(m, n.sons[i], g)
if a == nil: return nil
result.sons[i] = a
incl(result.flags, nfAllConst)
of nkChckRangeF, nkChckRange64, nkChckRange:
var a = getConstExpr(m, n.sons[0], g)
if a == nil: return
if leValueConv(n.sons[1], a) and leValueConv(a, n.sons[2]):
result = a # a <= x and x <= b
result.typ = n.typ
else:
localError(g.config, n.info,
"conversion from $1 to $2 is invalid" %
[typeToString(n.sons[0].typ), typeToString(n.typ)])
of nkStringToCString, nkCStringToString:
var a = getConstExpr(m, n.sons[0], g)
if a == nil: return
result = a
result.typ = n.typ
of nkHiddenStdConv, nkHiddenSubConv, nkConv:
var a = getConstExpr(m, n.sons[1], g)
if a == nil: return
result = foldConv(n, a, g, check=n.kind == nkHiddenStdConv)
of nkCast:
var a = getConstExpr(m, n.sons[1], g)
if a == nil: return
if n.typ != nil and n.typ.kind in NilableTypes:
# we allow compile-time 'cast' for pointer types:
result = a
result.typ = n.typ
of nkBracketExpr: result = foldArrayAccess(m, n, g)
of nkDotExpr: result = foldFieldAccess(m, n, g)
of nkStmtListExpr:
if n.len == 2 and n[0].kind == nkComesFrom:
result = getConstExpr(m, n[1], g)
else:
discard
|